1
|
Wang TT, Yang CY, Peng L, Li L, Chen NT, Feng X, Xie J, Wu TC, Xu T, Chen YZ. QiShenYiQi pill inhibits atherosclerosis by promoting TTC39B-LXR mediated reverse cholesterol transport in liver. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155192. [PMID: 37951148 DOI: 10.1016/j.phymed.2023.155192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Tetranucleotide repeat domain protein 39B (TTC39B) was found to combine with ubiquitin ligase E3, and promote the ubiquitination modification of liver X receptor (LXR), which led to the inhibition of reverse cholesterol transport and development of atherosclerosis. QiShenYiQi pill (QSYQ) is a modern Chinese patent drug for treating ischemic cardiovascular diseases, the underlying mechanism is found to promote the expression of LXR-α/ ATP-binding cassette transporter G5 (ABCG5) in the liver of atherosclerotic mice. PURPOSE The aim of this study is to investigate the effect of QSYQ on TTC39B-LXR mediated reverse cholesterol transport in atherosclerotic mice. STUDY DESIGN AND METHODS Male apolipoprotein E gene knockout mice (7 weeks old) were fed with high-fat diet and treated with low dose of QSYQ (QSYQ-l, 0.3 g/kg·d), high dose of QSYQ (QSYQ-H, 1.2 g/kg·d) and LXR-α agonist (LXR-A, GW3965 10 mg/kg·d) for 8 weeks. C57BL/6 J mice were fed with normal diet and used as negative control. Oil red O staining, HE staining, ELISA, RNA sequencing, western blot, immunohistochemistry, RT-PCR, cell culture and RNA interference were performed to analyze the effect of QSYQ on atherosclerosis. RESULTS HE staining showed that QSYQ reduced the atherosclerotic lesion significantly when compared to the control group. ELISA measurement showed that QSYQ decreased serum VLDL and increased serum ApoA1. Oil Red O staining showed that QSYQ reduced the lipid content of liver and protect liver function. Comparative transcriptome RNA-sequence of liver showed that DEGs after QSYQ treatment enriched in high-density lipoprotein particle, ubiquitin ligase complex, bile secretion, etc. Immunohistochemical staining and western blot proved that QSYQ increased the protein expression of hepatic SR-B1, LXR-α, LXR-β, CYP7A1 and ABCG5. Targeted inhibiting Ttc39b gene in vitro further established that QSYQ inhibited the gene expression of Ttc39b, increased the protein expression of SR-B1, LXR-α/β, CYP7A1 and ABCG5 in rat hepatocyte. CONCLUSION Our results demonstrated the new anti-atherosclerotic mechanism of QSYQ by targeting TTC39B-LXR mediated reverse cholesterol transport in liver. QSYQ not only promoted reverse cholesterol transport, but also improved fatty liver and protected liver function.
Collapse
Affiliation(s)
- Tao-Tao Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Cheng-Yong Yang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Li Peng
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| | - Li Li
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Nan-Ting Chen
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Xue Feng
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Jing Xie
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Ting-Chun Wu
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Tao Xu
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yun-Zhi Chen
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| |
Collapse
|
2
|
Vatte S, Ugale R. HIF-1, an important regulator in potential new therapeutic approaches to ischemic stroke. Neurochem Int 2023; 170:105605. [PMID: 37657765 DOI: 10.1016/j.neuint.2023.105605] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic window of the only approved therapies like intravenous thrombolysis and thrombectomy. Hypoxia inducible factor-1α (HIF-1α) is a sensitive regulator of oxygen homeostasis, and its expression is rapidly induced after hypoxia/ischemia. It plays an extensive role in the pathophysiology of stroke by regulating multiple pathways including glucose metabolism, angiogenesis, neuronal survival, neuroinflammation and blood brain barrier regulation. Here, we give a brief overview of the HIF-1α-targeting strategies currently under investigation and summarise recent research on how HIF-1α is regulated in various brain cells, including neurons and microglia, at various stages in ischemic stroke. The roles of HIF-1 in stroke varies with ischemic time and degree of ischemia, are still up for debate. More focus has been placed on prospective HIF-1α targeting drugs, such as HIF-1α activator, HIF-1α stabilizers, and natural compounds. In this review, we have highlighted the regulation of HIF-1α in the novel therapeutic approaches for treatment of stroke.
Collapse
Affiliation(s)
- Sneha Vatte
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, India.
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, India.
| |
Collapse
|
3
|
Lu CM, Yang YS, Lu YM, Zhu YP, Zhang A, Lyu SC, Zhang JP. Qishen Yiqi Dripping Pills for Cardiovascular Diseases: Effects and Mechanisms. Chin J Integr Med 2023; 29:857-864. [PMID: 36301453 DOI: 10.1007/s11655-022-3288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2020] [Indexed: 11/30/2022]
Abstract
Qishen Yiqi Dripping Pills (QSYQ) is a compound of Chinese medicine, which has been used to treat coronary heart disease and cardiac dysfunction. Its natural components include astragaloside IV, flavonoids, danshensu, protocatechualdehyde, salvianolic acid B, salvianolic acid A, ginsenosides Rg1, ginsenosides Rb1, and essential oils, etc. It exerts effects of nourishing qi and promoting blood circulation to relieve pain. In this review, the bioactive components of QSYQ and its effects for treating cardiovascular diseases and possible mechanism were summarized, providing references for further study and clinical application of QSYQ.
Collapse
Affiliation(s)
- Chun-Miao Lu
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yu-Song Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yan-Min Lu
- Institute of Acute Abdominal Diseases, Nankai Hospital, Tianjin, 300100, China
| | - Ya-Ping Zhu
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ao Zhang
- Epidemiology, College of Global Public Health, New York University, New York, 10003, USA
| | - Shi-Chao Lyu
- Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Jun-Ping Zhang
- Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| |
Collapse
|
4
|
Wu L, Fan Z, Gu L, Liu J, Cui Z, Yu B, Kou J, Li F. QiShenYiQi dripping pill alleviates myocardial ischemia-induced ferroptosis via improving mitochondrial dynamical homeostasis and biogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116282. [PMID: 36806343 DOI: 10.1016/j.jep.2023.116282] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE QiShenYiQi is a Chinese herbal formula composed of Astragalus membranaceus Fisch. ex Bunge, root; Slauia miltiorrhiza Bunge, root and rhizome; Panax notoginseng (Burkill) F.H.Chen, root; and Dalbergia odorifera T.C.Chen, heartwood of trunk and root with a proportion of 10:5:1:0.067. Its dripping pills were approved by the National Medical Products Administration (NMPA) in 2003 and could be used in the clinical treatment of ischemic heart diseases. Ferroptosis is an important pathological mechanism in the process of myocardial ischemia (MI). Whether QSYQ can improve ferroptosis induced by myocardial ischemia is still unclear. AIM OF THE STUDY In this study, the potential mechanisms of QSYQ against ferroptosis in MI-induced injury were investigated. MATERIALS AND METHODS The main components of QSYQ were analyzed by HPLC-Q-TOF-MS/MS. MI model was established by ligation of the left anterior descending coronary artery and then treated with QSYQ dropping pills for 14 days. The cardiac function of mice was evaluated by echocardiography. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining were used to detect the pathological changes in heart tissue. Serum biochemical indexes were analyzed by biochemical kit. Transmission electron microscope (TEM) was used to observe the mitochondria ultrastructure and mitochondrial ROS was detected by immunofluorescence. Then, photoacoustic imaging was used to observe the redox status of the mice' hearts. Finally, the mitochondrial dynamics and biogenesis related proteins and the proteins of ferroptosis were analyzed by western blotting. RT-PCR was used to detect the mRNA expression changes of ferroptosis. RESULTS A total of 20 principal components of QSYQ were characterized by HPLC-Q-TOF-MS/MS. QSYQ significantly improved cardiac function and myocardial injury in MI mice. Furthermore, the lipid peroxidation change levels (MDA, 4-HNE, and GSH) in serum were attenuated and myocardial iron content was reduced after QSYQ treatment. On this basis, QSYQ also improved the expression changes of ferroptosis related mRNA and proteins. In addition, QSYQ promoted mitochondrial biogenesis (PGC-1α, Nrf1, and TFAM) and mitochondrial fusion (MFN-2 and OPA1) and inhibited mitochondrial excessive fission (Phosphorylation of Drp1 at ser616) in vitro and in vivo, indicating that the cardioprotection of QSYQ might be related to promoting mitochondrial biogenesis and dynamic homeostasis. CONCLUSION In summary, QSYQ could alleviate MI-induced ferroptosis by improving mitochondrial biogenesis and dynamic homeostasis.
Collapse
Affiliation(s)
- Lingling Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zhaoyang Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lifei Gu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China.
| | - Jincheng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zekun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
5
|
Ding C, Li Y, Li X, Meng L, Fu R, Wang X, Li Y, Ma Y, Dong Z. QiShenYiQi pills, a Chinese patent medicine, increase bioavailability of atorvastatin by inhibiting Mrp2 expression in rats. PHARMACEUTICAL BIOLOGY 2022; 60:185-194. [PMID: 35001796 PMCID: PMC8745373 DOI: 10.1080/13880209.2021.2021949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/02/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT Atorvastatin (ATV) and QiShenYiQi pills (QSYQ), a Chinese patent medicine, are often co-prescribed to Chinese cardiovascular patients. The effects of QSYQ on the pharmacokinetics of ATV have not been studied. OBJECTIVE We investigated the influence of QSYQ on the pharmacokinetics of ATV and its metabolites upon oral or intravenous administration of ATV to rats. MATERIALS AND METHODS Sprague-Dawley rats (n = 5/group) were pre-treated with oral QSYQ (675 mg/kg) or vehicle control for 7 days and then orally administrated ATV (10 mg/kg) or intravenously administrated ATV (2 mg/kg). Serum concentrations of ATV and metabolites were determined by ultra-high performance liquid chromatography tandem mass spectrometry. Expression of metabolic enzymes and transporters in jejunum and ileum were measured by quantitative real-time PCR and Western blot. RESULTS QSYQ resulted in an increase of AUC0-12 h of ATV from 226.67 ± 42.11 to 408.70 ± 161.75 ng/mL/h and of Cmax of ATV from 101.46 ± 26.18 to 198.00 ± 51.69 ng/mL and in an increased of para-hydroxy atorvastatin from 9.07 ± 6.20 to 23.10 ± 8.70 ng/mL in rats administered ATV orally. No change was observed in rats treated intravenously. The expression of multidrug resistance-associated protein 2 mRNA and protein decreased in ileum, and the mRNA of P-glycoprotein decreased in jejunum, though no change in protein expression was found. DISCUSSION AND CONCLUSIONS QSYQ increased bioavailability of ATV administered orally through inhibiting the expression of Mrp2 in ileum. Clinicians should pay close attention to potential drug-drug interactions between ATV and QSYQ.
Collapse
Affiliation(s)
- Congyang Ding
- National Clinical Drug Monitoring Center, Hebei General Hospital, Shijiazhuang, China
| | - Yajing Li
- National Clinical Drug Monitoring Center, Hebei General Hospital, Shijiazhuang, China
| | - Xiao Li
- National Clinical Drug Monitoring Center, Hebei General Hospital, Shijiazhuang, China
| | - Lu Meng
- Department of Pharmacy, The Second Hospital of Shijiazhuang, Shijiazhuang, China
| | - Ran Fu
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Xiaonan Wang
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Ying Li
- National Clinical Drug Monitoring Center, Hebei General Hospital, Shijiazhuang, China
| | - Yinling Ma
- National Clinical Drug Monitoring Center, Hebei General Hospital, Shijiazhuang, China
| | - Zhanjun Dong
- National Clinical Drug Monitoring Center, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
6
|
Liu X, Xiao G, Wang Y, Shang T, Li Z, Wang H, Pu L, He S, Shao R, Orgah JO, Zhu Y. Qishen Yiqi Dropping Pill facilitates post-stroke recovery of motion and memory loss by modulating ICAM-1-mediated neuroinflammation. Biomed Pharmacother 2022; 153:113325. [DOI: 10.1016/j.biopha.2022.113325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
|
7
|
Li F, Wan SY, Hu JG, Zhang Y, Yu BY, Kou JP. Recent advances of traditional chinese medicine in the regulation of myocardial mitochondrial function. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_78_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Huang Y, Zhang K, Liu M, Su J, Qin X, Wang X, Zhang J, Li S, Fan G. An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP-PKG pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153633. [PMID: 34320423 DOI: 10.1016/j.phymed.2021.153633] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous disease presenting a substantial challenge to clinicians. Currently, there is no safe and efficacious HFpEF treatment. In this study, we reported a standardized herbal medicinal product, QiShenYiQi (QSYQ), that can be used in the treatment of HFpEF. METHODS HFpEF mice were established by infusing a combination of Nω-nitro-L-arginine methyl ester (L-NAME) and feeding them a high-fat diet for 14 weeks. In the 10th week, the HFpEF mice were given dapagliflozin or QSYQ via oral gavage for four weeks. The blood pressure, echocardiography, hemodynamics, leukocyte infiltration, and oxidative stress in HFpEF mice were evaluated. Besides, inflammatory factors, endothelial adhesion factors, and endothelial-mesenchymal transformation (EndMT) markers were investigated. RESULTS QSYQ significantly attenuated concentric cardiac remodeling while improving diastolic function and left ventricular compliance in HFpEF mice. QSYQ also inhibited inflammation and immunocyte recruitment during HFpEF. The infiltration of CD8+, CD4+ T cells, and CD11b/c+ monocytes was substantially mitigated in the myocardium of QSYQ-treated mice. TNF-α, MCP-1, NF-κB, and NLRP3 levels also reduced after QSYQ treatment. Furthermore, QSYQ significantly reversed the elevated expression of endothelial adhesion factors and EndMT occurrence. These effects of QSYQ were demonstrated by the activation of NO-cGMP-PKG pathway and reduction of eNOS uncoupling in the HFpEF heart. CONCLUSION These results provide novel evidence that QSYQ treatment improves HFpEF by inhibiting microvascular endothelial inflammation and activating NO-cGMP-PKG pathway.
Collapse
Affiliation(s)
- Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Miao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Jing Su
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Xiaoyan Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Xiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Sheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China.; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China..
| |
Collapse
|
9
|
Han JY, Meininger G, Luo JC, Huang QB. Editorial: Traditional Chinese Medicine: Organ Vascular Injury - Volume II. Front Physiol 2021; 12:677858. [PMID: 34177621 PMCID: PMC8231435 DOI: 10.3389/fphys.2021.677858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Gerald Meininger
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Jin-Cai Luo
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qiao-Bing Huang
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Mechanisms Underlying the Cardioprotection of YangXinDingJi Capsule against Myocardial Ischemia in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8539148. [PMID: 33281916 PMCID: PMC7685838 DOI: 10.1155/2020/8539148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 10/20/2020] [Indexed: 11/18/2022]
Abstract
Background YangXinDingJi (YXDJ) capsule is one of traditional Chinese medicines (TCMs) derived from Zhigancao decoction, which is usually used for the treatment of cardiovascular disease in China. Aim of the Study. Cardiovascular events are one of the leading causes of death worldwide. Myocardial ischemia (MI) severely reduces myocyte longevity and function. The YangXinDingJi (YXDJ) capsule has been used in the treatment of clinical cardiac disease in China. Nevertheless, the underlying cellular mechanisms for the benefits to heart function resulting from the use of this capsule are still unclear. The aim of this study was to evaluate the protective effects of the YXDJ on isoprenaline-induced MI in rats and to clarify its underlying myocardial protective mechanisms based on L-type calcium channels and myocardial contractility. Materials and Methods Rats were randomly divided into five groups with ten rats in each group: (1) control; (2) ISO-induced model; (3) high-dose YXDJ (2.8 g/kg/day intraperitoneally for five days), (4) low-dose YXDJ (1.4 g/kg/day for five days); and (5) verapamil (n = 10 in each group). Isoproterenol (ISO) was injected subcutaneously for two consecutive days to induce the rat model of MI. Heart and biochemical parameters were obtained. The patch-clamp technique was used to observe the regulatory effects of YXDJ on the L-type calcium current (ICa-L) in isolated cardiomyocytes. An IonOptix MyoCam detection system was used to observe the contractility of YXDJ on isolated cardiomyocytes. Results YXDJ caused a significant improvement in pathological heart morphology and alleviated oxidative stress and inflammatory responses. Exposure to YXDJ caused a decrease in blockade of ICa-L in a concentration-dependent manner. Conclusions The results indicate that YXDJ significantly inhibited inflammatory cytokine expressions, oxidative stress, and L-type Ca2+ channels, and decreased contractility in isolated rat cardiomyocytes. These findings may be relevant to the cardioprotective efficacy of YXDJ.
Collapse
|
11
|
Efficacy of Qishen Yiqi Drop Pill for Chronic Heart Failure: An Updated Meta-Analysis of 85 Studies. Cardiovasc Ther 2020; 2020:8138764. [PMID: 33042225 PMCID: PMC7530480 DOI: 10.1155/2020/8138764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Background Despite evidence for beneficial effects of Qishen Yiqi Drop Pill (QSYQ) on congestive heart failure, the majority of studies are based on insufficient sample sizes. The aim of this study was to evaluate the therapeutic effects of QSYQ using a meta-analysis approach. Methodology/Principal Findings. All relevant studies published before December 31, 2019, were identified by searches of various databases with key search terms. In total, 85 studies involving 8,579 participants were included. The addition of QSYQ to routine Western medicine increased 6-minute walking distance (SMD = 2.08, 95% CI: 1.72–2.44, p < 0.001), left ventricular ejection fraction (SMD = 1.05, 95% CI: 0.87–1.23, p < 0.001), and cardiac index (SMD = 1.44, 95% CI: 0.92–1.95, p < 0.001) and reduced brain natriuretic peptide (SMD = −2.28, 95% CI: -2.81 to -1.76, p < 0.001), N-terminal prohormone of brain natriuretic peptide (SMD = −2.49, 95% CI: -3.24 to -1.73, p < 0.001), left ventricular end-diastolic dimensions (SMD = −0.92, 95% CI: -1.25 to -0.59, p < 0.001), and left ventricular end-systolic dimensions (SMD = −0.55, 95% CI: -0.89 to -0.21, p < 0.001). The results were stable in subgroup analyses and sensitivity analyses. Conclusions Our current meta-analysis indicated that QSYQ combined with Western therapy might be effective in CHF patients. Further researches are needed to identify which subgroups of CHF patients will benefit most and what kind of combination medicines work best.
Collapse
|
12
|
Cheng W, Wang L, Yang T, Wu A, Wang B, Li T, Lu Z, Yang J, Li Y, Jiang Y, Wu X, Meng H, Zhao M. Qiliqiangxin Capsules Optimize Cardiac Metabolism Flexibility in Rats With Heart Failure After Myocardial Infarction. Front Physiol 2020; 11:805. [PMID: 32848816 PMCID: PMC7396640 DOI: 10.3389/fphys.2020.00805] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic modulation is a promising therapy for ischemic heart disease and heart failure. This study aimed to clarify the regional modulatory effect of Qiliqiangxin capsules (QLQX), a traditional Chinese medicine, on cardiac metabolic phenotypes. Sprague-Dawley rats underwent left anterior descending coronary artery ligation and were treated with QLQX and enalapril. Striking global left ventricular dysfunction and left ventricular remodeling were significantly improved by QLQX. In addition to the posterior wall, QLQX also had a unique beneficial effect on the anterior wall subject to a severe oxygen deficit. Cardiac tissues in the border and remote areas were separated for detection. QLQX enhanced the cardiac 18F-fluorodeoxyglucose uptake and the levels and translocation of glucose transport 4 (GLUT4) in the border area. Meanwhile, it also suppressed glucose transport 1 (GLUT1) in both areas, indicating that QLQX encouraged border myocytes to use more glucose in a GLUT4-dependent manner. It was inferred that QLQX promoted a shift from glucose oxidation to anaerobic glycolysis in the border area by the augmentation of phosphorylated pyruvate dehydrogenase, pyruvate dehydrogenase kinases 4, and lactic dehydrogenase A. QLQX also upregulated the protein expression of fatty acid translocase and carnitine palmitoyl transferase-1 in the remote area to possibly normalize fatty acid (FA) uptake and oxidation similar to that in healthy hearts. QLQX protected global viable cardiomyocytes and promoted metabolic flexibility by modulating metabolic proteins regionally, indicating its potential for driving the border myocardium into an anaerobic glycolytic pathway against hypoxia injuries and urging the remote myocardium to oxidize FA to maximize energy production.
Collapse
Affiliation(s)
- Wenkun Cheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aiming Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baofu Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziwen Lu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yangyang Jiang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxiao Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Meng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Liang C, Ni GX, Shi XL, Jia L, Wang YL. Astragaloside IV regulates the HIF/VEGF/Notch signaling pathway through miRNA-210 to promote angiogenesis after ischemic stroke. Restor Neurol Neurosci 2020; 38:271-282. [PMID: 32417803 DOI: 10.3233/rnn-201001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Astragaloside IV (AS-IV) is one of the main active ingredients of Astragalusmembranaceus. Studies have shown that AS-IV stimulates angiogenesis, including cell proliferation, migration, and neovascularization. However, the relevant mechanism remains unclear. OBJECTIVE This study aims to investigate whether AS-IV activates the HIF/VEGF/Notch signaling pathway through miRNA-210 to promote angiogenesisafter ischemic stroke. METHODS The present study established a rat model of middle cerebral artery occlusion (MCAO) and cultured human umbilical vein endothelial cells (HUVECs) under hypoxic conditions in vitro to investigate the role of AS-IV in promoting angiogenesis and reveal its underlying mechanism. Through in vivo studies, the area of cerebral infarction was determined by 2,3,5-triPhenyltetrazolium chloride (TTC) staining. Immunofluorescence staining and RT-qPCR were used to detect the expression changes of miRNA-210 and ephrinA3 in the ischemic cortex after ischemia. Through in vitro studies, cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Subsequently, angiogenesis experiments were performed to observe the angiogenic ability. RESULTS Results revealed that AS-IV significantly reduced infarct size, promoted cell proliferation and ductal formation, and inhibited the expression of the target gene ephrinA3 by increasing the expression of miRNA-210 and inducing activation of the HIF-VEGF-Notch signaling pathway. CONCLUSIONS AS-IV promotes cerebral protection following angiogenesis and ischemic brain injury. The specific mechanism was activating the HIF/VEGF/Notch signaling pathway via miRNA-210.
Collapse
Affiliation(s)
- Ce Liang
- Department of TCM Diagnostics, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Guang-Xiao Ni
- Department of Teaching and Research Section of Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xu-Liang Shi
- Department of Acupuncture and Moxibustion, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lin Jia
- Department of Respiratory, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Ya-Li Wang
- Department of TCM Diagnostics, Hebei University of Chinese Medicine, Shijiazhuang, China.,Department of Teaching and Research Section of Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Li F, Li J, Li S, Guo S, Li P. Modulatory Effects of Chinese Herbal Medicines on Energy Metabolism in Ischemic Heart Diseases. Front Pharmacol 2020; 11:995. [PMID: 32719602 PMCID: PMC7348053 DOI: 10.3389/fphar.2020.00995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic heart disease (IHD), a major global public health problem, is associated with high morbidity and mortality. Although the very best of modern approaches have proven effective in reducing morbidity and mortality, the poor prognosis of patients with IHD remains a major clinical concern. Cardiac energy metabolism is increasingly recognized as having a role in the pathogenesis of IHD, inducing metabolic substrate alterations, mitochondrial dysfunction, impaired function of the mitochondrial electron transport chain, and deprivation of cardiac energy. Factors involved in cardiac energy metabolism provide potential therapeutic targets for the treatment of IHD. Chinese herbal medicines (CHMs) have a long history of use in the prevention and treatment of cardiovascular diseases with multi-component, multi-target, and multi-signaling. Increasing evidence suggests that Chinese herbal medicines may improve myocardial ischemia through modulating cardiac energy metabolism. Here, we describe the possible targets and pathways of cardiac energy metabolism for CHMs, and appraise the modulatory effects of CHMs on energy metabolism in IHD. Especially, this review focuses on summarizing the metabolic effects and the underlying mechanisms of Chinese herbal medicines (including herbs, major bioactive components, and formulas) in IHD. In addition, we also discuss the current limitations and the major challenges for research investigating the use of CHMs in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Fanghe Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinmao Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Saisai Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuwen Guo
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Han JY, Li Q, Pan CS, Sun K, Fan JY. Effects and mechanisms of QiShenYiQi pills and major ingredients on myocardial microcirculatory disturbance, cardiac injury and fibrosis induced by ischemia-reperfusion. Pharmacol Res 2019; 147:104386. [DOI: 10.1016/j.phrs.2019.104386] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
|
16
|
Meng H, Wang QY, Li N, He H, Lu WJ, Wang QX, Sun XQ, Jiao SH, Wang Y, Tu PF. Danqi Tablet () Regulates Energy Metabolism in Ischemic Heart Rat Model through AMPK/SIRT1-PGC-1α Pathway. Chin J Integr Med 2019; 27:597-603. [PMID: 31144160 DOI: 10.1007/s11655-019-3040-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the cardioprotective effect of Danqi Tablet (DQT, ) on ischemic heart model rats and the regulative effect on energy metabolism through peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). METHODS Rat ischemic heart model was induced by ligation of left anterior descending coronary artery. Totally 40 Sprague-Dawley rats were randomly divided into sham group, model group, DQT group (1.5 mg/kg daily) and trimetazidine (TMZ) group (6.3 mg/kg daily) according to a random number table, 10 rats in each group. Twenty-eight days after continuous administration, cardiac function was assessed by echocardiography and the structures of myocardial cells were observed by hematoxylin-eosin staining. The level of adenosine triphosphate (ATP) in myocardial cells was measured by ATP assay kit. Expressions level of key transcriptional regulators, including PGC-1α, Sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK), and downstream targets of PGC-1α, such as mitofusin 1 (MFN1), mitofusin 2 (MFN2) and superoxide dismutase 2 (SOD2) were measured by Western blot. Expression level of PGC-1α was examined by immunohistochemical staining. RESULTS The rat ischemic heart model was successfully induced and the heart function in model group was compromised. Compared with the model group, DQT exerted cardioprotective effects, up-regulated the ATP production in myocardial cells and inhibited the infiltration of inflammatory cells in the margin area of infarction of the myocardial tissues (P<0.01). The expressions of PGC-1α, SIRT1 and AMPK were increased in the DQT group (all P<0.05). Furthermore, the downstream targets, including MFN1, MFN2 and SOD2 were up-regulated (P<0.05 or P<0.01). Compared with the TMZ group, the expression levels of PGC-1α, MFN1 and SOD2 were increased by DQT treatment (P<0.05 or P<0.01). CONCLUSION DQT regulated energy metabolism in rats with ischemic heart model through AMPK/SIRT1 -PGC-1α pathway. PGC-1α might serve as a promising target in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Hui Meng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi-Yan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ning Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hao He
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen-Ji Lu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao-Qian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shi-Hong Jiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
17
|
Qiliqiangxin Capsule Improves Cardiac Function and Attenuates Cardiac Remodeling by Upregulating miR-133a after Myocardial Infarction in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7528214. [PMID: 31001355 PMCID: PMC6437749 DOI: 10.1155/2019/7528214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
Qiliqiangxin capsule (QLC), a natural herb recipe with therapeutic effect from China, has been widely used in clinical practice for attenuating cardiac remodeling induced by myocardial infarction (MI). However, the pharmacological mechanism of QLC on cardiac remodeling after MI is not entirely clear. The present study aims to investigate the effectiveness and mechanisms of QLC on cardiac remodeling induced by MI in rats. The animal model was established by permanently ligating the left anterior descending coronary artery in rats. Subsequently, rats with successful ligation were randomly divided into model group, captopril group, and QLC group. And the control group was operated upon in parallel except ligation, namely, the sham group. All rats were treated through the intragastric administration once a day for 4 weeks. Cardiac hemodynamics was measured after treatment. Then, the left ventricular mass index (LVMI) was examined. The pathological changes were observed by HE staining. The collagen volume fraction (CVF) was detected by Masson trichrome staining. The apoptosis index was obtained by TUNEL fluorescent staining. The miR-133a and mRNA of TGF-β1, CTGF, Caspase9, and Caspase3 were examined by real-time PCR. The protein expressions of TGF-β1, CTGF, Caspase9, Caspase3, and cleaved-Caspase3 were tested by Western blot. Compared with the model group, QLC partially improved cardiac hemodynamics and decreased LVMI. miR-133a was significantly increased in QLC group. In addition, QLC declined CVF by downregulating TGF-β1 rather than CTGF. Meanwhile, QLC decreased the apoptosis index by attenuating Caspase9, Caspase3, and cleaved-Caspase3. This study suggested that QLC could improve cardiac function and partially attenuate cardiac remodeling by attenuating fibrosis and decreasing apoptosis, which might be partially related to miR-133a, TGF-β1, Caspase9, and Caspase3.
Collapse
|
18
|
Zhao J, Gao JL, Zhu JX, Zhu HB, Peng X, Jiang M, Fu Y, Xu J, Mao XH, Hu N, Ma MH, Dong DL. The different response of cardiomyocytes and cardiac fibroblasts to mitochondria inhibition and the underlying role of STAT3. Basic Res Cardiol 2019; 114:12. [PMID: 30767143 DOI: 10.1007/s00395-019-0721-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/12/2019] [Indexed: 12/24/2022]
Abstract
Cardiomyocyte loss and cardiac fibrosis are the main characteristics of cardiac ischemia and heart failure, and mitochondrial function of cardiomyocytes is impaired in cardiac ischemia and heart failure, so the aim of this study is to identify fate variability of cardiomyocytes and cardiac fibroblasts with mitochondria inhibition and explore the underlying mechanism. The mitochondrial respiratory function was measured by using Oxygraph-2k high-resolution respirometry. The STAT3 expression and activity were evaluated by western blot. Cardiomyocytes and cardiac fibroblasts displayed different morphology. The mitochondrial respiratory function and the expressions of mitochondrial complex I, II, III, IV, and V of cardiac fibroblasts were lower than that of cardiomyocytes. Mitochondrial respiratory complex I inhibitor rotenone and H2O2 (100 µM, 4 h) treatment induced cell death of cardiomyocyte but not cardiac fibroblasts. The function of complex I/II was impaired in cardiomycytes but not cardiac fibroblasts stimulated with H2O2 (100 µM, 4 h) and in ischemic heart of mice. Rotenone and H2O2 (100 µM, 4 h) treatment reduced STAT3 expression and activity in cardiomyocytes but not cardiac fibroblasts. Inhibition of STAT3 impaired mitochondrial respiratory capacity and exacerbated H2O2-induced cell injury in cardiomycytes but not significantly in cardiac fibroblasts. In conclusion, the different susceptibility of cardiomyocytes and cardiac fibroblasts to mitochondria inhibition determines the cell fate under the same pathological stimuli and in which STAT3 plays a critical role.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Jin-Lai Gao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Jun-Xue Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Hai-Bin Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Xuan Peng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Man Jiang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Yao Fu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Juan Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Xi-Hai Mao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Nan Hu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Ming-Hui Ma
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, People's Republic of China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
19
|
Xiao Q, Zhang S, Yang C, Du R, Zhao J, Li J, Xu Y, Qin Y, Gao Y, Huang W. Ginsenoside Rg1 Ameliorates Palmitic Acid-Induced Hepatic Steatosis and Inflammation in HepG2 Cells via the AMPK/NF- κB Pathway. Int J Endocrinol 2019; 2019:7514802. [PMID: 31467529 PMCID: PMC6699274 DOI: 10.1155/2019/7514802] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/16/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the common diseases in the world, and it can progress from simple lipid accumulation to sustained inflammation. The present study was designed to investigate the effects and underlying mechanisms of ginsenoside Rg1 (G-Rg1) treatment on NAFLD in vitro. HepG2 cells were treated with palmitic acid (PA) to induce steatosis and inflammation and then successively incubated with G-Rg1. Lipids accumulation was analyzed by Oil Red O staining and intracellular triglyceride (TG) quantification. Inflammatory conditions were examined by quantifying the levels of cell supernatant alanine transaminase/aspartate aminotransferase (ALT/AST) and secretory proinflammatory cytokines, including IL-1β, IL-6, and TNF-α in the cell supernatants. Quantitative RT-PCR and western blotting were used to measure the expressions of genes and proteins associated with lipogenic synthesis and inflammation, including AMP-activated protein kinase (AMPK) and nuclear factor-kappa B (NF-κB) pathways. HepG2 cells were pretreated with an AMPK inhibitor; then, Oil Red O staining and TG quantification were performed to study the lipid deposition. Phospho-AMPK (Thr172) (p-AMPK) and phospho-acetyl-CoA carboxylase (Ser79) (p-ACCα) were quantified by immunoblotting. Immunofluorescence was performed to demonstrate the nuclear translocation of NF-κB P65. The present study showed that PA markedly increased the intracellular lipid droplets accumulation and TG levels, but decreased AMPK phosphorylation and the expressions of its downstream lipogenic genes. However, G-Rg1 alleviated hepatic steatosis and reduced the intracellular TG content; these changes were accompanied by the activation of the AMPK pathway. In addition, blocking AMPK by using the AMPK inhibitor markedly abolished the G-Rg1-mediated protection against PA-induced lipid deposition in HepG2 cells. Furthermore, G-Rg1 reduced the ALT/AST levels and proinflammatory cytokines release, which were all enhanced by PA. These effects were correlated with the inactivation of the NF-κB pathway and translocation of P65 from the cytoplasm to the nucleus. Overall, these results suggest that G-Rg1 effectively ameliorates hepatic steatosis and inflammation, which might be associated with the AMPK/NF-κB pathway.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cheng Yang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruoyang Du
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqiu Zhao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajun Li
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yashu Xu
- Department of General Medicine, People's Hospital of Chongqing Bishan District, Chongqing, China
| | - Yuanyuan Qin
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Yue Gao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxiang Huang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|