1
|
Sesti F, Bortolami A, Kathera-Ibarra EF. Non-conducting functions of potassium channels in cancer and neurological disease. CURRENT TOPICS IN MEMBRANES 2023; 92:199-231. [PMID: 38007268 DOI: 10.1016/bs.ctm.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Cancer and neurodegenerative disease, albeit fundamental differences, share some common pathogenic mechanisms. Accordingly, both conditions are associated with aberrant cell proliferation and migration. Here, we review the causative role played by potassium (K+) channels, a fundamental class of proteins, in cancer and neurodegenerative disease. The concept that emerges from the review of the literature is that K+ channels can promote the development and progression of cancerous and neurodegenerative pathologies by dysregulating cell proliferation and migration. K+ channels appear to control these cellular functions in ways that not necessarily depend on their conducting properties and that involve the ability to directly or indirectly engage growth and survival signaling pathways. As cancer and neurodegenerative disease represent global health concerns, identifying commonalities may help understand the molecular basis for those devastating conditions and may facilitate the design of new drugs or the repurposing of existing drugs.
Collapse
Affiliation(s)
- Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States.
| | - Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States
| | - Elena Forzisi Kathera-Ibarra
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States
| |
Collapse
|
2
|
Olivas-Aguirre M, Cruz-Aguilar LH, Pottosin I, Dobrovinskaya O. Reduction of Ca 2+ Entry by a Specific Block of KCa3.1 Channels Optimizes Cytotoxic Activity of NK Cells against T-ALL Jurkat Cells. Cells 2023; 12:2065. [PMID: 37626875 PMCID: PMC10453324 DOI: 10.3390/cells12162065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Degranulation mediated killing mechanism by NK cells is dependent on store-operated Ca2+ entry (SOCE) and has optimum at moderate intracellular Ca2+ elevations so that partial block of SOCE optimizes the killing process. In this study, we tested the effect of the selective blocker of KCa3.1 channel NS6180 on SOCE and the killing efficiency of NK cells from healthy donors and NK-92 cells against T-ALL cell line Jurkat. Patch-clamp analysis showed that only one-quarter of resting NK cells functionally express KCa3.1 current, which increases 3-fold after activation by interleukins 15 and 2. Nevertheless, blockage of KCa3.1 significantly reduced SOCE and intracellular Ca2+ rise induced by IL-15 or target cell recognition. NS6180 (1 μM) decreased NK degranulation at zero time of coculture with Jurkat cells but already after 1 h, the degranulation reached the same level as in the control. Monitoring of target cell death by flow cytometry and confocal microscopy demonstrated that NS6180 significantly improved the killing ability of NK cells after 1 h in coculture with Jurkat cells and increased the Jurkat cell fraction with apoptotic and necrotic markers. Our data evidence a strong dependence of SOCE on KCa3.1 activity in NK cells and that KCa3.1 specific block can improve NK cytotoxicity.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
- Division of Exact, Natural and Technological Sciences, South University Center (CUsur), University of Guadalajara, Guzmán City 49000, Mexico
| | - Laura Hadit Cruz-Aguilar
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| |
Collapse
|
3
|
Vasileva VY, Khairullina ZM, Sudarikova AV, Chubinskiy-Nadezhdin VI. Role of Calcium-Activated Potassium Channels in Proliferation, Migration and Invasion of Human Chronic Myeloid Leukemia K562 Cells. MEMBRANES 2023; 13:583. [PMID: 37367787 DOI: 10.3390/membranes13060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Calcium-activated potassium channels (KCa) are important participants in calcium signaling pathways due to their ability to be activated by an increase in intracellular free calcium concentration. KCa channels are involved in the regulation of cellular processes in both normal and pathophysiological conditions, including oncotransformation. Previously, using patch-clamp, we registered the KCa currents in the plasma membrane of human chronic myeloid leukemia K562 cells, whose activity was controlled by local Ca2+ entry via mechanosensitive calcium-permeable channels. Here, we performed the molecular and functional identification of KCa channels and have uncovered their role in the proliferation, migration and invasion of K562 cells. Using a combined approach, we identified the functional activity of SK2, SK3 and IK channels in the plasma membrane of the cells. Selective SK and IK channel inhibitors, apamin and TRAM-34, respectively, reduced the proliferative, migratory and invasive capabilities of human myeloid leukemia cells. At the same time, the viability of K562 cells was not affected by KCa channel inhibitors. Ca2+ imaging showed that both SK and IK channel inhibitors affect Ca2+ entry and this could underlie the observed suppression of pathophysiological reactions of K562 cells. Our data imply that SK/IK channel inhibitors could be used to slow down the proliferation and spreading of chronic myeloid leukemia K562 cells that express functionally active KCa channels in the plasma membrane.
Collapse
Affiliation(s)
- Valeria Y Vasileva
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 Saint-Petersburg, Russia
| | - Zuleikha M Khairullina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 Saint-Petersburg, Russia
| | - Anastasia V Sudarikova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 Saint-Petersburg, Russia
| | | |
Collapse
|
4
|
Angot L, Schneider P, Vannier JP, Abdoul-Azize S. Beyond Corticoresistance, A Paradoxical Corticosensitivity Induced by Corticosteroid Therapy in Pediatric Acute Lymphoblastic Leukemias. Cancers (Basel) 2023; 15:2812. [PMID: 37345151 DOI: 10.3390/cancers15102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Known as a key effector in relapse of acute lymphoblastic leukemia (ALL), resistance to drug-induced apoptosis, is tightly considered one of the main prognostic factors for the disease. ALL cells are constantly developing cellular strategies to survive and resist therapeutic drugs. Glucocorticoids (GCs) are one of the most important agents used in the treatment of ALL due to their ability to induce cell death. The mechanisms of GC resistance of ALL cells are largely unknown and intense research is currently focused on this topic. Such resistance can involve different cellular and molecular mechanisms, including the modulation of signaling pathways involved in the regulation of proliferation, apoptosis, autophagy, metabolism, epigenetic modifications and tumor suppressors. Recently, several studies point to the paradoxical role of GCs in many survival processes that may lead to therapy-induced resistance in ALL cells, which we called "paradoxical corticosensitivity". In this review, we aim to summarize all findings on cell survival pathways paradoxically activated by GCs with an emphasis on previous and current knowledge on gene expression and signaling pathways.
Collapse
Affiliation(s)
- Laure Angot
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
| | - Pascale Schneider
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
- Department of Pediatric Immuno-Hemato-Oncology, Rouen University Hospital, 76038 Rouen, France
| | | | | |
Collapse
|
5
|
Li M, Tian P, Zhao Q, Ma X, Zhang Y. Potassium channels: Novel targets for tumor diagnosis and chemoresistance. Front Oncol 2023; 12:1074469. [PMID: 36703789 PMCID: PMC9872028 DOI: 10.3389/fonc.2022.1074469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
In recent years, the role of potassium channels in tumors has been intensively studied. Potassium channel proteins are widely involved in various physiological and pathological processes of cells. The expression and dysfunction of potassium channels are closely related to tumor progression. Potassium channel blockers or activators present antitumor effects by directly inhibiting tumor growth or enhancing the potency of classical antitumor agents in combination therapy. This article reviews the mechanisms by which potassium channels contribute to tumor development in various tumors in recent years, introduces the potential of potassium channels as diagnostic targets and therapeutic means for tumors, and provides further ideas for the proper individualized treatment of tumors.
Collapse
Affiliation(s)
- Meizeng Li
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Peijie Tian
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Qing Zhao
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Xialin Ma
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Yunxiang Zhang
- Department of Pathology, Weifang People’ s Hospital, Weifang, China,*Correspondence: Yunxiang Zhang,
| |
Collapse
|
6
|
Zhang X, Zhao Q, Yang F, Lan Z, Li Y, Xiao M, Yu H, Li Z, Zhou Y, Wu Y, Cao Z, Yin S. Mechanisms underlying the inhibition of KV1.3 channel by scorpion toxin ImKTX58. Mol Pharmacol 2022; 102:150-160. [PMID: 35764383 DOI: 10.1124/molpharm.121.000480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/19/2022] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated KV1.3 channel has been reported to be a drug target for the treatment of autoimmune diseases, and specific inhibitors of Kv1.3 are potential therapeutic drugs for multiple diseases. The scorpions could produce various bioactive peptides which could inhibit KV1.3 channel. Here we identified a new scorpion toxin polypeptide gene ImKTX58 from the venom gland cDNA library of the Chinese scorpion Isometrus maculatus Sequence alignment revealed high similarities between ImKTX58 mature peptide and previously reported KV1.3 channel blockers - LmKTX10 and ImKTX88, suggesting that ImKTX58 peptide might also be a KV1.3 channel blocker. By using electrophysiological recordings, we showed that recombinant ImKTX58 prepared by genetic engineering technologies had a highly selective inhibiting effect on KV1.3 channel. Further alanine scanning mutagenesis and computer simulation identified four amino acid residues in ImKTX58 peptide as key binding sites to KV1.3 channel by forming hydrogen bonds, salt bonds and hydrophobic interactions. Among these four residues, 28th lysine of the ImKTX58 mature peptide was found to be the most critical amino acid residue for blocking KV1.3 channel. Significance Statement In this study, we discovered a scorpion toxin gene ImKTX58 which has not been reported before in Hainan Isometrus maculatus and successfully used prokaryotic expression system to express and purify the polypeptides encoded by this gene. Electrophysiological experiments on ImKTX58 showed that ImKTX58 has a selectively blocking effects on KV1.3 channel over Kv1.1, Kv1.2, Kv1.5, SK2, SK3 and BK channels. These findings provide a theoretical basis for designing highly effective KV1.3 blockers to treat autoimmune and other diseases.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Qianru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Fan Yang
- Department of Virology, College of Life Sciences, Wuhan University, China
| | - Zhen Lan
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Yi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Min Xiao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Hui Yu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Ziyi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Yongsheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Yingliang Wu
- Department of Virology, College of Life Sciences, Wuhan University, China
| | - Zhijian Cao
- Department of Virology, College of Life Sciences, Wuhan University, China
| | - Shijin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| |
Collapse
|
7
|
Bohmwald K, Gálvez NMS, Andrade CA, Mora VP, Muñoz JT, González PA, Riedel CA, Kalergis AM. Modulation of Adaptive Immunity and Viral Infections by Ion Channels. Front Physiol 2021; 12:736681. [PMID: 34690811 PMCID: PMC8531258 DOI: 10.3389/fphys.2021.736681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Most cellular functions require of ion homeostasis and ion movement. Among others, ion channels play a crucial role in controlling the homeostasis of anions and cations concentration between the extracellular and intracellular compartments. Calcium (Ca2+) is one of the most relevant ions involved in regulating critical functions of immune cells, allowing the appropriate development of immune cell responses against pathogens and tumor cells. Due to the importance of Ca2+ in inducing the immune response, some viruses have evolved mechanisms to modulate intracellular Ca2+ concentrations and the mobilization of this cation through Ca2+ channels to increase their infectivity and to evade the immune system using different mechanisms. For instance, some viral infections require the influx of Ca2+ through ionic channels as a first step to enter the cell, as well as their replication and budding. Moreover, through the expression of viral proteins on the surface of infected cells, Ca2+ channels function can be altered, enhancing the pathogen evasion of the adaptive immune response. In this article, we review those ion channels and ion transporters that are essential for the function of immune cells. Specifically, cation channels and Ca2+ channels in the context of viral infections and their contribution to the modulation of adaptive immune responses.
Collapse
Affiliation(s)
- Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P. Mora
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T. Muñoz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Fattahi H, Esmaeil N, Aliomrani M. Apamin as a BBB Shuttle and Its Effects on T Cell Population During the Experimental Autoimmune Encephalomyelitis-Induced Model of Multiple Sclerosis. Neurotox Res 2021; 39:1880-1891. [PMID: 34487326 DOI: 10.1007/s12640-021-00412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 01/22/2023]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system presented by autoimmune manifestations. This study aimed at investigating the effects of apamin administration on the activated T cell population in an experimental autoimmune encephalomyelitis (EAE) MS model. Thirty mice underwent EAE induction and were then randomly divided into 5 groups. Three groups received 10, 50, and 100 µg/kg apamin; the fourth group received 1 mg/kg dexamethasone; and the fifth group received the equivalent amount of PBS (phosphate-buffered saline) intraperitoneally. Peripheral CD4 + cell and memory T cell distribution was measured with a flow cytometer every week. Also, CD4 + and CD8 + cell infiltration to the brain was assessed with immunohistochemistry. It was observed that the group receiving 50 µg/kg apamin had a lower EAE score in comparison with the groups receiving 100 µg/kg apamin (p 0.014). Also, peripheral blood memory cells with CD44 + , CD62L - , and CD4 + markers were decreased in apamin-administered groups. Regarding the infiltrated CD8 + cells, a significant decrease (p 0.002) was observed in the group receiving 50 µg/kg apamin compared with the control group. These results indicate that 50-µg/kg doses of apamin had an effective treatment over 14 days; it reduced both the severity of symptoms and the infiltration of CD8 + cells into the CNS. Moreover, it increased myelin density and decreased the circulation of CD62L - , CD44L - , and CD44 + memory T cells. So, it appears that apamin plays a critical role in regulating immunity and reducing the complications of autoimmune MS.
Collapse
Affiliation(s)
- Haniye Fattahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
- Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Shi S, Zhao Q, Ke C, Long S, Zhang F, Zhang X, Li Y, Liu X, Hu H, Yin S. Loureirin B Exerts its Immunosuppressive Effects by Inhibiting STIM1/Orai1 and K V1.3 Channels. Front Pharmacol 2021; 12:685092. [PMID: 34248635 PMCID: PMC8268022 DOI: 10.3389/fphar.2021.685092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Loureirin B (LrB) is a constituent extracted from traditional Chinese medicine Resina Draconis. It has broad biological functions and an impressive immunosuppressive effect that has been supported by numerous studies. However, the molecular mechanisms underlying Loureirin B-induced immune suppression are not fully understood. We previously reported that Loureirin B inhibited KV1.3 channel, calcium ion (Ca2+) influx, and interleukin-2 (IL-2) secretion in Jurkat T cells. In this study, we applied CRISPR/Cas9 to edit KV1.3 coding gene KCNA3 and successfully generated a KV1.3 knockout (KO) cell model to determine whether KV1.3 KO was sufficient to block the Loureirin B-induced immunosuppressive effect. Surprisingly, we showed that Loureirin B could still inhibit Ca2+ influx and IL-2 secretion in the Jurkat T cells in the absence of KV1.3 although KO KV1.3 reduced about 50% of Ca2+ influx and 90% IL-2 secretion compared with that in the wild type cells. Further experiments showed that Loureirin B directly inhibited STIM1/Orai1 channel in a dose-dependent manner. Our results suggest that Loureirin B inhibits Ca2+ influx and IL-2 secretion in Jurkat T cells by inhibiting both KV1.3 and STIM1/Orai1 channels. These studies also revealed an additional molecular target for Loureirin B-induced immunosuppressive effect, which makes it a promising leading compound for treating autoimmune diseases.
Collapse
Affiliation(s)
- Shujuan Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qianru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Caihua Ke
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Siru Long
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Feng Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xu Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xinqiao Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hongzhen Hu
- Department of Anesthesiology, the Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Shijin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
10
|
Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Overcoming Glucocorticoid Resistance in Acute Lymphoblastic Leukemia: Repurposed Drugs Can Improve the Protocol. Front Oncol 2021; 11:617937. [PMID: 33777761 PMCID: PMC7991804 DOI: 10.3389/fonc.2021.617937] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) are a central component of multi-drug treatment protocols against T and B acute lymphoblastic leukemia (ALL), which are used intensively during the remission induction to rapidly eliminate the leukemic blasts. The primary response to GCs predicts the overall response to treatment and clinical outcome. In this review, we have critically analyzed the available data on the effects of GCs on sensitive and resistant leukemic cells, in order to reveal the mechanisms of GC resistance and how these mechanisms may determine a poor outcome in ALL. Apart of the GC resistance, associated with a decreased expression of receptors to GCs, there are several additional mechanisms, triggered by alterations of different signaling pathways, which cause the metabolic reprogramming, with an enhanced level of glycolysis and oxidative phosphorylation, apoptosis resistance, and multidrug resistance. Due to all this, the GC-resistant ALL show a poor sensitivity to conventional chemotherapeutic protocols. We propose pharmacological strategies that can trigger alternative intracellular pathways to revert or overcome GC resistance. Specifically, we focused our search on drugs, which are already approved for treatment of other diseases and demonstrated anti-ALL effects in experimental pre-clinical models. Among them are some “truly” re-purposed drugs, which have different targets in ALL as compared to other diseases: cannabidiol, which targets mitochondria and causes the mitochondrial permeability transition-driven necrosis, tamoxifen, which induces autophagy and cell death, and reverts GC resistance through the mechanisms independent of nuclear estrogen receptors (“off-target effects”), antibiotic tigecycline, which inhibits mitochondrial respiration, causing energy crisis and cell death, and some anthelmintic drugs. Additionally, we have listed compounds that show a classical mechanism of action in ALL but are not used still in treatment protocols: the BH3 mimetic venetoclax, which inhibits the anti-apoptotic protein Bcl-2, the hypomethylating agent 5-azacytidine, which restores the expression of the pro-apoptotic BIM, and compounds targeting the PI3K-Akt-mTOR axis. Accordingly, these drugs may be considered for the inclusion into chemotherapeutic protocols for GC-resistant ALL treatments.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
11
|
Valle-Reyes S, Dobrovinskaya O, Pelayo R, Schnoor M. Acute Lymphoblastic Leukemia Cell Lines in Immunology Research. Trends Immunol 2021; 42:182-185. [PMID: 33485795 DOI: 10.1016/j.it.2020.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022]
Abstract
A considerable portion of our knowledge on T and B cell biology is acquired from research using acute lymphoblastic leukemia (ALL) cell lines, which are invaluable tools used in many immunology and leukemia studies. Here, we discuss the advantages and limitations of ALL cell lines and provide guidelines on their proper usage.
Collapse
Affiliation(s)
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, 28030, Colima, Mexico
| | - Rosana Pelayo
- Eastern Biomedical Research Center, CIBIOR, Instituto Mexicano del Seguro Social, Delegación Puebla, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, CINVESTAV-IPN, 07360 Mexico City, Mexico.
| |
Collapse
|
12
|
Gholami S, Mirian M, Eftekhari SM, Aliomrani M. Apamin administration impact on miR-219 and miR-155-3p expression in cuprizone induced multiple sclerosis model. Mol Biol Rep 2020; 47:9013-9019. [PMID: 33174081 DOI: 10.1007/s11033-020-05959-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic debilitating disease that attacks the central nervous system. This study aims to investigate miR-219 and miR-155-3p expression levels involved in the myelination process following the administration of apamin peptide in the model of multiple sclerosis disease. Forty-four 8 week C57BL/6 male mice (22 ± 5 g) randomly divided into six groups. Apamin (100 µg/kg/BW) was administered intraperitoneally as a co-treatment during phase I (demyelination) or post-treatment phase II (remyelination) twice a week in cuprizone induced MS model. At the end of study myelin content and microRNA expression levels were measured with LFB staining and quantitative Real-Time PCR method, respectively. It was observed that the intended microRNAs were dysregulated during the different phases of disease induction. After 6 weeks of cuprizone exposure, miR-219 downregulated in phase I in comparison with the negative control. On the other hand, the apamin co-treatment significantly inhibit the miR-155-3p upregulation during the phase I as compared with the cuprizone group (p < 0.0001). Apamin has more impact on the miR155-3p reduction in phase I than miR-219 elevation in phase II. It could be considered as a therapeutic option for decreasing plaque formation during the exacerbation phase of the MS disease. Apamin has more impact on the miR155-3p reduction in phase I than miR-219 elevation in phase II. It could be considered as a therapeutic option for decreasing plaque formation during the exacerbation phase of the MS disease.
Collapse
Affiliation(s)
- Samira Gholami
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | | | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Room 117, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
13
|
Zhang Y, Zhang F, Shi S, Liu X, Cai W, Han G, Ke C, Long S, Di Z, Yin S, Li H. Immunosuppressive effects of a novel potassium channel toxin Ktx-Sp2 from Scorpiops Pocoki. Cell Biosci 2019; 9:99. [PMID: 31890149 PMCID: PMC6915869 DOI: 10.1186/s13578-019-0364-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/09/2019] [Indexed: 01/19/2023] Open
Abstract
Background The cDNA Library of venomous animals could provide abundant bioactive peptides coding information and is an important resource for screening bioactive peptides that target and regulate disease-related ion channels. To further explore the potential medicinal usage of the transcriptome database of Scorpiops Pocoki’s venom gland, this research identified the function of a new potassium channel toxin Ktx-Sp2, whose gene was screened from the database by sequence alignment. Results The mature peptide of Ktx-Sp2 was obtained by genetic engineering. Whole-cell patch-clamp experiment showed that Ktx-Sp2 peptide could effectively block three types of exogenous voltage-gated potassium channels—Kv1.1, Kv1.2 and Kv1.3, among which, the blocking activity for Kv1.3 was relatively high, showing selectivity to some extent. Taking Jurkat T cells as the cell model, this study found that Ktx-Sp2 peptide could also effectively block endogenous Kv1.3, significantly reduce the free calcium concentration in Jurkat T cells, inhibit the activation of Jurkat T cells and reduce the release of inflammatory cytokines IL-2, showing a strong immunosuppressant effect. Conclusions This study further proves that the transcriptome database of the Scorpiops Pocoki venom gland is an important resource for discovery of novel bioactive polypeptide coding genes. The newly screened Kv1.3 channel blocker Ktx-Sp2 expanded the range of leading compounds for the treatment of autoimmune diseases and promoted the development and application of scorpion toxin peptides in the field of biomedicine.
Collapse
Affiliation(s)
- Yubiao Zhang
- 1Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Feng Zhang
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Shujuan Shi
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Xinqiao Liu
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Weisong Cai
- 1Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Guangtao Han
- 1Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Caihua Ke
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Siru Long
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Zhiyong Di
- 3School of Life Sciences, University of Science and Technology of China, Hefei, 230027 People's Republic of China
| | - Shijin Yin
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Haohuan Li
- 1Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| |
Collapse
|
14
|
Teisseyre A, Palko-Labuz A, Sroda-Pomianek K, Michalak K. Voltage-Gated Potassium Channel Kv1.3 as a Target in Therapy of Cancer. Front Oncol 2019; 9:933. [PMID: 31612103 PMCID: PMC6769076 DOI: 10.3389/fonc.2019.00933] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated potassium channel Kv1.3 is an integral membrane protein, which is selectively permeable for potassium ions and is activated upon a change of membrane potential. Channel activation enables transportation of potassium ions down their electrochemical gradient. Kv1.3 channel is expressed in many cell types, both normal and cancer. Activity of the channel plays an important role in cell proliferation and apoptosis. Inhibition of Kv1.3 channel may be beneficial in therapy of several diseases including some cancer disorders. This review focuses on Kv1.3 channel as a new potentially attractive molecular target in cancer therapy. In the first part, changes in the channel expression in selected cancer disorders are described. Then, the role of the channel activity in cancer cell proliferation and apoptosis is presented. Finally, it is shown that some low molecular weight organic inhibitors of the channel including selected biologically active plant-derived polycyclic compounds may selectively induce apoptosis of Kv1.3-expressing cancer cells while sparing normal cells and healthy organs. These compounds may be promising candidates for putative application in therapy of some cancer disorders, such as melanoma, pancreatic ductal adenocarcinoma (PDAC), or B-type chronic lymphocytic leukemia (B-CLL).
Collapse
Affiliation(s)
- Andrzej Teisseyre
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | - Anna Palko-Labuz
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | | | - Krystyna Michalak
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
15
|
Lowinus T, Heidel FH, Bose T, Nimmagadda SC, Schnöder T, Cammann C, Schmitz I, Seifert U, Fischer T, Schraven B, Bommhardt U. Memantine potentiates cytarabine-induced cell death of acute leukemia correlating with inhibition of K v1.3 potassium channels, AKT and ERK1/2 signaling. Cell Commun Signal 2019; 17:5. [PMID: 30651113 PMCID: PMC6335768 DOI: 10.1186/s12964-018-0317-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/28/2018] [Indexed: 12/23/2022] Open
Abstract
Background Treatment of acute leukemia is challenging and long-lasting remissions are difficult to induce. Innovative therapy approaches aim to complement standard chemotherapy to improve drug efficacy and decrease toxicity. Promising new therapeutic targets in cancer therapy include voltage-gated Kv1.3 potassium channels, but their role in acute leukemia is unclear. We reported that Kv1.3 channels of lymphocytes are blocked by memantine, which is known as an antagonist of neuronal N-methyl-D-aspartate type glutamate receptors and clinically applied in therapy of advanced Alzheimer disease. Here we evaluated whether pharmacological targeting of Kv1.3 channels by memantine promotes cell death of acute leukemia cells induced by chemotherapeutic cytarabine. Methods We analyzed acute lymphoid (Jurkat, CEM) and myeloid (HL-60, Molm-13, OCI-AML-3) leukemia cell lines and patients’ acute leukemic blasts after treatment with either drug alone or the combination of cytarabine and memantine. Patch-clamp analysis was performed to evaluate inhibition of Kv1.3 channels and membrane depolarization by memantine. Cell death was determined with propidium iodide, Annexin V and SYTOX staining and cytochrome C release assay. Molecular effects of memantine co-treatment on activation of Caspases, AKT, ERK1/2, and JNK signaling were analysed by Western blot. Kv1.3 channel expression in Jurkat cells was downregulated by shRNA. Results Our study demonstrates that memantine inhibits Kv1.3 channels of acute leukemia cells and in combination with cytarabine potentiates cell death of acute lymphoid and myeloid leukemia cell lines as well as primary leukemic blasts from acute leukemia patients. At molecular level, memantine co-application fosters concurrent inhibition of AKT, S6 and ERK1/2 and reinforces nuclear down-regulation of MYC, a common target of AKT and ERK1/2 signaling. In addition, it augments mitochondrial dysfunction resulting in enhanced cytochrome C release and activation of Caspase-9 and Caspase-3 leading to amplified apoptosis. Conclusions Our study underlines inhibition of Kv1.3 channels as a therapeutic strategy in acute leukemia and proposes co-treatment with memantine, a licensed and safe drug, as a potential approach to promote cytarabine-based cell death of various subtypes of acute leukemia. Electronic supplementary material The online version of this article (10.1186/s12964-018-0317-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Present address: Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| | - Florian H Heidel
- Department of Hematology and Oncology, GC-I3, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Leibniz Institute on Aging, Fritz-Lipmann Institute, Jena, Germany.,Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Tanima Bose
- Leibniz Institute of Neurobiology, Magdeburg, Germany.,Present address: Institute for Clinical Neuroimmunology, Ludwigs-Maximilians-University, Munich, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Hematology and Oncology, GC-I3, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Tina Schnöder
- Department of Hematology and Oncology, GC-I3, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Leibniz Institute on Aging, Fritz-Lipmann Institute, Jena, Germany.,Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institute for Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Ingo Schmitz
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrike Seifert
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Friedrich Loeffler Institute for Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, GC-I3, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
16
|
Eichinger P, Herrmann AM, Ruck T, Herty M, Gola L, Kovac S, Budde T, Meuth SG, Hundehege P. Human T cells in silico: Modelling dynamic intracellular calcium and its influence on cellular electrophysiology. J Immunol Methods 2018; 461:78-84. [PMID: 30158076 DOI: 10.1016/j.jim.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023]
Abstract
A network of ion currents influences basic cellular T cell functions. After T cell receptor activation, changes in highly regulated calcium levels play a central role in triggering effector functions and cell differentiation. A dysregulation of these processes might be involved in the pathogenesis of several diseases. We present a mathematical model based on the NEURON simulation environment that computes dynamic calcium levels in combination with the current output of diverse ion channels (KV1.3, KCa3.1, K2P channels (TASK1-3, TRESK), VRAC, TRPM7, CRAC). In line with experimental data, the simulation shows a strong increase in intracellular calcium after T cell receptor stimulation before reaching a new, elevated calcium plateau in the T cell's activated state. Deactivation of single ion channel modules, mimicking the application of channel blockers, reveals that two types of potassium channels are the main regulators of intracellular calcium level: calcium-dependent potassium (KCa3.1) and two-pore-domain potassium (K2P) channels.
Collapse
Affiliation(s)
- Paul Eichinger
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Straße 22, 81675 Munich, Germany
| | - Alexander M Herrmann
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michael Herty
- RWTH Aachen University, Mathematics (Continuous optimization), Templergraben 55, 52056 Aachen, Germany
| | - Lukas Gola
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Straße 22, 81675 Munich, Germany
| | - Stjepana Kovac
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Straße 22, 81675 Munich, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27a, 48149 Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| |
Collapse
|