1
|
Wang X, Yang J, Zhang X, Cai J, Zhang J, Cai C, Zhuo Y, Fang S, Xu X, Wang H, Liu P, Zhou S, Wang W, Hu Y, Fang J. An endophenotype network strategy uncovers YangXue QingNao Wan suppresses Aβ deposition, improves mitochondrial dysfunction and glucose metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156158. [PMID: 39447228 DOI: 10.1016/j.phymed.2024.156158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), an escalating global health issue, lacks effective treatments due to its complex pathogenesis. YangXue QingNao Wan (YXQNW) is a China Food and Drug Administration (CFDA)- approved TCM formula that has been repurposed in clinical Phase II for the treatment of AD. Identifying YXQNW's active ingredients and their mechanisms is crucial for developing effective AD treatments. PURPOSE This study aims to elucidate the anti-AD effects of YXQNW and to explore its potential therapeutic mechanisms employing an endophenotype network strategy. METHODS Herein we present an endophenotype network strategy that combines active ingredient identification in rat serum, network proximity prediction, metabolomics, and in vivo experimental validation in two animal models. Specially, utilizing UPLC-Q-TOF-MS/MS, active ingredients are identified in YXQNW to build a drug-target network. We applied network proximity to identify potential AD pathological mechanisms of YXQNW via integration of drug-target network, AD endophenotype gene sets, and human protein interactome, and validated related mechanisms in two animal models. In a d-galactose-induced senescent rat model, YXQNW was administered at varying doses for cognitive and neuronal assessments through behavioral tests, Nissl staining, and transmission electron microscopy (TEM). Metabolomic analysis with LC-MS revealed YXQNW's influence on brain metabolites, suggesting therapeutic pathways. Levels of key proteins and biochemicals were measured by WB and ELISA, providing insights into YXQNW's neuroprotective mechanisms. In addition, 5×FAD model mice were used and administered YXQNW by gavage for 14 days at two doses. Amyloid-β levels, transporter expression, and cerebral blood flow have been detected by MRI and biochemical assays. RESULTS The network proximity analysis showed that the effect of YXQNW on AD was highly correlated with amyloid β, synaptic function, glucose metabolism and mitochondrial function. The results of metabolomics combined with in vivo experimental validation suggest that YXQNW has the potential to ameliorate glucose transport abnormalities in the brain by upregulating the expression of GLUT1 and GLUT3, while further enhancing glucose metabolism through increased O-GlcNAcylation and mitigating mitochondrial dysfunction via the AMPK/Sirt1 pathway, thereby improving d-galactose-induced cognitive deficits in rats. Additionally, YXQNW treatment significantly decreased Aβ1-42 levels and enhanced cerebral blood flow (CBF) in the hippocampus of 5×FAD mice. while mechanistic findings indicated that YXQNW treatment increased the expression of ABCB1, an Aβ transporter, in 5×FAD model mice to promote the clearance of Aβ from the brain and alleviate AD-like symptoms. CONCLUSIONS This study reveals that YXQNW may mitigate AD by inhibiting Aβ deposition and ameliorating mitochondrial dysfunction and glucose metabolism, thus offering a promising therapeutic approach for AD.
Collapse
Affiliation(s)
- Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinna Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Xiaolian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinyong Cai
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Jieqi Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Peng Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Shuiping Zhou
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Wenjia Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Yunhui Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
2
|
Yao SQ, Ye Y, Li Q, Wang XY, Yan L, Huo XM, Pan CS, Fu Y, Liu J, Han JY. YangXueQingNaoWan attenuated blood brain barrier disruption after thrombolysis with tissue plasminogen activator in ischemia stroke. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117024. [PMID: 37572928 DOI: 10.1016/j.jep.2023.117024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANT YangXueQingNaoWan (YXQNW), a compound Chinese medicine, has been widely used for dizziness, irritability, insomnia, and dreaminess caused by blood deficiency and liver hyperactivity in China. However, whether YXQNW can inhibit cerebral microvascular exudation and cerebral hemorrhage (CH) caused by blood brain barrier (BBB) damage after tissue plasminogen activator (tPA) still unknown. AIM OF THE RESEARCH To observe the effect of YXQNW on cerebral microvascular exudation and CH after tPA and investigate its mechanism in protecting BBB. MATERIALS AND METHODS Male C57BL/6 N mice suffered from ischemia stroke by mechanical detachment of carotid artery thrombi with the stimulation of ferric chloride. Then mice were treated with tPA (10 mg/kg) and/or YXQNW (0.72 g/kg) at 4.5 h. Cerebral blood flow (CBF), infarct size, survival rate, neurological scores, gait analysis, Evans blue extravasation, cerebral water content, fluorescein isothiocyanate-labeled albumin leakage, hemorrhage, junction and basement membrane proteins expression, leukocyte adhesion and matrix metalloproteinases (MMPs) expression were evaluated 24 h after tPA. Proteomics was used to identify target proteins. RESULTS YXQNW inhibited cerebral infarction, neurobehavioral deficits, decreased survival, Evans blue leakage, albumin leakage, cerebral water content and CH after tPA thrombolysis; improved CBF, low-expression and degradation of junction proteins, basement membrane proteins, Arhgap21 and its downstream α-catenin and β-catenin proteins expression; and suppressed the increase of adherent leukocytes and the release of MMP-9 derived from macrophage. CONCLUSION YXQNW relieved BBB damage and attenuated cerebral microvascular exudation and CH after tPA thrombolysis. The effect of YXQNW on cerebral microvascular exudation was associated with the inhibition of the low-expression of junction proteins, especially AJs mediated by Rho GTPase-activating protein 21 (Arhgap21), while the effect on CH was associated with the inhibition of leukocyte adhesion, the release of MMP-9 derived from macrophage, and low-expression and degradation of collagen IV and laminin in the vascular basement membrane.
Collapse
Affiliation(s)
- Shu-Qi Yao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Xin-Mei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China.
| |
Collapse
|
3
|
Akhoond-Ali Z, Rahimi A, Ghorbani A, Forouzanfar F, Hosseinian S, Ghazavi H, Vafaee F. Silibinin effects on cognitive disorders: Hope or treatment? AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:597-614. [PMID: 38106632 PMCID: PMC10719727 DOI: 10.22038/ajp.2023.21959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 12/19/2023]
Abstract
Objective Almost all diseases of the nervous system are related to neuroinflammation, oxidative stress, neuronal death, glia activation, and increased pro-inflammatory cytokines. Cognitive disorders are one of the common complications of nervous system diseases. The role of some plant compounds in reducing or preventing cognitive disorders has been determined. Silibinin is a plant bioflavonoid and exhibits various effects on cognitive functions. This article discusses the different mechanisms of the effect of silibinin on cognitive disorders in experimental studies. Materials and Methods Databases, including ISI, , Google Scholar, Scopus, Medline and PubMed, were investigated from 2000 to 2021, using related keywords to find required articles. Results Silibinin can improve cognitive disorders by different pathways such as reducing neuroinflammation and oxidative stress, activation of reactive oxygen species- Brain-derived neurotrophic factor- Tropomyosin receptor kinase B (ROS-BDNF-TrkB) pathway in the hippocampus, an increase of dendritic spines in the brain, inhibition of hyperphosphorylation of tau protein and increasing the expression of insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R), inhibiting inflammatory responses and oxidative stress in the hippocampus and amygdala, and decrease of Homovanillic acid/Dopamine (HVA/DA) ratio and 3,4-Dihydroxyphenylacetic acid + Homovanillic acid/Dopamine (DOPAC+ HVA/DA) ratio in the prefrontal cortex and 5-hydroxyindoleacetic acid/5-hydroxytryptamine (5-HIAA/5-HT) ratio in the hippocampus. Conclusion These results suggest that silibinin can be considered a therapeutic agent for the symptom reduction of cognitive disorders, and it acts by affecting various mechanisms such as inflammation, programmed cell death, and oxidative stress.
Collapse
Affiliation(s)
- Zahra Akhoond-Ali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rahimi
- Material Science and Metallurgy Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Atiyeh Ghorbani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Ghazavi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Cognitive Impairments and blood-brain Barrier Damage in a Mouse Model of Chronic Cerebral Hypoperfusion. Neurochem Res 2022; 47:3817-3828. [DOI: 10.1007/s11064-022-03799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/07/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
AbstractChronic cerebral hypoperfusion (CCH) is commonly involved in various brain diseases. Tight junction proteins (TJs) are key components constituting the anatomical substrate of the blood-brain barrier (BBB). Changes in cognitive function and BBB after CCH and their relationship need further exploration. To investigate the effect of CCH on cognition and BBB, we developed a bilateral common carotid artery stenosis (BCAS) model in Tie2-GFP mice. Mice manifested cognitive impairments accompanied with increased microglia after the BCAS operation. BCAS mice also exhibited increased BBB permeability at all time points set from D1 to D42. Furthermore, BCAS mice showed reduced expression of TJs 42 d after the operation. In addition, correct entrances of mice in radial arm maze test had a moderate negative correlation with EB extravasation. Our data suggested that BCAS could lead to cognitive deficits, microglia increase and BBB dysfunction characterized by increased BBB permeability and reduced TJs expression level. BBB permeability may be involved in the cognitive impairments induced by CCH.
Collapse
|
5
|
Xian X, Wang Y, Liu G. Genetically Engineered Hamster Models of Dyslipidemia and Atherosclerosis. Methods Mol Biol 2022; 2419:433-459. [PMID: 35237980 DOI: 10.1007/978-1-0716-1924-7_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Animal models of human diseases play an extremely important role in biomedical research. Among them, mice are widely used animal models for translational research, especially because of ease of generation of genetically engineered mice. However, because of the great differences in biology between mice and humans, translation of findings to humans remains a major issue. Therefore, the exploration of models with biological and metabolic characteristics closer to those of humans has never stopped.Although pig and nonhuman primates are biologically similar to humans, their genetic engineering is technically difficult, the cost of breeding is high, and the experimental time is long. As a result, the application of these species as model animals, especially genetically engineered model animals, in biomedical research is greatly limited.In terms of lipid metabolism and cardiovascular diseases, hamsters have several characteristics different from rats and mice, but similar to those in humans. The hamster is therefore an ideal animal model for studying lipid metabolism and cardiovascular disease because of its small size and short reproduction period. However, the phenomenon of zygote division, which was unexpectedly blocked during the manipulation of hamster embryos for some unknown reasons, had plagued researchers for decades and no genetically engineered hamsters have therefore been generated as animal models of human diseases for a long time. After solving the problem of in vitro development of hamster zygotes, we successfully prepared enhanced green fluorescent protein (eGFP) transgenic hamsters by microinjection of lentiviral vectors into the zona pellucida space of zygotes. On this basis, we started the development of cardiovascular disease models using the hamster embryo culture system combined with the novel genome editing technique of clustered regularly interspaced short palindromic repeats (CRISPR )/CRISPR associated protein 9 (Cas9). In this chapter, we will introduce some of the genetically engineered hamster models with dyslipidemia and the corresponding characteristics of these models. We hope that the genetically engineered hamster models can be further recognized and complement other genetically engineered animal models such as mice, rats, and rabbits. This will lead to new avenues and pathways for the study of lipid metabolism and its related diseases.
Collapse
Affiliation(s)
- Xunde Xian
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
6
|
Han JY, Meininger G, Luo JC, Huang QB. Editorial: Traditional Chinese Medicine: Organ Vascular Injury - Volume II. Front Physiol 2021; 12:677858. [PMID: 34177621 PMCID: PMC8231435 DOI: 10.3389/fphys.2021.677858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Gerald Meininger
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Jin-Cai Luo
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qiao-Bing Huang
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Wang HM, Huang P, Li Q, Yan LL, Sun K, Yan L, Pan CS, Wei XH, Liu YY, Hu BH, Wang CS, Fan JY, Han JY. Post-treatment With Qing-Ying-Tang, a Compound Chinese Medicine Relives Lipopolysaccharide-Induced Cerebral Microcirculation Disturbance in Mice. Front Physiol 2019; 10:1320. [PMID: 31708795 PMCID: PMC6823551 DOI: 10.3389/fphys.2019.01320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Objective: Lipopolysaccharide (LPS) causes microvascular dysfunction, which is a key episode in the pathogenesis of endotoxemia. This work aimed to investigate the effect of Qing-Ying-Tang (QYT), a compound Chinese medicine in cerebral microcirculation disturbance and brain damage induced by LPS. Methods: Male C57/BL6 mice were continuously transfused with LPS (7.5 mg/kg/h) through the left femoral vein for 2 h. QYT (14.3 g/kg) was given orally 2 h after LPS administration. The dynamics of cerebral microcirculation were evaluated by intravital microscopy. Brain tissue edema was assessed by brain water content and Evans Blue leakage. Cytokines in plasma and brain were evaluated by flow cytometry. Confocal microscopy and Western blot were applied to detect the expression of junction and adhesion proteins, and signaling proteins concerned in mouse brain tissue. Results: Post-treatment with QYT significantly ameliorated LPS-induced leukocyte adhesion to microvascular wall and albumin leakage from cerebral venules and brain tissue edema, attenuated the increase of MCP-1, MIP-1α, IL-1α, IL-6, and VCAM-1 in brain tissue and the activation of NF-κB and expression of MMP-9 in brain. QYT ameliorated the downregulation of claudin-5, occludin, JAM-1, ZO-1, collagen IV as well as the expression and phosphorylation of VE-cadherin in mouse brain. Conclusions: This study demonstrated that QYT protected cerebral microvascular barrier from disruption after LPS by acting on the transcellular pathway mediated by caveolae and paracellular pathway mediated by junction proteins. This result suggests QYT as a potential strategy to deal with endotoxemia.
Collapse
Affiliation(s)
- Hao-Min Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Lu-Lu Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chuan-She Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
8
|
Jiao YQ, Huang P, Yan L, Sun K, Pan CS, Li Q, Fan JY, Ma ZZ, Han JY. YangXue QingNao Wan, a Compound Chinese Medicine, Attenuates Cerebrovascular Hyperpermeability and Neuron Injury in Spontaneously Hypertensive Rat: Effect and Mechanism. Front Physiol 2019; 10:1246. [PMID: 31632292 PMCID: PMC6779832 DOI: 10.3389/fphys.2019.01246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Objective The purpose of the study was to explore the effect of YangXue QingNao Wan (YXQNW), a compound Chinese medicine, on cerebrovascular hyperpermeability, neuronal injury, and related mechanisms in spontaneously hypertensive rat (SHR). Methods Fourteen-week-old male SHR were used, with Wistar Kyoto (WKY) rats as control. YXQNW (0.5 g/kg/day), enalapril (EN, 8 mg/kg/day), and nifedipine (NF, 7.1 mg/kg/day) were administrated orally for 4 weeks. To assess the effects of the YXQNW on blood pressure, the systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) were measured. After administering the drugs for 4 weeks, the cerebral blood flow (CBF), albumin leakage from microvessels in middle cerebral artery (MCA)-dominated area, and the number and morphology of microvessels were assessed in the hippocampus area and cortex. Neuronal damage and apoptosis were assessed by Nissl staining and TUNEL staining. To assess the mechanisms of cerebrovascular hyperpermeability, we performed immunofluorescence and Western blot to assess the expression and integrity of cerebral microvascular tight junction (TJ) and caveolin-1 (Cav-1) in cortex. Energy metabolism and Src-MLC-MLCK pathway in cortex were assessed then for elucidating the underlying mechanism of the observed effect of YXQNW. Results Spontaneously hypertensive rat exhibited higher blood pressure, Evans blue (EB) extravasation, albumin leakage, increased brain water content, decreased CBF, perivascular edema, and neuronal apoptosis in the hippocampus and cortex, all of which were attenuated by YXQNW treatment. YXQNW inhibited the downregulation of TJ proteins, mitochondrial Complex I, Complex II, and Complex V, and upregulation of caveolin-1, inhibiting Src/MLCK/MLC signaling in SHR. YXQNW combined with EN + NF revealed a better effect for some outcomes compared with either YXQNW or EN + NF alone. Conclusion The overall result shows the potential of YXQNW to attenuate blood–brain barrier (BBB) breakdown in SHR, which involves regulation of energy metabolism and Src/MLCK/MLC signaling. This result provides evidence supporting the application of YXQNW as an adjuvant management for hypertensive patients to prevent hypertensive encephalopathy.
Collapse
Affiliation(s)
- Ying-Qian Jiao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Zhou L, Zhang L, Zhang Y, Yu X, Sun X, Zhu T, Li X, Liang W, Han Y, Qin C. PINK1 Deficiency Ameliorates Cisplatin-Induced Acute Kidney Injury in Rats. Front Physiol 2019; 10:1225. [PMID: 31607953 PMCID: PMC6773839 DOI: 10.3389/fphys.2019.01225] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022] Open
Abstract
Mitophagy plays a key role in cleaning damaged and depolarized mitochondria to maintain cellular homeostasis and viability. Although it was originally found in neurodegenerative diseases, mitophagy is reported to play an important role in acute kidney injury. PINK1 and Parkin are key molecules in mitophagy pathway. Here, we used PINK1 knockout rats to examine the role of PINK1/Parkin-mediated mitophagy in cisplatin nephrotoxicity. After cisplatin treatment, PINK1 knockout rats showed lower plasma creatinine and less tubular damage when compared with wild-type rats. Meanwhile, mitophagy indicated by autophagosome formation and LC3B-II accumulation was also attenuated in PINK1 knockout rats. Renal expression of PINK1 and Parkin were down-regulated while BNIP3L was up-regulated by cisplatin treatment, indicating a major role of BNIP3/BNIP3L pathway in cisplatin-induced mitophagy. Transmission electron microscopy showed that PINK1 deficiency inhibited cisplatin-induced mitochondrial fragmentation indicating an involvement of mitochondrial fusion and fission. Renal expression of mitochondrial dynamics related proteins including Fis1, Drp1, Mfn1, Mfn2, and Opa1 were checked by real-time PCR and western blots. The results showed PINK1 deficiency distinctly prevented cisplatin-induced up-regulation of DRP1. Finally, PINK1 deficiency alleviated cisplatin-induced tubular apoptosis indicated by TUNEL assay as well as the expression of caspase3 and cleaved caspase3. Together, these results suggested PINK1 deficiency ameliorated cisplatin-induced acute kidney injury in rats, possibly via inhibiting DRP1-mediated mitochondrial fission and excessive mitophagy.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Ling Zhang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Yu Zhang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Xuan Yu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Xiuping Sun
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Tao Zhu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Xianglei Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Wei Liang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Yunlin Han
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| |
Collapse
|
10
|
Li DT, Sun K, Huang P, Pan CS, Yan L, Ayan A, Liu YY, Fan JY, Fang WG, Han JY. Yiqifumai injection and its main ingredients attenuate lipopolysaccharide-induced cerebrovascular hyperpermeability through a multi-pathway mode. Microcirculation 2019; 26:e12553. [PMID: 31059171 DOI: 10.1111/micc.12553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Yiqifumai injection is a compound Chinese medicine used to treat microcirculatory disturbance-related diseases clinically. Our previous study proved that Yiqifumai injection pretreatment inhibited lipopolysaccharide-induced venular albumin leakage in rat mesentery. This study aimed to investigate whether Yiqifumai injection attenuated cerebral microvascular hyperpermeability and corresponding contribution of its main ingredients. METHODS Rats were challenged by lipopolysaccharide infusion (5 mg/kg/h) for 90 minutes. Yiqifumai injection (160 mg/kg/h), Rb1 (5 mg/kg/h), Sch (2.5 mg/kg/h), and Rb1 (5 mg/kg/h) + Sch (2.5 mg/kg/h) were infused 30 minutes before (pretreatment) or after (post-treatment) lipopolysaccharide administration. RESULTS Both pretreatment and post-treatment with Yiqifumai injection attenuated cerebral venular albumin leakage during lipopolysaccharide infusion and cerebrovascular hyperpermeability at 72 hours after lipopolysaccharide infusion. Yiqifumai injection restrained the decreased junction protein expression, adenosine triphosphate content, and mitochondria complex I, II, IV, and V activities. Moreover, Yiqifumai injection inhibited toll-like receptor-4 expression, Src phosphorylation, and caveolin-1 expression. Its main ingredients Rb1 and Sch alone worked differently, with Rb1 being more effective for enhancing energy metabolism, while Sch attenuating toll-like receptor-4 expression and Src activation. CONCLUSION Yiqifumai injection exerts a protective and ameliorated effect on cerebral microvascular hyperpermeability, which is more effective than any of its ingredients, possibly due to the interaction of its main ingredients through a multi-pathway mode.
Collapse
Affiliation(s)
- Dan-Tong Li
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ayididaer Ayan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Wei-Gang Fang
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|