1
|
Xi BX, Cui XN, Shang SQ, Li GW, Dewer Y, Li CN, Hu GX, Wang Y. Antennal Transcriptome Evaluation and Analysis for Odorant-Binding Proteins, Chemosensory Proteins, and Suitable Reference Genes in the Leaf Beetle Pest Diorhabda rybakowi Weise (Coleoptera: Chrysomelidae). INSECTS 2024; 15:251. [PMID: 38667381 PMCID: PMC11050234 DOI: 10.3390/insects15040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Diorhabda rybakowi Weise is one of the dominant pests feeding on Nitraria spp., a pioneer plant used for windbreaking and sand fixation purposes, and poses a threat to local livestock and ecosystems. To clarify the key olfactory genes of D. rybakowi and provide a theoretical basis for attractant and repellent development, the optimal reference genes under two different conditions (tissue and sex) were identified, and the bioinformatics and characterization of the tissue expression profiles of two categories of soluble olfactory proteins (OBPs and CSPs) were investigated. The results showed that the best reference genes were RPL13a and RPS18 for comparison among tissues, and RPL19 and RPS18 for comparison between sexes. Strong expressions of DrybOBP3, DrybOBP6, DrybOBP7, DrybOBP10, DrybOBP11, DrybCSP2, and DrybCSP5 were found in antennae, the most important olfactory organ for D. rybakowi. These findings not only provide a basis for further in-depth research on the olfactory molecular mechanisms of host-specialized pests but also provide a theoretical basis for the future development of new chemical attractants or repellents using volatiles to control D. rybakowi.
Collapse
Affiliation(s)
- Bo-Xin Xi
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| | - Xiao-Ning Cui
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Su-Qin Shang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| | - Guang-Wei Li
- College of Life Science, Yan’an University, Yan’an 716000, China;
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Giza 12618, Egypt;
| | - Chang-Ning Li
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Gui-Xin Hu
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Yan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| |
Collapse
|
2
|
Han KR, Wang WW, Yang WQ, Li X, Liu TX, Zhang SZ. Characterization of CrufCSP1 and Its Potential Involvement in Host Location by Cotesia ruficrus (Hymenoptera: Braconidae), an Indigenous Parasitoid of Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. INSECTS 2023; 14:920. [PMID: 38132594 PMCID: PMC10744196 DOI: 10.3390/insects14120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Chemosensory proteins (CSPs) are a class of soluble proteins that facilitate the recognition of chemical signals in insects. While CSP genes have been identified in many insect species, studies investigating their function remain limited. Cotesia ruficrus (Hymenoptera: Braconidae) holds promise as an indigenous biological control agent for managing the invasive pest Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. This study aimed to shed light on the gene expression, ligand binding, and molecular docking of CrufCSP1 in C. ruficrus. A RT-qPCR analysis revealed that the expression of CrufCSP1 was higher in the wings, with male adults exhibiting significantly higher relative expression levels than other developmental stages. A fluorescence competitive binding analysis further demonstrated that CrufCSP1 has a high binding ability with several host-related volatiles, with trans-2-hexenal, octanal, and benzaldehyde showing the strongest affinity to CrufCSP1. A molecular docking analysis indicated that specific amino acid residues (Phe24, Asp25, Thr53, and Lys81) of CrufCSP1 can bind to these specific ligands. Together, these findings suggest that CrufCSP1 may play a crucial role in the process of C. ruficrus locating hosts. This knowledge can contribute to the development of more efficient and eco-friendly strategies for protecting crops and managing pests.
Collapse
Affiliation(s)
- Kai-Ru Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Wen-Wen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Wen-Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Xian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| |
Collapse
|
3
|
Knyshov A, Gordon ERL, Masonick PK, Castillo S, Forero D, Hoey-Chamberlain R, Hwang WS, Johnson KP, Lemmon AR, Moriarty Lemmon E, Standring S, Zhang J, Weirauch C. Chromosome-Aware Phylogenomics of Assassin Bugs (Hemiptera: Reduvioidea) Elucidates Ancient Gene Conflict. Mol Biol Evol 2023; 40:msad168. [PMID: 37494292 PMCID: PMC10411492 DOI: 10.1093/molbev/msad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Though the phylogenetic signal of loci on sex chromosomes can differ from those on autosomes, chromosomal-level genome assemblies for nonvertebrates are still relatively scarce and conservation of chromosomal gene content across deep phylogenetic scales has therefore remained largely unexplored. We here assemble a uniquely large and diverse set of samples (17 anchored hybrid enrichment, 24 RNA-seq, and 70 whole-genome sequencing samples of variable depth) for the medically important assassin bugs (Reduvioidea). We assess the performance of genes based on multiple features (e.g., nucleotide vs. amino acid, nuclear vs. mitochondrial, and autosomal vs. X chromosomal) and employ different methods (concatenation and coalescence analyses) to reconstruct the unresolved phylogeny of this diverse (∼7,000 spp.) and old (>180 Ma) group. Our results show that genes on the X chromosome are more likely to have discordant phylogenies than those on autosomes. We find that the X chromosome conflict is driven by high gene substitution rates that impact the accuracy of phylogenetic inference. However, gene tree clustering showed strong conflict even after discounting variable third codon positions. Alternative topologies were not particularly enriched for sex chromosome loci, but spread across the genome. We conclude that binning genes to autosomal or sex chromosomes may result in a more accurate picture of the complex evolutionary history of a clade.
Collapse
Affiliation(s)
- Alexander Knyshov
- Department of Entomology, University of California, Riverside, CA, USA
| | - Eric R L Gordon
- Ecology and Evolutionary Biology Department, University of Connecticut, Storrs, CT, USA
| | - Paul K Masonick
- Department of Entomology, University of California, Riverside, CA, USA
| | | | - Dimitri Forero
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogota, Colombia
| | | | - Wei Song Hwang
- Lee Kong Chian Natural History Museum, National University of Singapore, Queenstown, Singapore
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | | | | - Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, China
| | | |
Collapse
|
4
|
Orchard I, Al-Dailami AN, Leyria J, Lange AB. Malpighian tubules of Rhodnius prolixus: More than post-prandial diuresis. FRONTIERS IN INSECT SCIENCE 2023; 3:1167889. [PMID: 38469518 PMCID: PMC10926411 DOI: 10.3389/finsc.2023.1167889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 03/13/2024]
Abstract
Rhodnius prolixus, a major vector of Chagas disease, may be considered the model upon which the foundations of insect physiology and biochemistry were built. It is an obligate blood feeder in which the blood meal triggers growth, development and reproduction. The blood meal also triggers a post-prandial diuresis to maintain osmotic homeostasis. In R. prolixus, as with other insects, the Malpighian tubules play a critical role in this diuresis, and much has been learned about diuresis in R. prolixus, and in other model insects. But the post-genomic era has brought new insights, identifying functions quite apart from diuresis for Malpighian tubules. Indeed, microarrays, transcriptomes, and proteomics have revealed the major roles that Malpighian tubules play in immunity, detoxification, pesticide resistance, and in tolerance to overall stress. This is particularly relevant to R. prolixus since gorging on blood creates several challenges in addition to osmotic balance. Xenobiotics may be present in the blood or toxins may be produced by metabolism of blood; and these must be neutralized and excreted. These processes have not been well described at the molecular level for Malpighian tubules of R. prolixus. This paper will review the involvement of Malpighian tubules in immunity and detoxification, identifying new aspects for Malpighian tubule physiology of R. prolixus by virtue of a transcriptome analysis. The transcriptome analysis indicates the potential of Malpighian tubules of R. prolixus to mount a robust innate immune response, and to contribute to antioxidant production and heme detoxification.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | | | |
Collapse
|
5
|
Liggri PGV, Tsitsanou KE, Stamati ECV, Saitta F, Drakou CE, Leonidas DD, Fessas D, Zographos SE. The structure of AgamOBP5 in complex with the natural insect repellents Carvacrol and Thymol: Crystallographic, fluorescence and thermodynamic binding studies. Int J Biol Macromol 2023; 237:124009. [PMID: 36921814 DOI: 10.1016/j.ijbiomac.2023.124009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Among several proteins participating in the olfactory perception process of insects, Odorant Binding Proteins (OBPs) are today considered valid targets for the discovery of compounds that interfere with their host-detection behavior. The 3D structures of Anopheles gambiae mosquito AgamOBP1 in complex with the known synthetic repellents DEET and Icaridin have provided valuable information on the structural characteristics that govern their selective binding. However, no structure of a plant-derived repellent bound to an OBP has been available until now. Herein, we present the novel three-dimensional crystal structures of AgamOBP5 in complex with two natural phenolic monoterpenoid repellents, Carvacrol and Thymol, and the MPD molecule. Structural analysis revealed that both monoterpenoids occupy a binding site (Site-1) by adopting two alternative conformations. An additional Carvacrol was also bound to a secondary site (Site-2) near the central cavity entrance. A protein-ligand hydrogen-bond network supplemented by van der Waals interactions spans the entire binding cavity, bridging α4, α6, and α3 helices and stabilizing the overall structure. Fluorescence competition and Differential Scanning Calorimetry experiments verified the presence of two binding sites and the stabilization effect on AgamOBP5. While Carvacrol and Thymol bind to Site-1 with equal affinity in the submicromolar range, they exhibit a significantly lower and distinct binding capacity for Site-2 with Kd's of ~7 μΜ and ~18 μΜ, respectively. Finally, a comparison of AgamOBP5 complexes with the AgamOBP4-Indole structure revealed that variations of ligand-interacting aminoacids such as A109T, I72M, A112L, and A105T cause two structurally similar and homologous proteins to display different binding specificities.
Collapse
Affiliation(s)
- Panagiota G V Liggri
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Katerina E Tsitsanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Evgenia C V Stamati
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Francesca Saitta
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Christina E Drakou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Dimitrios Fessas
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Spyros E Zographos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
6
|
Liu Y, Luo Y, Du L, Ban L. Antennal Transcriptome Analysis of Olfactory Genes and Characterization of Odorant Binding Proteins in Odontothrips loti (Thysanoptera: Thripidae). Int J Mol Sci 2023; 24:ijms24065284. [PMID: 36982358 PMCID: PMC10048907 DOI: 10.3390/ijms24065284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
To identify odors in complex environments accurately, insects have evolved multiple olfactory proteins. In our study, various olfactory proteins of Odontothrips loti Haliday, an oligophagous pest that primarily affects Medicago sativa (alfalfa), were explored. Specifically, 47 putative olfactory candidate genes were identified in the antennae transcriptome of O. loti, including seven odorant-binding proteins (OBPs), nine chemosensory proteins (CSPs), seven sensory neuron membrane proteins (SNMPs), eight odorant receptors (ORs), and sixteen ionotropic receptors (IRs). PCR analysis further confirmed that 43 out of 47 genes existed in O. loti adults, and O.lotOBP1, O.lotOBP4, and O.lotOBP6 were specifically expressed in the antennae with a male-biased expression pattern. In addition, both the fluorescence competitive binding assay and molecular docking showed that p-Menth-8-en-2-one, a component of the volatiles of the host, had strong binding ability to the O.lotOBP6 protein. Behavioral experiments showed that this component has a significant attraction to both female and male adults, indicating that O.lotOBP6 plays a role in host location. Furthermore, molecular docking reveals potential active sites in O.lotOBP6 that interact with most of the tested volatiles. Our results provide insights into the mechanism of O. loti odor-evoked behavior and the development of a highly specific and sustainable approach for thrip management.
Collapse
Affiliation(s)
- Yanqi Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yingning Luo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lixiao Du
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Liping Ban
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
7
|
Yang Y, Hua D, Zhu J, Wang F, Zhang Y. Chemosensory protein 4 is required for Bradysia odoriphaga to be olfactory attracted to sulfur compounds released from Chinese chives. Front Physiol 2022; 13:989601. [PMID: 36237523 PMCID: PMC9552003 DOI: 10.3389/fphys.2022.989601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a serious pest of Chinese chives cultivated in China. Chemosensory proteins (CSPs) are important components of insect olfactory systems that capture and bind environmental semiochemicals which are then transported to olfactory receptors. Despite their importance, the mechanism of olfaction and related behavioral processes in B. odoriphaga have not been characterized. Here, we found that BodoCSP4 has an important olfactory function. RT-qPCR indicated that BodoCSP4 expression was highest in the heads (antennae removed) of adult males, followed by the antennae of adult males. Competitive binding assays with 33 ligands indicated that BodoCSP4 binds well with methyl allyl disulfide, diallyl disulfide, and n-heptadecane; the corresponding dissolution constants (Ki) were as high as 5.71, 5.71, and 6.85 μM, respectively. 3D-structural and molecular docking indicated that BodoCSP4 has five α-helices and surrounds the ligand with certain hydrophobic residues including Leu60, Leu63, Leu64, Ala67, Val28, Ile30, Ile33, Leu34, and Val86, suggesting these residues help BodoCSP4 bind to ligands. Silencing of BodoCSP4 significantly decreased the attraction of B. odoriphaga males to diallyl disulfide and n-heptadecane but not to methyl allyl disulfide in Y-tube olfaction assays. These results increase our understanding of how BodoCSP4 contributes to host and female localization by B. odoriphaga males.
Collapse
Affiliation(s)
- Yuting Yang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Dengke Hua
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan, Hubei, China
| | - Jiaqi Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fu Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Youjun Zhang,
| |
Collapse
|
8
|
Hu P, Hao E, Yang Z, Qiu Z, Fu H, Lu J, He Z, Huang Y. EsigGOBP1: The Key Protein Binding Alpha-Phellandrene in Endoclita signifer Larvae. Int J Mol Sci 2022; 23:9269. [PMID: 36012538 PMCID: PMC9409361 DOI: 10.3390/ijms23169269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Endoclita signifer larvae show olfactory recognition towards volatiles of eucalyptus trunks and humus soils. Further, EsigGOBP1 was identified through larval head transcriptome and speculated as the main odorant-binding proteins in E. signifer larvae. In this study, the highest expression of EsigGOBP1 was only expressed in the heads of 3rd instar larvae of E. signifer, compared with the thorax and abdomen; this was consistent with the phenomenon of habitat transfer of 3rd instar larvae, indicating that EsigGOBP1 was a key OBP gene in E. signifer larvae. Results of fluorescence competition binding assays (FCBA) showed that EsigGOBP1 had high binding affinities to eight GC-EAD active ligands. Furthermore, screening of key active odorants for EsigGOBP1 and molecular docking analysis, indicated that EsigGOBP1 showed high binding activity to alpha-phellandrene in 3rd instar larvae of E. signifer. Conformational analysis of the EsigGOBP1-alpha-phellandrene complex, showed that MET49 and GLU38 were the key sites involved in binding. These results demonstrated that EsigGOBP1 is a key odorant-binding protein in E. signifer larvae, which recognizes and transports eight key volatiles from eucalyptus trunk, especially the main eucalyptus trunks volatile, alpha-phellandrene. Taken together, our results showed that EsigGOBP1 is involved in host selection of E. signifer larvae, which would aid in developing EsigGOBP1 as molecular targets for controlling pests at the larval stage.
Collapse
Affiliation(s)
- Ping Hu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Enhua Hao
- Forestry College, Beijing Forestry University, Beijing 100083, China
| | - Zhende Yang
- Forestry College, Guangxi University, Nanning 540003, China
| | - Zhisong Qiu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Hengfei Fu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Jintao Lu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Ziting He
- Forestry College, Guangxi University, Nanning 540003, China
| | - Yingqi Huang
- Forestry College, Guangxi University, Nanning 540003, China
| |
Collapse
|
9
|
Ma Y, Huang T, Tang B, Wang B, Wang L, Liu J, Zhou Q. Transcriptome analysis and molecular characterization of soluble chemical communication proteins in the parasitoid wasp
Anagrus nilaparvatae
(Hymenoptera: Mymaridae). Ecol Evol 2022; 12:e8661. [PMID: 35261748 PMCID: PMC8888258 DOI: 10.1002/ece3.8661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Anagrus nilaparvatae is an important egg parasitoid wasp of pests such as the rice planthopper. Based on the powerful olfactory system of sensing chemical information in nature, A. nilaparvatae shows complicated life activities and behaviors, such as feeding, mating, and hosting. We constructed a full‐length transcriptome library and used this to identify the characteristics of soluble chemical communication proteins. Through full‐length transcriptome sequencing, splicing, assembly, and data correction by Illumina, we obtained 163.59 Mb of transcriptome data and 501,179 items with annotation information. We then performed Gene Ontology (GO) functional classification of the transcriptome's unigenes. We analyzed the sequence characteristics of soluble chemical communication protein genes and identified eight genes: AnilOBP2, AnilOBP9, AnilOBP23, AnilOBP56, AnilOBP83, AnilCSP5, AnilCSP6, and AnilNPC2. After sequence alignment and conserved domain prediction, the eight proteins encoded by the eight genes above were found to be consistent with the typical characteristics of odorant‐binding proteins (OBPs), chemosensory proteins (CSPs), and Niemann‐pick type C2 proteins (NPC2s) in other insects. Phylogenetic tree analysis showed that the eight genes share low homology with other species of Hymenoptera. Quantitative real‐time polymerase chain reaction (RT‐qPCR) was used to analyze the expression responses of the eight genes in different sexes and upon stimulation by volatile organic compounds. The relative expression levels of AnilOBP9, AnilOBP26, AnilOBP83, AnilCSP5, and AnilNPC2 in males were significantly higher than those in females, while the relative expression level of AnilCSP6 was higher in females. The expression levels of AnilOBP9 and AnilCSP6 were significantly altered by the stimulation of β‐caryophyllene, suggesting that these two genes may be related to host detection. This study provides the first data for A. nilaparvatae's transcriptome and the molecular characteristics of soluble chemical communication proteins, as well as an opportunity for understanding how A. nilaparvatae behaviors are mediated via soluble chemical communication proteins.
Collapse
Affiliation(s)
- Ying Ma
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
- School of Agriculture Sun Yat‐Sen University Guangzhou China
| | - Tingfa Huang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
| | - Bingjie Tang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
| | - Bingyang Wang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
| | - Liyang Wang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
| | - Jianbai Liu
- Institute of Nanfan & Seed Industry Guangdong Academy of Sciences Guangzhou China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
| |
Collapse
|
10
|
Carvalho-Costa TM, Tiveron RDR, Mendes MT, Barbosa CG, Nevoa JC, Roza GA, Silva MV, Figueiredo HCP, Rodrigues V, Soares SDC, Oliveira CJF. Salivary and Intestinal Transcriptomes Reveal Differential Gene Expression in Starving, Fed and Trypanosoma cruzi-Infected Rhodnius neglectus. Front Cell Infect Microbiol 2022; 11:773357. [PMID: 34988032 PMCID: PMC8722679 DOI: 10.3389/fcimb.2021.773357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
Rhodnius neglectus is a potential vector of Trypanosoma cruzi (Tc), the causative agent of Chagas disease. The salivary glands (SGs) and intestine (INT) are actively required during blood feeding. The saliva from SGs is injected into the vertebrate host, modulating immune responses and favoring feeding for INT digestion. Tc infection significantly alters the physiology of these tissues; however, studies that assess this are still scarce. This study aimed to gain a better understanding of the global transcriptional expression of genes in SGs and INT during fasting (FA), fed (FE), and fed in the presence of Tc (FE + Tc) conditions. In FA, the expression of transcripts related to homeostasis maintenance proteins during periods of stress was predominant. Therefore, the transcript levels of Tret1-like and Hsp70Ba proteins were increased. Blood appeared to be responsible for alterations found in the FE group, as most of the expressed transcripts, such as proteases and cathepsin D, were related to digestion. In FE + Tc group, there was a decreased expression of blood processing genes for insect metabolism (e.g., Antigen-5 precursor, Pr13a, and Obp), detoxification (Sult1) in INT and acid phosphatases in SG. We also found decreased transcriptional expression of lipocalins and nitrophorins in SG and two new proteins, pacifastin and diptericin, in INT. Several transcripts of unknown proteins with investigative potential were found in both tissues. Our results also show that the presence of Tc can change the expression in both tissues for a long or short period of time. While SG homeostasis seems to be re-established on day 9, changes in INT are still evident. The findings of this study may be used for future research on parasite-vector interactions and contribute to the understanding of food physiology and post-meal/infection in triatomines.
Collapse
Affiliation(s)
- Tamires Marielem Carvalho-Costa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Rafael Destro Rosa Tiveron
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Maria Tays Mendes
- Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Cecília Gomes Barbosa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Jessica Coraiola Nevoa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Guilherme Augusto Roza
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinícius Silva
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Siomar de Castro Soares
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
11
|
Li LL, Huang JR, Xu JW, Yao WC, Yang HH, Shao L, Zhang HR, Dewer Y, Zhu XY, Zhang YN. Ligand-binding properties of odorant-binding protein 6 in Athetis lepigone to sex pheromones and maize volatiles. PEST MANAGEMENT SCIENCE 2022; 78:52-62. [PMID: 34418275 DOI: 10.1002/ps.6606] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Athetis lepigone, a noctuid moth feeding on more than 30 different crops worldwide, has evolved a sophisticated, sensitive, and specific chemosensory system to detect and discriminate exogenous chemicals. Odorant-binding proteins (OBPs) are the most important agent in insect chemosensory systems to be explored as an alternative target for environmentally friendly approaches to pest management. RESULTS To investigate the olfactory function of A. lepigone OBPs (AlepOBPs), AlepOBP6 was identified and expressed in Escherichia coli. The binding affinity of the recombinant OBP to 20 different ligands was then examined using a competitive binding approach. The results revealed that AlepOBP6 can bind to two sex pheromones and ten maize volatiles, and its conformation stability is pH dependent. We also carried out a structure-function study using different molecular approaches, including structure modeling, molecular docking, and a mutation functional assay to identify amino acid residues (M39, V68, W106, Q107, and Y114) involved in the binding of AlepOBP6 to both sex pheromones and maize volatiles in A. lepigone. CONCLUSION These results suggest that AlepOBP6 is likely involved in mediating the responses of A. lepigone to sex pheromones and maize volatiles, which may play a pivotal function in mating, feeding, and oviposition behaviors. This study not only provides new insight into the binding mechanism of OBPs to sex pheromones and host volatiles in moths, but also contributes to the discovery of novel target candidates for developing efficient behavior disruptors to control A. lepigone in the future. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jian-Rong Huang
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Liang Shao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Hui-Ru Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
12
|
Marchant A, Mougel F, Jacquin-Joly E, Almeida CE, Blanchet D, Bérenger JM, da Rosa JA, Harry M. Chemosensory Gene Expression for Two Closely Relative Species Rhodnius robustus and R. prolixus (Hemiptera, Reduviidade, Triatominae) Vectors of Chagas Disease. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.725504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two closely related species, Rhodnius prolixus and Rhodnius robustus, are the vectors of Trypanosoma cruzi, which is the causative agent of Chagas disease, but clearly exhibit clear-cut differences in their ecological behavior. R. prolixus is considered as a domiciliated species, whereas R. robustus only sporadically visits human houses in Amazonia. We performed a chemosensory gene expression study via RNA-sequencing (RNA-seq) for the two species and also included a laboratory introgressed R. robustus strain. We built an assembled transcriptome for each sample and for both sexes and compiled all in a reference transcriptome for a differential gene expression study. Because the genes specifically expressed in one condition and not expressed in another may also reflect differences in the adaptation of organisms, a comparative study of the presence/absence of transcripts was also performed for the chemosensory transcripts, namely chemosensory proteins (CSPs), odorant-binding proteins (OBPs), odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs), as well as takeout (TO) transcripts because TO proteins have been proposed to be associated with chemosensory perception in both olfactory and taste systems. In this study, 12 novel TO transcripts from the R. prolixus genome were annotated. Among the 199 transcripts, out of interest, annotated in this study, 93% were conserved between R. prolixus and the sylvatic R. robustus. Moreover, 10 transcripts out of interest were specifically expressed in one sex and absent in another. Three chemosensory transcripts were found to be expressed only in the reared R. prolixus (CSP19, OBP9, and OR89) and only one in sylvatic R. robustus (OR22). A large set of transcripts were found to be differentially expressed (DE) between males and females (1,630), with a majority of them (83%) overexpressed in males. Between environmental conditions, 8,596 transcripts were DE, with most (67%) overexpressed in the sylvatic R. robustus samples, including 17 chemosensory transcripts (4 CSPs, 1 OBP, 5 ORs, 1 GR, 4 IR, and 2 TO), but 4 genes (OBP19, OR13, OR40, and OR79) were overexpressed in the reared samples.
Collapse
|
13
|
Liu F, Chen Z, Ye Z, Liu N. The Olfactory Chemosensation of Hematophagous Hemipteran Insects. Front Physiol 2021; 12:703768. [PMID: 34434117 PMCID: PMC8382127 DOI: 10.3389/fphys.2021.703768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
As one of the most abundant insect orders on earth, most Hemipteran insects are phytophagous, with the few hematophagous exceptions falling into two families: Cimicidae, such as bed bugs, and Reduviidae, such as kissing bugs. Many of these blood-feeding hemipteran insects are known to be realistic or potential disease vectors, presenting both physical and psychological risks for public health. Considerable researches into the interactions between hemipteran insects such as kissing bugs and bed bugs and their human hosts have revealed important information that deepens our understanding of their chemical ecology and olfactory physiology. Sensory mechanisms in the peripheral olfactory system of both insects have now been characterized, with a particular emphasis on their olfactory sensory neurons and odorant receptors. This review summarizes the findings of recent studies of both kissing bugs (including Rhodnius prolixus and Triatoma infestans) and bed bugs (Cimex lectularius), focusing on their chemical ecology and peripheral olfactory systems. Potential chemosensation-based applications for the management of these Hemipteran insect vectors are also discussed.
Collapse
Affiliation(s)
- Feng Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Zhou Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Zi Ye
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
14
|
Wang Q, Xiao Y, An XK, Shan S, Khashaveh A, Gu SH, Zhang YH, Zhang YJ. Functional Characterization of a Candidate Sex Pheromone Receptor AlinOR33 Involved in the Chemoreception of Adelphocoris lineolatus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6769-6778. [PMID: 34115502 DOI: 10.1021/acs.jafc.1c01319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sex pheromones are deemed to play a significant role in sexual communication of most insects. Although many sex pheromone components in mirid bugs have been identified, the roles of odorant receptors in sex pheromone perception in Adelphocoris spp. (Hemiptera: Miridae) remain unknown so far. Here, AlinOR33, a candidate sex pheromone receptor in Adelphocoris lineolatus was functionally characterized. Phylogenetic analysis showed that AlinOR33 clustered with the sex pheromone receptor AlucOR4 fromApolygus lucorum. Quantitative real-time PCR measurement revealed that the expression of AlinOR33 increased gradually from nymph to adult stage and reached its peak in the antennae of 3-day-old mated male bugs. The subsequent in situ hybridization demonstrated that AlinOR33 was mainly expressed in sensilla trichoid on the antennae of A. lineolatus. In the two-electrode voltage clamp recordings, AlinOR33/AlinOrco was specifically tuned to four sex pheromone components including butyl butyrate, hexyl hexanoate, trans-2-hexenyl butyrate and hexyl butyrate, and especially most sensitive to the major component trans-2-hexenyl butyrate. After dsAlinOR33 injection, the electroantennogram responses of males to four sex pheromone components were reduced significantly (∼50%). Compared to control bugs, dsAlinOR33-injected male bugs almost lost behavioral preference for trans-2-hexenyl butyrate. Furthermore, the wingbeat frequency of dsAlinOR33-injected male bugs notably declined. Therefore, we conclude that as a candidate sex pheromone receptor, AlinOR33 plays essential roles in the sexual behavior of A. lineolatus.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xing-Kui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shao-Hua Gu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yun-Hui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
15
|
Wulff JP, Segura DF, Devescovi F, Muntaabski I, Milla FH, Scannapieco AC, Cladera JL, Lanzavecchia SB. Identification and characterization of soluble binding proteins associated with host foraging in the parasitoid wasp Diachasmimorpha longicaudata. PLoS One 2021; 16:e0252765. [PMID: 34138896 PMCID: PMC8211293 DOI: 10.1371/journal.pone.0252765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/22/2021] [Indexed: 11/19/2022] Open
Abstract
The communication and reproduction of insects are driven by chemical sensing. During this process, chemical compounds are transported across the sensillum lymph to the sensory neurons assisted by different types of soluble binding proteins: odorant-binding proteins (OBPs); chemosensory proteins (CSPs); some members of ML-family proteins (MD-2 (myeloid differentiation factor-2)-related Lipid-recognition), also known as NPC2-like proteins. Potential transcripts involved in chemosensing were identified by an in silico analysis of whole-body female and male transcriptomes of the parasitic wasp Diachasmimorpha longicaudata. This analysis facilitated the characterization of fourteen OBPs (all belonging to the Classic type), seven CSPs (and two possible isoforms), and four NPC2-like proteins. A differential expression analysis by qPCR showed that eleven of these proteins (CSPs 2 and 8, OBPs 2, 3, 4, 5, 6, 9, 10, and 11, and NPC2b) were over-expressed in female antenna and two (CSP 1 and OBP 12) in the body without antennae. Foraging behavior trials (linked to RNA interference) suggest that OBPs 9, 10, and 11 are potentially involved in the female orientation to chemical cues associated with the host. OBP 12 seems to be related to physiological processes of female longevity regulation. In addition, transcriptional silencing of CSP 3 showed that this protein is potentially associated with the regulation of foraging behavior. This study supports the hypothesis that soluble binding proteins are potentially linked to fundamental physiological processes and behaviors in D. longicaudata. The results obtained here contribute useful information to increase the parasitoid performance as a biological control agent of fruit fly pest species.
Collapse
Affiliation(s)
- Juan P. Wulff
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Diego F. Segura
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Francisco Devescovi
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Irina Muntaabski
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Fabian H. Milla
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Alejandra C. Scannapieco
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Jorge L. Cladera
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Silvia B. Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Rizvi SAH, George J, Reddy GVP, Zeng X, Guerrero A. Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management. INSECTS 2021; 12:insects12060484. [PMID: 34071020 PMCID: PMC8224804 DOI: 10.3390/insects12060484] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Since the first identification of the silkworm moth sex pheromone in 1959, significant research has been reported on identifying and unravelling the sex pheromone mechanisms of hundreds of insect species. In the past two decades, the number of research studies on new insect pheromones, pheromone biosynthesis, mode of action, peripheral olfactory and neural mechanisms, and their practical applications in Integrated Pest Management has increased dramatically. An interdisciplinary approach that uses the advances and new techniques in analytical chemistry, chemical ecology, neurophysiology, genetics, and evolutionary and molecular biology has helped us to better understand the pheromone perception mechanisms and its practical application in agricultural pest management. In this review, we present the most recent developments in pheromone research and its application in the past two decades.
Collapse
Affiliation(s)
| | - Justin George
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Gadi V. P. Reddy
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Xinnian Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.Z.); (A.G.)
| | - Angel Guerrero
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia-CSIC, 08034 Barcelona, Spain
- Correspondence: (X.Z.); (A.G.)
| |
Collapse
|
17
|
Identification and motif analyses of candidate nonreceptor olfactory genes of Dendroctonus adjunctus Blandford (Coleoptera: Curculionidae) from the head transcriptome. Sci Rep 2020; 10:20695. [PMID: 33244016 PMCID: PMC7691339 DOI: 10.1038/s41598-020-77144-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
The round-headed pine beetle Dendroctonus adjunctus, whose dispersion and colonization behaviors are linked to a communication system mediated by semiochemicals, is one of the five most critical primary pests in forest ecosystems in Mexico. This study provides the first head transcriptome analysis of D. adjunctus and the identification of the nonreceptor olfactory genes involved in the perception of odors. De novo assembly yielded 44,420 unigenes, and GO annotations were similar to those of antennal transcriptomes of other beetle species, which reflect metabolic processes related to smell and signal transduction. A total of 36 new transcripts of nonreceptor olfactory genes were identified, of which 27 encode OBPs, 7 encode CSPs, and 2 encode SNMP candidates, which were subsequently compared to homologous proteins from other bark beetles and Coleoptera species by searching for sequence motifs and performing phylogenetic analyses. Our study provides information on genes encoding nonreceptor proteins in D. adjunctus and broadens the knowledge of olfactory genes in Coleoptera and bark beetle species, and will help to understand colonization and aggregation behaviors for the development of tools that complement management strategies.
Collapse
|
18
|
Wang R, Hu Y, Wei P, Qu C, Luo C. Molecular and Functional Characterization of One Odorant-Binding Protein Gene OBP3 in Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:299-305. [PMID: 31599328 DOI: 10.1093/jee/toz248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Odorant binding proteins (OBPs) of insects play a critical role in chemical perceptions and choice of insect host plant. Bemisia tabaci is a notorious insect pest which can damage more than 600 plant species. In order to explore functions of OBPs in B. tabaci, here we investigated binding characteristics and function of odorant-binding protein 3 in B. tabaci (BtabOBP3). The results indicated that BtabOBP3 shows highly similar sequence with OBPs of other insects, including the typical signature motif of six cysteines. The recombinant BtabOBP3 protein was obtained, and the evaluation of binding affinities to tested volatiles of host plant was conducted, then the results indicated that β-ionone had significantly higher binding to BtabOBP3 among other tested plant volatiles. Furthermore, silencing of BtabOBP3 significantly altered choice behavior of B. tabaci to β-ionone. In conclusion, it has been demonstrated that BtabOBP3 exerts function as one carrier of β-ionone and the results could be contributed to reveal the mechanisms of choosing host plant in B. tabaci.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Yuan Hu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Peiling Wei
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Cheng Qu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Chen Luo
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| |
Collapse
|
19
|
Latorre-Estivalis JM, Lorenzo MG. Molecular bases of sensory processes in kissing bugs, vectors of Chagas disease. CURRENT OPINION IN INSECT SCIENCE 2019; 34:80-84. [PMID: 31247423 DOI: 10.1016/j.cois.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Sensory processes represent an information gathering interface between animals and their surrounding world. Therefore, they serve to scan the environment for resources and threats. The behavior of kissing bugs has been studied to aid their control because they transmit Chagas disease to humans. Besides, a few triatomines represent important insect models since Wigglesworth times. These hematophagous insects rely on different sensory systems to scan their environment for blood-sources, mating partners, and hiding places. The study of the molecular bases of sensory processes has undergone a dramatic progress due the advent of new technologies allowing mass-sequencing of genes. Here, we focus on reviewing the fundamental knowledge gathered to date about the molecular bases of kissing bug sensory processes.
Collapse
|
20
|
Tang B, Tai S, Dai W, Zhang C. Expression and Functional Analysis of Two Odorant-Binding Proteins from Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3565-3574. [PMID: 30866622 DOI: 10.1021/acs.jafc.9b00568] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two OBP genes, BodoOBP1 and BodoOBP2, were cloned from Bradysia odoriphaga, a major agricultural pest of Chinese chives. The amino acid sequence alignment of both BodoOBPs showed high similarity. Fluorescence competitive binding assays revealed that both BodoOBPs have a moderate binding affinity to dipropyl trisulfide. Tissue expression profiles indicated that both BodoOBPs are antennae-specific and more abundant in the male antennae than in the female antennae. Developmental expression profile analysis indicated that expression levels of both BodoOBPs were higher in the male adult stage than in the other developmental stages. Both BodoOBPs also showed differential expression in pre- and postmating adults. RNAi assays indicated that ability of dsOBPs-treated males to detect females was significantly reduced compared to controls. Attraction of plant volatile dipropyl trisulfide to dsOBPs-treated adults was also significantly lower than in the control. Our findings indicate that both BodoOBPs are involved in host-seeking behavior and in detecting sex pheromones.
Collapse
Affiliation(s)
- Bowen Tang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Shulei Tai
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| |
Collapse
|
21
|
Franco TA, Xu P, Brito NF, Oliveira DS, Wen X, Moreira MF, Unelius CR, Leal WS, Melo ACA. Reverse chemical ecology-based approach leading to the accidental discovery of repellents for Rhodnius prolixus, a vector of Chagas diseases refractory to DEET. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:46-52. [PMID: 30401626 PMCID: PMC6278923 DOI: 10.1016/j.ibmb.2018.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/19/2018] [Indexed: 05/04/2023]
Abstract
Rhodnius prolixus is one of the most important vectors of Chagas disease in Central and South America for which repellents and attractants are sorely needed. Repellents like DEET, picaridin, and IR3535 are widely used as the first line of defense against mosquitoes and other vectors, but they are ineffective against R. prolixus. Our initial goal was to identify in R. prolixus genome odorant receptors sensitive to putative sex pheromones. We compared gene expression of 21 ORs in the R. prolixus genome, identified 4 ORs enriched in male (compared with female) antennae. Attempts to de-orphanize these ORs using the Xenopus oocyte recording system showed that none of them responded to putative sex pheromone constituents. One of the them, RproOR80, was sensitive to 4 compounds in our panel of 109 odorants, namely, 2-heptanone, γ-octalactone, acetophenone, and 4-methylcychohexanol. Interestingly, these compounds, particularly 4-methylcyclohexanol, showed strong repellency activity as indicated not only by a significant decrease in residence time close to a host, but also by a remarkable reduction in blood intake. 4-Methylcyclohexanol-elicited repellency activity was abolished in RNAi-treated insects. In summary, our search for pheromone receptors led to the discovery of repellents for R. prolixus.
Collapse
Affiliation(s)
- Thiago A Franco
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil; Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Pingxi Xu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Nathália F Brito
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Daniele S Oliveira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Xiaolan Wen
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Monica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Rikard Unelius
- Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA.
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil; Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|