1
|
Chen Y, Chen H, Han C, Ou H, Zhan X. The structure and proteomic analysis of byssus in Pteria penguin: Insights into byssus evolution and formation. J Proteomics 2024; 307:105267. [PMID: 39089615 DOI: 10.1016/j.jprot.2024.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Byssus is a unique external structure in sessile bivalves and is critical for settlement and metamorphosis. However, little is known about the stout byssus in Pteria penguin. We explored the byssus structure and proteins using scanning electron microscopy and proteomics, respectively. The results revealed that P. penguin byssus has a dense and highly aligned fiber inner core, and the outer cuticle contains protein granules embedded in the protein matrix. Proteomic analysis revealed 31 proteins in the byssus, among which 15 differentially expressed proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins were enriched in the EF-hand, immunoglobulin, and fibronectin domains. All these domains can participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which, together with the seven types of ECM proteins detected in the byssus, supports the hypothesis that the byssus is derived from the ECM. We also found that in vitro acellular structures of the byssus and the shell shared commonalities in their formation processes. These results are useful for further understanding byssus evolution and the characterization of byssus-related proteins. SIGNIFICANCE: This manuscript investigates the structure and the origin of Pteria penguin byssus, given that byssus is vital to provide critical protection for reproduction and even against environmental stresses that affect survival. However, there is rare research on byssus protein composition. Hence, though scanning electron microscopy and proteomic analysis, we discovered that P. penguin byssus possesses the dense and highly aligned fiber inner core, and the outer cuticle has protein granules embedded in the protein matrix. Proteomic analysis showed that there were 31 proteins in the byssus, among which 15 proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins closely related to byssus formation were enriched in EF hand, immunoglobulin, and fibronectin domains. These domains are able to participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which together with the seven types of ECM proteins detected in byssus support the hypothesis that byssus derive from the ECM. We also found in vitro acellular structures the byssus and the shell share commonalities in their formation processes. These results were useful for further understanding the byssus evolution and the characterization of the byssus-related proteins.
Collapse
Affiliation(s)
- Yi Chen
- School of Ecology, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Hengda Chen
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Changqing Han
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Huilong Ou
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Xin Zhan
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Prestes JG, Carneiro L, Miiller NOR, Neundorf AKA, Pedroso CR, Braga RR, Sousa R, Vitule JRS. A systematic review of invasive non-native freshwater bivalves. Biol Rev Camb Philos Soc 2024. [PMID: 38973333 DOI: 10.1111/brv.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
The introduction of invasive species has become an increasing environmental problem in freshwater ecosystems due to the high economic and ecological impacts it has generated. This systematic review covers publications from 2010 to 2020, focusing on non-native invasive freshwater bivalves, a particularly relevant and widespread introduced taxonomic group in fresh waters. We collected information on the most studied species, the main objectives of the studies, their geographical location, study duration, and type of research. Furthermore, we focused on assessing the levels of ecological evidence presented, the type of interactions of non-native bivalves with other organisms and the classification of their impacts. A total of 397 publications were retrieved. The studies addressed a total of 17 species of non-native freshwater bivalves; however, most publications focused on the species Corbicula fluminea and Dreissena polymorpha, which are recognised for their widespread distribution and extensive negative impacts. Many other non-native invasive bivalve species have been poorly studied. A high geographical bias was also present, with a considerable lack of studies in developing countries. The most frequent studies had shorter temporal periods, smaller spatial extents, and more observational data, were field-based, and usually evaluated possible ecological impacts at the individual and population levels. There were 94 publications documenting discernible impacts according to the Environmental Impact Classification for Alien Taxa (EICAT). However, 41 of these publications did not provide sufficient data to determine an impact. The most common effects of invasive bivalves on ecosystems were structural alterations, and chemical and physical changes, which are anticipated due to their role as ecosystem engineers. Despite a considerable number of studies in the field and advances in our understanding of some species over the past decade, long-term data and large-scale studies are still needed to understand better the impacts, particularly at the community and ecosystem levels and in less-studied geographic regions. The widespread distribution of several non-native freshwater bivalves, their ongoing introductions, and high ecological and economic impacts demand continued research. Systematic reviews such as this are essential for identifying knowledge gaps and guiding future research to enable a more complete understanding of the ecological implications of invasive bivalves, and the development of effective management strategies.
Collapse
Affiliation(s)
- Juliani Giselli Prestes
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Natali Oliva Roman Miiller
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Ananda Karla Alves Neundorf
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Laboratory of Adaptive Biology, Department of Cell Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Clemerson Richard Pedroso
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Raul Rennó Braga
- Department of Animal and Plant Biology, State University of Londrina, Londrina, 86057-970, Brazil
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - Jean Ricardo Simões Vitule
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
| |
Collapse
|
3
|
Li X, Li S, Cheng J, Zhang Y, Zhan A. Deciphering protein-mediated underwater adhesion in an invasive biofouling ascidian: Discovery, validation, and functional mechanism of an interfacial protein. Acta Biomater 2024; 181:146-160. [PMID: 38679406 DOI: 10.1016/j.actbio.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Discovering macromolecules and understanding the associated mechanisms involved in underwater adhesion are essential for both studying the fundamental ecology of benthos in aquatic ecosystems and developing biomimetic adhesive materials in industries. Here, we employed quantitative proteomics to assess protein expression variations during the development of the distinct adhesive structure - stolon in the model fouling ascidian, Ciona robusta. We found 16 adhesive protein candidates with increased expression in the stolon, with ascidian adhesive protein 1 (AAP1) being particularly rich in adhesion-related signal peptides, amino acids, and functional domains. Western blot and immunolocalization analyses confirmed the prominent AAP1 signals in the mantle, tunic, stolon, and adhesive footprints, indicating the interfacial role of this protein. Surface coating and atomic force microscopy experiments verified AAP1's adhesion to diverse materials, likely through the specific electrostatic and hydrophobic amino acid interactions with various substrates. In addition, molecular docking calculations indicated the AAP1's potential for cross-linking via hydrogen bonds and salt bridges among Von Willebrand factor type A domains, enhancing its adhesion capability. Altogether, the newly discovered interfacial protein responsible for permanent underwater adhesion, along with the elucidated adhesion mechanisms, are expected to contribute to the development of biomimetic adhesive materials and anti-fouling strategies. STATEMENT OF SIGNIFICANCE: Discovering macromolecules and studying their associated mechanisms involved in underwater adhesion are essential for understanding the fundamental ecology of benthos in aquatic ecosystems and developing innovative bionic adhesive materials in various industries. Using multidisciplinary analytical methods, we identified an interfacial protein - Ascidian Adhesive Protein 1 (AAP1) from the model marine fouling ascidian, Ciona robusta. The interfacial functions of AAP1 are achieved by electrostatic and hydrophobic interactions, and the Von Willebrand factor type A domain-based cross-linking likely enhances AAP1's interfacial adhesion. The identification and validation of the interfacial functions of AAP1, combined with the elucidation of adhesion mechanisms, present a promising target for the development of biomimetic adhesive materials and the formulation of effective anti-fouling strategies.
Collapse
Affiliation(s)
- Xi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Jiawei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ying Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
4
|
Li S, Chen H, Liu C, Sokolova IM, Chen Y, Deng F, Xie Z, Li L, Liu W, Fang JKH, Lin D, Hu M, Wang Y. Dietary exposure to nTiO 2 reduces byssus performance of mussels under ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163499. [PMID: 37062322 DOI: 10.1016/j.scitotenv.2023.163499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023]
Abstract
Nano‑titanium dioxide (nTiO2) is a widely used nanomaterial posing potential ecological risk for marine ecosystems that might be enhanced by elevated temperatures such as expected during climate change. nTiO2 may affect benthic filter feeders like mussels through waterborne exposures and via food chain due to the adsorption on/in algae. Mussel byssus are proteinaceous fibers secreted by byssal glands of the mussels for attachment. Byssus production and mechanical properties are sensitive to environmental stressors but the combined effects of warming and nTiO2 on byssus performance of mussels are unclear hampering our understanding of the predation and dislodgement risk of mussels under the multiple stressor scenarios. We explored the effects of a short-term (14-day) single and combined exposures to warming (28 °C) and 100 μg L-1 nTiO2 (including food co-exposure) on the byssus performance of the thick shell mussel Mytilus coruscus. The mechanical strength (measured as the breaking force) of the byssal threads was impaired by warming and nTiO2 (including food co-exposure), but the number and length of the byssal threads were increased. The mRNA expression levels of mussel foot proteins (mfp-3, mfp-5) and pre-collagens (preCOL-D, preCOL-P, preCOL-NG) were up-regulated to varying degrees, with the strongest effects induced by warming. This indicates that the physiological and molecular mechanisms of byssus secretion are plastic. However, downregulation of the mRNA expression of preCOL-D and preCOL-P under the combined warming and nTiO2 exposures indicate the limits of these plasticity mechanisms and suggest that the attachment ability and survival of the mussels may be impaired if the pollution or temperature conditions further deteriorate.
Collapse
Affiliation(s)
- Saishuai Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hui Chen
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Chunhua Liu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Yuchuan Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Fujing Deng
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhe Xie
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wei Liu
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Xu X, Tong Y, Deng Y, Zhao L. Impacts of marine heatwaves on byssus production in highly invasive fouling mussels. MARINE ENVIRONMENTAL RESEARCH 2023; 184:105871. [PMID: 36587491 DOI: 10.1016/j.marenvres.2022.105871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Marine heatwaves (MHWs) are projected to increase in their frequency, intensity, and duration, causing irreversible and catastrophic consequences for intertidal ecosystems around the world. The highly invasive fouling mussel, Arcuatula senhousia, can cause marked habitat alteration by constructing extremely intense byssal mats, devastating the biodiversity of many intertidal systems, yet very little is known about its fate under conditions of more frequent, hotter and longer MHWs. Here, we assessed impacts of two scenarios of MHWs (low-intensity with 4 °C rise of seawater temperature and high-intensity with 8 °C rise, respectively) on the byssal production of A. senhousia. Mussels exposed to low-intensity MHWs did not show any significant differences in the number, length and diameter of byssal threads, compared with those not thermally stressed. Under high-intensity scenario, the byssus production was significantly depressed, and byssal threads became fewer, shorter and finer, in line with significant decreases in cumulative length and volume. These findings provide a better understanding of responses of invasive fouling mussels such as A. senhousia to MHWs and make a leap forward in linking climate change and biological fouling in marine ecosystems.
Collapse
Affiliation(s)
- Xin Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yinhong Tong
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Engineering and Technology Research Center of Far Sea Fisheries Management and Fishing of South China Sea, China.
| |
Collapse
|
6
|
Daugavet MA, Dobrynina MI, Shaposhnikova TG, Solovyeva AI, Mittenberg AG, Shabelnikov SV, Babkina IY, Grinchenko AV, Ilyaskina DV, Podgornaya OI. New putative phenol oxidase in ascidian blood cells. Sci Rep 2022; 12:14326. [PMID: 35995990 PMCID: PMC9395347 DOI: 10.1038/s41598-022-18283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The phenol oxidase system is ancient and ubiquitously distributed in all living organisms. In various groups it serves for the biosynthesis of pigments and neurotransmitters (dopamine), defence reactions and tissue hardening. Ascidians belong to subphylum Tunicata, which is considered the closest living relative to Vertebrates. Two phenol oxidases previously described for ascidians are vertebrate-like and arthropod-like phenol oxidases. In our present study, we described a new ascidian protein, Tuphoxin, with putative phenol oxidase function, which bears no sequence similarity with two enzymes described previously. The closest related proteins to Tuphoxin are mollusc haemocyanins. Unlike haemocyanins, which are oxygen transporting plasma proteins, Tuphoxin is synthesised in ascidian blood cells and secreted in the extracellular matrix of the tunic—ascidian outer coverings. Single mature transcript coding for this phenol oxidase can give several protein products of different sizes. Thus limited proteolysis of the initial protein is suggested. A unique feature of Tuphoxins and their homologues among Tunicata is the presence of thrombospondin first type repeats (TSP1) domain in their sequence which is supposed to provide interaction with extracellular matrix. The finding of TSP1 in the structure of phenol oxidases is new and we consider this to be an innovation of Tunicata evolutionary lineage.
Collapse
Affiliation(s)
- M A Daugavet
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia.
| | - M I Dobrynina
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | | | - A I Solovyeva
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia.,Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
| | - A G Mittenberg
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | - S V Shabelnikov
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | - I Yu Babkina
- Saint-Petersburg State University, St. Petersburg, Russia
| | - A V Grinchenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Vladivostok, Russia
| | - D V Ilyaskina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Vladivostok, Russia.,Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - O I Podgornaya
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
7
|
Burlakova LE, Karatayev AY, Boltovskoy D, Correa NM. Ecosystem services provided by the exotic bivalves Dreissena polymorpha, D. rostriformis bugensis, and Limnoperna fortunei. HYDROBIOLOGIA 2022; 850:2811-2854. [PMID: 35990416 PMCID: PMC9376586 DOI: 10.1007/s10750-022-04935-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 06/02/2023]
Abstract
The ecosystem services approach to conservation is becoming central to environmental policy decision making. While many negative biological invasion-driven impacts on ecosystem structure and functioning have been identified, much less was done to evaluate their ecosystem services. In this paper, we focus on the often-overlooked ecosystem services provided by three notable exotic ecosystem engineering bivalves, the zebra mussel, the quagga mussel, and the golden mussel. One of the most significant benefits of invasive bivalves is water filtration, which results in water purification and changes rates of nutrient cycling, thus mitigating the effects of eutrophication. Mussels are widely used as sentinel organisms for the assessment and biomonitoring of contaminants and pathogens and are consumed by many fishes and birds. Benefits of invasive bivalves are particularly relevant in human-modified ecosystems. We summarize the multiple ecosystem services provided by invasive bivalves and recommend including the economically quantifiable services in the assessments of their economic impacts. We also highlight important ecosystem disservices by exotic bivalves, identify data limitations, and future research directions. This assessment should not be interpreted as a rejection of the fact that invasive mussels have negative impacts, but as an attempt to provide additional information for scientists, managers, and policymakers.
Collapse
Affiliation(s)
| | | | - Demetrio Boltovskoy
- IEGEBA, Instituto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy M. Correa
- Servicio de Hidrografía Naval and Escuela de Ciencias del Mar, Facultad de la Armada, Sede Educativa Universitaria, UNDEF, Buenos Aires, Argentina
| |
Collapse
|
8
|
Decoding the byssus fabrication by spatiotemporal secretome analysis of scallop foot. Comput Struct Biotechnol J 2022; 20:2713-2722. [PMID: 35685371 PMCID: PMC9168380 DOI: 10.1016/j.csbj.2022.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/06/2023] Open
Abstract
The first secretome about scallop byssal adhesion is profiled based on a new computational strategy. Scallop byssal secretome covered almost all of the known structural elements and functional domains of aquatic adhesives. The EGF-like domain containing proteins, the Tyr-rich proteins and 4C-repeats containing proteins are the main components of scallop byssus. A novel “nearby secretion” model of scallop byssus secretion and adhesion is proposed.
Secretome is involved in almost all physiological, developmental, and pathological processes, but to date there is still a lack of highly-efficient research strategy to comprehensively study the secretome of invertebrates. Adhesive secretion is a ubiquitous and essential physiological process in aquatic invertebrates with complicated protein components and unresolved adhesion mechanisms, making it a good subject for secretome profiling studies. Here we proposed a computational pipeline for systematic profiling of byssal secretome based on spatiotemporal transcriptomes of scallop. A total of 186 byssus-related proteins (BRPs) were identified, which represented the first characterized secretome of scallop byssal adhesion. Scallop byssal secretome covered almost all of the known structural elements and functional domains of aquatic adhesives, which suggested this secretome-profiling strategy had both high efficiency and accuracy. We revealed the main components of scallop byssus (including EGF-like domain containing proteins, the Tyr-rich proteins and 4C-repeats containing proteins) and the related modification enzymes primarily contributing to the rapid byssus assembly and adhesion. Spatiotemporal expression and co-expression network analyses of BRPs suggested a simultaneous secretion pattern of scallop byssal proteins across the entire region of foot and revealed their diverse functions on byssus secretion. In contrast to the previously proposed “root-initiated secretion and extension-based assembly” model, our findings supported a novel “foot-wide simultaneous secretion and in situ assembly” model of scallop byssus secretion and adhesion. Systematic analysis of scallop byssal secretome provides important clues for understanding the aquatic adhesive secretion process, as well as a common framework for studying the secretome of non-model invertebrates.
Collapse
|
9
|
Comparative proteomics for an in-depth understanding of bioadhesion mechanisms and evolution across metazoans. J Proteomics 2022; 256:104506. [PMID: 35123052 DOI: 10.1016/j.jprot.2022.104506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
Abstract
Bioadhesion is a critical process for many marine and freshwater invertebrate animals. Bioadhesives mainly made of proteins have remarkable adhesive ability underwater. Unraveling the molecular composition of bioadhesives is fundamental to understanding their physiological roles as well as their potential for biotechnology applications and antibiofouling strategies. With the development of high-throughput methods such as proteomics, bioadhesive protein data in diverse taxa are rapidly accumulating, but the common mechanism across species is elusive due to the vast variety of bioadhesives. In this review, bioadhesive proteins from various taxa are reviewed, with the aim of facilitating researchers to appreciate the diversity of bioadhesive proteins (mostly 20-40) across species. By comparing proteomes across species, it was found that glycine-rich, epidermal growth factor, peroxidase, and DOPA together with typical extracellular domains are the most commonly used domains. Additionally, permanent and temporary adhesion show obvious differences in terms of domains or proteins. A basic recipe for bioadhesives composed of six components is proposed: structural elements, extracellular domains, modification enzymes, proteinase inhibitors, cytoskeletal proteins, and others. The extracellular domains are mostly related to interactions with other macromolecules (proteins, carbohydrates, and lipids), suggesting that domain shuffling and macromolecule interaction might be fundamental for bioadhesive evolution.
Collapse
|
10
|
Whaite A, Klein A, Mitu S, Wang T, Elizur A, Cummins S. The byssal-producing glands and proteins of the silverlip pearl oyster Pinctada maxima (Jameson, 1901). BIOFOULING 2022; 38:186-206. [PMID: 35282730 DOI: 10.1080/08927014.2022.2049256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Pinctada maxima are most well known for their production of high-quality natural pearls. They also generate another natural material, the byssus, an adhesive thread critical for steadfast attachment underwater. Herein, P. maxima byssal threads were analysed via proteotranscriptomics to reveal 49 proteins. Further characterisation was undertaken on five highly expressed genes: glycine-rich thread protein (GRT; also known as PUF3), apfp1/perlucin-like protein (Pmfp1); peroxidase; thrombospondin 1, and Balbiani ring 3 (BR3), which showed localised tissue expression. The spatial distribution of GRT and Pmfp1 via immunodetection combined with histology helped to identify glandular regions of the foot that contribute to byssal thread production: the byssal gland, the duct gland, and two thread-forming glands of basophilic and acidophilic serous-like cells. This work advanced primary knowledge on the glands involved in the creation of byssal threads and the protein composition of the byssus for P. maxima, providing a platform for the design of marine biopolymers.
Collapse
Affiliation(s)
- Alessandra Whaite
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Anne Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Shahida Mitu
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Scott Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| |
Collapse
|
11
|
Zhong Y, Zhao X, Li G, Zhang D, Wang D. Mussel-inspired hydrogels as tissue adhesives for hemostasis with fast-forming and self-healing properties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Zhou N, Zhang RJ, Liu BD, Cui B, Du ZL, Chen PF, Zhu BF, Lin C, Dong HT, Zhou WY, Liu YS. Effects of ultrasound on invasive golden mussel Limnoperna fortunei mortality and tissue lesions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144134. [PMID: 33352347 DOI: 10.1016/j.scitotenv.2020.144134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Biofouling by the invasive golden mussel Limnoperna fortunei deleteriously affects artificial water systems, but few effective, environmentally friendly antifouling strategies exist. We propose ultrasound for control of this invasive mussel and report minimum exposure times to kill juveniles and adults at ultrasonic powers ranging 300-600 W from a fixed distance of 8.5 cm. Analysis using a PMA + RT-qPCR assay revealed the formation of tissue lesions in response to ultrasound, with gill tissue more prone to injury than adductor muscle tissue. Shell microstructure determined using scanning electron microscopy (SEM) + energy dispersive X-ray spectroscopy (EDS) is plywood-like, with a thicker shell and increased numbers of prism and nacre layers in adult mussels that provide greater resistance to ultrasound, reducing mortality and tissue lesions. Our results suggest L. fortunei biomass could be effectively reduced by ultrasound, especially for early life-history stages without, or with only immature shells.
Collapse
Affiliation(s)
- Na Zhou
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Rui-Jian Zhang
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China.
| | - Bo-Dong Liu
- International Department, The Affiliated High School of South China Normal University, Guangzhou 510630, China
| | - Bin Cui
- Graduate School, Guangzhou University, Guangzhou 510060, China
| | - Zhi-Li Du
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Peng-Fei Chen
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Bin-Feng Zhu
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, PR China
| | - Chong Lin
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, PR China
| | - Hao-Tao Dong
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Wu-Yang Zhou
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Ying-Shi Liu
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| |
Collapse
|
13
|
Liu C, Zhang R. Identification of novel adhesive proteins in pearl oyster by proteomic and bioinformatic analysis. BIOFOULING 2021; 37:299-308. [PMID: 33761798 DOI: 10.1080/08927014.2021.1901890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Byssuses, which are proteinaceous fibers secreted by mollusks, are remarkable underwater adhesives. Although mussel adhesives are well known, much less is known about the byssal proteins of pearl oysters especially in the adhesive regions. In this study, adhesive proteins from the pearl oyster Pinctada fucata were studied in depth by transcriptomics and proteomics approaches. In total, 16 novel proteins were identified including a von Willebrand factor type A domain-containing protein, a thrombospondin-1-like protein, tyrosinase, mucin-like proteins, protease inhibitors, and Pinctada unannotated foot protein 3 (PUF3) to PUF6. Interestingly, PUF3-6 are enriched with glycine, serine, and PXG (X = F/Y/W/K/L) motifs and are highly expressed in the foot. The identification of byssal proteins of the pearl oyster is a key step for understanding byssus formation and may inspire the synthesis of novel adhesives for underwater use and the development of anti-biofouling strategies.
Collapse
Affiliation(s)
- Chuang Liu
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- College of Oceanography, Hohai University, Nanjing, China
| | - Rongqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
14
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
15
|
Li S, Li X, Cheng J, Zhan A. Effectiveness and Mechanisms of Recoverable Magnetic Nanoparticles on Mitigating Golden Mussel Biofouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2500-2510. [PMID: 33535746 DOI: 10.1021/acs.est.0c08014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mussel biofouling has become a problem in aquatic ecosystems, causing significant ecological impact and huge economic loss globally. Although several strategies have been proposed and tested, efficient and environment-friendly antifouling methods are still scarce. Here, we investigated the effects of recoverable magnetic ferroferric oxide nanoparticles (Fe3O4-NPs) with different sizes (10 and 100 nm), coatings (polyethylene glycol and polylysine), and concentrations (0.01 and 0.1 mg/L) on byssus adhesion-mediated biofouling by the notorious golden mussel Limnoperna fortunei. The results showed that magnetic Fe3O4-NPs, especially negatively charged polyethylene glycol-coated Fe3O4-NPs, size- and concentration-dependently reduced the byssus production, performance (breaking force and failure location), and adhesion rate. Further investigations on mechanisms showed that the down-regulation of foot protein 2 (Lffp-2) and energy-related metabolic pathways inhibited byssus production. The declined gene expression level and metal-binding ability of Lffp-2 significantly affected foot protein interactions, further reducing the plaque size and byssus performance. In addition, the change in the water redox state likely reduced byssus performance by preventing the interface interactions between the substrate and foot proteins. Our results confirm the effectiveness and underlying mechanisms of magnetic Fe3O4-NPs on mitigating L. fortunei biofouling, thus providing a reference for developing efficient and environment-friendly antifouling strategies against fouling mussels.
Collapse
Affiliation(s)
- Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Xia Z, Cao X, Hoxha T, Zhan A, Haffner GD, MacIsaac HJ. Functional response and size-selective clearance of suspended matter by an invasive mussel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134679. [PMID: 31810685 DOI: 10.1016/j.scitotenv.2019.134679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/25/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Filter feeding activities link suspension feeders with their environment and underpin their impact on aquatic ecosystems. Despite their ecological and economic impacts, the functional response and size-selective capture of suspended particulates have not been well documented for the golden mussel Limnoperna fortunei. Here we demonstrated that golden mussels had a type I functional response, with an attack rate a = 0.085 and negligible handling time (h). Clearance rate ranged between 72.6 ± 27.0 and 305.5 ± 105.9 mL ind.-1h-1 (Mean ± S.E.), depending on food concentrations, which exhibited an inverse relationship with clearance rate. Presence of golden mussels suppressed chlorophyll a concentration in experimental mesocosms, the extent of which was dependent on mussel abundance. Concentration of suspended particles in experimental mesocosms experienced a sharp initial decline across all size categories (≤1->50 μm), though with increased final concentration of large particles (>25 μm), indicating packaging and egestion by golden mussels of fine particles (down to ≤1 μm). Capture efficiency of quantitatively-dominant suspended matter (≤1-50 μm) by golden mussels was inversely related to particle size. Animal abundance, particle size, and their interaction (abundance × particle size) determined the extent to which matter was removed from the water column. Presently L. fortunei occurs primarily in the southern end of the central route of South to North Water Diversion Project (China), but the species is spreading north; we anticipate that impacts associated with filtering of L. fortunei will correspond with local population abundance along this gradient.
Collapse
Affiliation(s)
- Zhiqiang Xia
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada; International S&T Collaborative Base for Water Environment Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400715, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xinkai Cao
- Water Quality Monitoring Center of Beijing Waterworks Group Company Limited, Beijing 100192, China
| | - Tedi Hoxha
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - G Douglas Haffner
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada; International S&T Collaborative Base for Water Environment Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400715, China
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada; School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| |
Collapse
|
17
|
Pjeta R, Lindner H, Kremser L, Salvenmoser W, Sobral D, Ladurner P, Santos R. Integrative Transcriptome and Proteome Analysis of the Tube Foot and Adhesive Secretions of the Sea Urchin Paracentrotus lividus. Int J Mol Sci 2020; 21:ijms21030946. [PMID: 32023883 PMCID: PMC7037938 DOI: 10.3390/ijms21030946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022] Open
Abstract
Echinoderms, such as the rock-boring sea urchin Paracentrotus lividus, attach temporarily to surfaces during locomotion using their tube feet. They can attach firmly to any substrate and release from it within seconds through the secretion of unknown molecules. The composition of the adhesive, as well as the releasing secretion, remains largely unknown. This study re-analyzed a differential proteome dataset from Lebesgue et al. by mapping mass spectrometry-derived peptides to a P. lividusde novo transcriptome generated in this study. This resulted in a drastic increase in mapped proteins in comparison to the previous publication. The data were subsequently combined with a differential RNAseq approach to identify potential adhesion candidate genes. A gene expression analysis of 59 transcripts using whole mount in situ hybridization led to the identification of 16 transcripts potentially involved in bioadhesion. In the future these data could be useful for the production of synthetic reversible adhesives for industrial and medical purposes.
Collapse
Affiliation(s)
- Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria; (R.P.); (W.S.)
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria; (H.L.); (L.K.)
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria; (H.L.); (L.K.)
| | - Willi Salvenmoser
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria; (R.P.); (W.S.)
| | - Daniel Sobral
- Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia–Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria; (R.P.); (W.S.)
- Correspondence: (P.L.); (R.S.)
| | - Romana Santos
- Centro de Ciências do Mar e do Ambiente, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: (P.L.); (R.S.)
| |
Collapse
|
18
|
Budisa N, Schneider T. Expanding the DOPA Universe with Genetically Encoded, Mussel-Inspired Bioadhesives for Material Sciences and Medicine. Chembiochem 2019; 20:2163-2190. [PMID: 30830997 DOI: 10.1002/cbic.201900030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Catechols are a biologically relevant group of aromatic diols that have attracted much attention as mediators of adhesion of "bio-glue" proteins in mussels of the genus Mytilus. These organisms use catechols in the form of the noncanonical amino acid l-3,4-dihydroxyphenylalanine (DOPA) as a building block for adhesion proteins. The DOPA is generated post-translationally from tyrosine. Herein, we review the properties, natural occurrence, and reactivity of catechols in the design of bioinspired materials. We also provide a basic description of the mussel's attachment apparatus, the interplay between its different molecules that play a crucial role in adhesion, and the role of post-translational modifications (PTMs) of these proteins. Our focus is on the microbial production of mussel foot proteins with the aid of orthogonal translation systems (OTSs) and the use of genetic code engineering to solve some fundamental problems in the bioproduction of these bioadhesives and to expand their chemical space. The major limitation of bacterial expression systems is their intrinsic inability to introduce PTMs. OTSs have the potential to overcome these challenges by replacing canonical amino acids with noncanonical ones. In this way, PTM steps are circumvented while the genetically programmed precision of protein sequences is preserved. In addition, OTSs should enable spatiotemporal control over the complex adhesion process, because the catechol function can be masked by suitable chemical protection. Such caged residues can then be noninvasively unmasked by, for example, UV irradiation or thermal treatment. All of these features make OTSs based on genetic code engineering in reprogrammed microbial strains new and promising tools in bioinspired materials science.
Collapse
Affiliation(s)
- Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany.,Chair of Chemical Synthetic Biology, Department of Chemistry, University of Manitoba, 144 Dysart Road, R3T 2N2, Winnipeg, MB, Canada
| | - Tobias Schneider
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany
| |
Collapse
|
19
|
Zhang L, Zhang X, Wang Y, Xu P, Diao Z, Liu W, Xu W. Identification and characterization of protein phosphorylation in the soluble protein fraction of scallop (Chlamys farreri) byssus. Mol Biol Rep 2019; 46:4943-4951. [DOI: 10.1007/s11033-019-04945-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
|
20
|
Foulon V, Boudry P, Artigaud S, Guérard F, Hellio C. In Silico Analysis of Pacific Oyster ( Crassostrea gigas) Transcriptome over Developmental Stages Reveals Candidate Genes for Larval Settlement. Int J Mol Sci 2019; 20:E197. [PMID: 30625986 PMCID: PMC6337334 DOI: 10.3390/ijms20010197] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Following their planktonic phase, the larvae of benthic marine organisms must locate a suitable habitat to settle and metamorphose. For oysters, larval adhesion occurs at the pediveliger stage with the secretion of a proteinaceous bioadhesive produced by the foot, a specialized and ephemeral organ. Oyster bioadhesive is highly resistant to proteomic extraction and is only produced in very low quantities, which explains why it has been very little examined in larvae to date. In silico analysis of nucleic acid databases could help to identify genes of interest implicated in settlement. In this work, the publicly available transcriptome of Pacific oyster Crassostrea gigas over its developmental stages was mined to select genes highly expressed at the pediveliger stage. Our analysis revealed 59 sequences potentially implicated in adhesion of C. gigas larvae. Some related proteins contain conserved domains already described in other bioadhesives. We propose a hypothetic composition of C. gigas bioadhesive in which the protein constituent is probably composed of collagen and the von Willebrand Factor domain could play a role in adhesive cohesion. Genes coding for enzymes implicated in DOPA chemistry were also detected, indicating that this modification is also potentially present in the adhesive of pediveliger larvae.
Collapse
Affiliation(s)
- Valentin Foulon
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Pierre Boudry
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne, 29280 Plouzané, France.
| | - Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Fabienne Guérard
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Claire Hellio
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| |
Collapse
|
21
|
Li S, Chen W, Zhan A, Liang J. Identification and characterization of microRNAs involved in scale biomineralization in the naked carp Gymnocypris przewalskii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:196-203. [PMID: 30317123 DOI: 10.1016/j.cbd.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022]
Abstract
The mineralized scale derived from skin plays a protective role for the fish body and also possesses important application values in the biomaterial field. However, little is known about fish scale biomineralization and related molecular regulatory mechanisms. Here, we used a comparative microRNA sequencing approach to identify and characterize differentially expressed microRNAs (DEMs) involved in scale biomineralization in the naked carp Gymnocypris przewalskii. A total of 18, 43, and 66 DEMs were obtained from skin tissues covered with initial, developing, and mature scales (IS, DS, and MS) compared with scale-uncovered skin. The target genes of these DEMs were significantly enriched in a sole biomineralization-related sphingolipid signaling pathway. Seven DEMs (dre-miR-124-3p, dre-miR-133a-2-5p, dre-miR-184, dre-miR-206-3p, novel_33, novel_56 and novel_75) were common in IS, DS, and MS. Dre-miR-124-3p, dre-miR-206-3p, and novel_33 were predicted to be able to target biomineralization-related genes. Stem-loop real-time quantitative PCR further confirmed that the common DEMs had higher expression levels in scale-covered skin tissues than that in the gill, intestine, and brain, except for dre-miR-133a-2-5p. Our results suggest that these identified microRNAs may play a role in scale biomineralization in G. przewalskii, and the obtained microRNAs are expected to be candidates in understanding the molecular mechanism of scale biomineralization in fish species.
Collapse
Affiliation(s)
- Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| |
Collapse
|