1
|
Riaz Gondal MU, Atta Mehdi H, Khenhrani RR, Kumari N, Ali MF, Kumar S, Faraz M, Malik J. Role of Machine Learning and Artificial Intelligence in Arrhythmias and Electrophysiology. Cardiol Rev 2024:00045415-990000000-00270. [PMID: 38761137 DOI: 10.1097/crd.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Machine learning (ML), a subset of artificial intelligence (AI) centered on machines learning from extensive datasets, stands at the forefront of a technological revolution shaping various facets of society. Cardiovascular medicine has emerged as a key domain for ML applications, with considerable efforts to integrate these innovations into routine clinical practice. Within cardiac electrophysiology, ML applications, especially in the automated interpretation of electrocardiograms, have garnered substantial attention in existing literature. However, less recognized are the diverse applications of ML in cardiac electrophysiology and arrhythmias, spanning basic science research on arrhythmia mechanisms, both experimental and computational, as well as contributions to enhanced techniques for mapping cardiac electrical function and translational research related to arrhythmia management. This comprehensive review delves into various ML applications within the scope of this journal, organized into 3 parts. The first section provides a fundamental understanding of general ML principles and methodologies, serving as a foundational resource for readers interested in exploring ML applications in arrhythmia research. The second part offers an in-depth review of studies in arrhythmia and electrophysiology that leverage ML methodologies, showcasing the broad potential of ML approaches. Each subject is thoroughly outlined, accompanied by a review of notable ML research advancements. Finally, the review delves into the primary challenges and future perspectives surrounding ML-driven cardiac electrophysiology and arrhythmias research.
Collapse
Affiliation(s)
| | - Hassan Atta Mehdi
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Raja Ram Khenhrani
- Department of Medicine, Internal Medicine Fellow, Shaheed Mohtarma Benazir Bhutto Medical College and Lyari General Hospital, Karachi, Pakistan
| | - Neha Kumari
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Muhammad Faizan Ali
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Sooraj Kumar
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan; and
| | - Maria Faraz
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Rawalpindi, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Rawalpindi, Pakistan
| |
Collapse
|
2
|
Halfar R, Lawson BAJ, Dos Santos RW, Burrage K. Recurrence quantification analysis for fine-scale characterisation of arrhythmic patterns in cardiac tissue. Sci Rep 2023; 13:11828. [PMID: 37481668 PMCID: PMC10363137 DOI: 10.1038/s41598-023-38256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/05/2023] [Indexed: 07/24/2023] Open
Abstract
This paper uses recurrence quantification analysis (RQA) combined with entropy measures and organization indices to characterize arrhythmic patterns and dynamics in computer simulations of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the combination of two RQA metrics, the length of the longest diagonal string of recurrence points and the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on the mean value and spatial correlation of metrics calculated from membrane potential time series, we identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia into distinct regions of the feature space, and thus might be used for automatic classification, in particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.
Collapse
Affiliation(s)
- Radek Halfar
- IT4Innovations, VSB - Technical University of Ostrava, 708 00, Ostrava, Czech Republic.
| | - Brodie A J Lawson
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, 4000, Australia
- Centre for Data Science, Queensland Univeristy of Technology, Brisbane, 4000, Australia
| | - Rodrigo Weber Dos Santos
- Graduate Program in Computational Modeling, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-330, Brazil
| | - Kevin Burrage
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, 4000, Australia
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Farquhar ME, Burrage K, Weber Dos Santos R, Bueno-Orovio A, Lawson BA. Graph-based homogenisation for modelling cardiac fibrosis. JOURNAL OF COMPUTATIONAL PHYSICS 2022; 459:None. [PMID: 35959500 PMCID: PMC9352598 DOI: 10.1016/j.jcp.2022.111126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 05/02/2023]
Abstract
Fibrosis, the excess of extracellular matrix, can affect, and even block, propagation of action potential in cardiac tissue. This can result in deleterious effects on heart function, but the nature and severity of these effects depend strongly on the localisation of fibrosis and its by-products in cardiac tissue, such as collagen scar formation. Computer simulation is an important means of understanding the complex effects of fibrosis on activation patterns in the heart, but concerns of computational cost place restrictions on the spatial resolution of these simulations. In this work, we present a novel numerical homogenisation technique that uses both Eikonal and graph approaches to allow fine-scale heterogeneities in conductivity to be incorporated into a coarser mesh. Homogenisation achieves this by deriving effective conductivity tensors so that a coarser mesh can then be used for numerical simulation. By taking a graph-based approach, our homogenisation technique functions naturally on irregular grids and does not rely upon any assumptions of periodicity, even implicitly. We present results of action potential propagation through fibrotic tissue in two dimensions that show the graph-based homogenisation technique is an accurate and effective way to capture fine-scale domain information on coarser meshes in the context of sharp-fronted travelling waves of activation. As test problems, we consider excitation propagation in tissue with diffuse fibrosis and through a tunnel-like structure designed to test homogenisation, interaction of an excitation wave with a scar region, and functional re-entry.
Collapse
Affiliation(s)
- Megan E. Farquhar
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kevin Burrage
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Department of Computer Science, Oxford University, Oxford, United Kingdom
| | - Rodrigo Weber Dos Santos
- Department of Computer Science and Program on Computational Modeling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | | | - Brodie A.J. Lawson
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
4
|
Abstract
Machine learning (ML), a branch of artificial intelligence, where machines learn from big data, is at the crest of a technological wave of change sweeping society. Cardiovascular medicine is at the forefront of many ML applications, and there is a significant effort to bring them into mainstream clinical practice. In the field of cardiac electrophysiology, ML applications have also seen a rapid growth and popularity, particularly the use of ML in the automatic interpretation of ECGs, which has been extensively covered in the literature. Much lesser known are the other aspects of ML application in cardiac electrophysiology and arrhythmias, such as those in basic science research on arrhythmia mechanisms, both experimental and computational; in the development of better techniques for mapping of cardiac electrical function; and in translational research related to arrhythmia management. In the current review, we examine comprehensively such ML applications as they match the scope of this journal. The current review is organized in 3 parts. The first provides an overview of general ML principles and methodologies that will afford readers of the necessary information on the subject, serving as the foundation for inviting further ML applications in arrhythmia research. The basic information we provide can serve as a guide on how one might design and conduct an ML study. The second part is a review of arrhythmia and electrophysiology studies in which ML has been utilized, highlighting the broad potential of ML approaches. For each subject, we outline comprehensively the general topics, while reviewing some of the research advances utilizing ML under the subject. Finally, we discuss the main challenges and the perspectives for ML-driven cardiac electrophysiology and arrhythmia research.
Collapse
Affiliation(s)
- Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, USA 21205
| | - Dan M. Popescu
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
| | - Julie K. Shade
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
| |
Collapse
|
5
|
Pathmanathan P, Galappaththige SK, Cordeiro JM, Kaboudian A, Fenton FH, Gray RA. Data-Driven Uncertainty Quantification for Cardiac Electrophysiological Models: Impact of Physiological Variability on Action Potential and Spiral Wave Dynamics. Front Physiol 2020; 11:585400. [PMID: 33329034 PMCID: PMC7711195 DOI: 10.3389/fphys.2020.585400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022] Open
Abstract
Computational modeling of cardiac electrophysiology (EP) has recently transitioned from a scientific research tool to clinical applications. To ensure reliability of clinical or regulatory decisions made using cardiac EP models, it is vital to evaluate the uncertainty in model predictions. Model predictions are uncertain because there is typically substantial uncertainty in model input parameters, due to measurement error or natural variability. While there has been much recent uncertainty quantification (UQ) research for cardiac EP models, all previous work has been limited by either: (i) considering uncertainty in only a subset of the full set of parameters; and/or (ii) assigning arbitrary variation to parameters (e.g., ±10 or 50% around mean value) rather than basing the parameter uncertainty on experimental data. In our recent work we overcame the first limitation by performing UQ and sensitivity analysis using a novel canine action potential model, allowing all parameters to be uncertain, but with arbitrary variation. Here, we address the second limitation by extending our previous work to use data-driven estimates of parameter uncertainty. Overall, we estimated uncertainty due to population variability in all parameters in five currents active during repolarization: inward potassium rectifier, transient outward potassium, L-type calcium, rapidly and slowly activating delayed potassium rectifier; 25 parameters in total (all model parameters except fast sodium current parameters). A variety of methods was used to estimate the variability in these parameters. We then propagated the uncertainties through the model to determine their impact on predictions of action potential shape, action potential duration (APD) prolongation due to drug block, and spiral wave dynamics. Parameter uncertainty had a significant effect on model predictions, especially L-type calcium current parameters. Correlation between physiological parameters was determined to play a role in physiological realism of action potentials. Surprisingly, even model outputs that were relative differences, specifically drug-induced APD prolongation, were heavily impacted by the underlying uncertainty. This is the first data-driven end-to-end UQ analysis in cardiac EP accounting for uncertainty in the vast majority of parameters, including first in tissue, and demonstrates how future UQ could be used to ensure model-based decisions are robust to all underlying parameter uncertainties.
Collapse
Affiliation(s)
- Pras Pathmanathan
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, United States
| | - Suran K. Galappaththige
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, United States
| | - Jonathan M. Cordeiro
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, NY, United States
| | - Abouzar Kaboudian
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Richard A. Gray
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, United States
| |
Collapse
|
6
|
Lawson BAJ, Oliveira RS, Berg LA, Silva PAA, Burrage K, dos Santos RW. Variability in electrophysiological properties and conducting obstacles controls re-entry risk in heterogeneous ischaemic tissue. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190341. [PMID: 32448068 PMCID: PMC7287337 DOI: 10.1098/rsta.2019.0341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 05/07/2023]
Abstract
Ischaemia, in which inadequate blood supply compromises and eventually kills regions of cardiac tissue, can cause many types of arrhythmia, some life-threatening. A significant component of this is the effects of the resulting hypoxia, and concomitant hyperklaemia and acidosis, on the electrophysiological properties of myocytes. Clinical and experimental data have also shown that regions of structural heterogeneity (fibrosis, necrosis, fibro-fatty infiltration) can act as triggers for arrhythmias under acute ischaemic conditions. Mechanistic models have successfully captured these effects in silico. However, the relative significance of these separate facets of the condition, and how sensitive arrhythmic risk is to the extents of each, is far less explored. In this work, we use partitioned Gaussian process emulation and new metrics for source-sink mismatch that rely on simulations of bifurcating cardiac fibres to interrogate a model of heterogeneous ischaemic tissue. Re-entries were most sensitive to the level of hypoxia and the fraction of non-excitable tissue. In addition, our results reveal both protective and pro-arrhythmic effects of hyperklaemia, and present the levels of hyperklaemia, hypoxia and percentage of non-excitable tissue that pose the highest arrhythmic risks. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Brodie A. J. Lawson
- ARC Centre of Excellence for Mathematical and Statistical Frontiers Queensland University of Technology, Brisbane, Australia
| | - Rafael S. Oliveira
- Department of Computer Science, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Lucas A. Berg
- Graduate Program in Computational Modelling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Pedro A. A. Silva
- Graduate Program in Computational Modelling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Kevin Burrage
- ARC Centre of Excellence for Mathematical and Statistical Frontiers Queensland University of Technology, Brisbane, Australia
- Visiting Professor, Department of Computer Science, University of Oxford, Oxford, UK
| | - Rodrigo Weber dos Santos
- Graduate Program in Computational Modelling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
7
|
Clayton RH, Aboelkassem Y, Cantwell CD, Corrado C, Delhaas T, Huberts W, Lei CL, Ni H, Panfilov AV, Roney C, dos Santos RW. An audit of uncertainty in multi-scale cardiac electrophysiology models. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190335. [PMID: 32448070 PMCID: PMC7287340 DOI: 10.1098/rsta.2019.0335] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Models of electrical activation and recovery in cardiac cells and tissue have become valuable research tools, and are beginning to be used in safety-critical applications including guidance for clinical procedures and for drug safety assessment. As a consequence, there is an urgent need for a more detailed and quantitative understanding of the ways that uncertainty and variability influence model predictions. In this paper, we review the sources of uncertainty in these models at different spatial scales, discuss how uncertainties are communicated across scales, and begin to assess their relative importance. We conclude by highlighting important challenges that continue to face the cardiac modelling community, identifying open questions, and making recommendations for future studies. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Richard H. Clayton
- Insigneo institute for in-silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, UK
- e-mail:
| | - Yasser Aboelkassem
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | - Cesare Corrado
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Tammo Delhaas
- School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Wouter Huberts
- School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Chon Lok Lei
- Computational Biology and Health Informatics, Department of Computer Science, University of Oxford, Oxford, UK
| | - Haibo Ni
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Alexander V. Panfilov
- Department of Physics and Astronomy, University of Gent, Gent, Belgium
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia
| | - Caroline Roney
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | | |
Collapse
|
8
|
Coveney S, Clayton RH. Sensitivity and Uncertainty Analysis of Two Human Atrial Cardiac Cell Models Using Gaussian Process Emulators. Front Physiol 2020; 11:364. [PMID: 32390867 PMCID: PMC7191317 DOI: 10.3389/fphys.2020.00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Biophysically detailed cardiac cell models reconstruct the action potential and calcium dynamics of cardiac myocytes. They aim to capture the biophysics of current flow through ion channels, pumps, and exchangers in the cell membrane, and are highly detailed. However, the relationship between model parameters and model outputs is difficult to establish because the models are both complex and non-linear. The consequences of uncertainty and variability in model parameters are therefore difficult to determine without undertaking large numbers of model evaluations. The aim of the present study was to demonstrate how sensitivity and uncertainty analysis using Gaussian process emulators can be used for a systematic and quantitive analysis of biophysically detailed cardiac cell models. We selected the Courtemanche and Maleckar models of the human atrial action potential for analysis because these models describe a similar set of currents, with different formulations. In our approach Gaussian processes emulate the main features of the action potential and calcium transient. The emulators were trained with a set of design data comprising samples from parameter space and corresponding model outputs, initially obtained from 300 model evaluations. Variance based sensitivity indices were calculated using the emulators, and first order and total effect indices were calculated for each combination of parameter and output. The differences between the first order and total effect indices indicated that the effect of interactions between parameters was small. A second set of emulators were then trained using a new set of design data with a subset of the model parameters with a sensitivity index of more than 0.1 (10%). This second stage analysis enabled comparison of mechanisms in the two models. The second stage sensitivity indices enabled the relationship between the L-type Ca 2+ current and the action potential plateau to be quantified in each model. Our quantitative analysis predicted that changes in maximum conductance of the ultra-rapid K + channel I Kur would have opposite effects on action potential duration in the two models, and this prediction was confirmed by additional simulations. This study has demonstrated that Gaussian process emulators are an effective tool for sensitivity and uncertainty analysis of biophysically detailed cardiac cell models.
Collapse
Affiliation(s)
| | - Richard H. Clayton
- Insigneo Institute for in-silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Pathmanathan P, Cordeiro JM, Gray RA. Comprehensive Uncertainty Quantification and Sensitivity Analysis for Cardiac Action Potential Models. Front Physiol 2019; 10:721. [PMID: 31297060 PMCID: PMC6607060 DOI: 10.3389/fphys.2019.00721] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
Recent efforts to ensure the reliability of computational model-based predictions in healthcare, such as the ASME V&V40 Standard, emphasize the importance of uncertainty quantification (UQ) and sensitivity analysis (SA) when evaluating computational models. UQ involves empirically determining the uncertainty in model inputs-typically resulting from natural variability or measurement error-and then calculating the resultant uncertainty in model outputs. SA involves calculating how uncertainty in model outputs can be apportioned to input uncertainty. Rigorous comprehensive UQ/SA provides confidence that model-based decisions are robust to underlying uncertainties. However, comprehensive UQ/SA is not currently feasible for whole heart models, due to numerous factors including model complexity and difficulty in measuring variability in the many parameters. Here, we present a significant step to developing a framework to overcome these limitations. We: (i) developed a novel action potential (AP) model of moderate complexity (six currents, seven variables, 36 parameters); (ii) prescribed input variability for all parameters (not empirically derived); (iii) used a single "hyper-parameter" to study increasing levels of parameter uncertainty; (iv) performed UQ and SA for a range of model-derived quantities with physiological relevance; and (v) present quantitative and qualitative ways to analyze different behaviors that occur under parameter uncertainty, including "model failure". This is the first time uncertainty in every parameter (including conductances, steady-state parameters, and time constant parameters) of every ionic current in a cardiac model has been studied. This approach allowed us to demonstrate that, for this model, the simulated AP is fully robust to low levels of parameter uncertainty - to our knowledge the first time this has been shown of any cardiac model. A range of dynamics was observed at larger parameter uncertainty (e.g., oscillatory dynamics); analysis revealed that five parameters were highly influential in these dynamics. Overall, we demonstrate feasibility of performing comprehensive UQ/SA for cardiac cell models and demonstrate how to assess robustness and overcome model failure when performing cardiac UQ analyses. The approach presented here represents an important and significant step toward the development of model-based clinical tools which are demonstrably robust to all underlying uncertainties and therefore more reliable in safety-critical decision-making.
Collapse
Affiliation(s)
- Pras Pathmanathan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | | - Richard A. Gray
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|