1
|
Yuan Y, Ye X, Cui J, Zhang J, Wang Z. Nonlinear analysis of neuronal firing modulated by sinusoidal stimulation at axons in rat hippocampus. Front Comput Neurosci 2024; 18:1388224. [PMID: 39281981 PMCID: PMC11392774 DOI: 10.3389/fncom.2024.1388224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Electrical stimulation of the brain has shown promising prospects in treating various brain diseases. Although biphasic pulse stimulation remains the predominant clinical approach, there has been increasing interest in exploring alternative stimulation waveforms, such as sinusoidal stimulation, to improve the effectiveness of brain stimulation and to expand its application to a wider range of brain disorders. Despite this growing attention, the effects of sinusoidal stimulation on neurons, especially on their nonlinear firing characteristics, remains unclear. Methods To address the question, 50 Hz sinusoidal stimulation was applied on Schaffer collaterals of the rat hippocampal CA1 region in vivo. Single unit activity of both pyramidal cells and interneurons in the downstream CA1 region was recorded and analyzed. Two fractal indexes, namely the Fano factor and Hurst exponent, were used to evaluate changes in the long-range correlations, a manifestation of nonlinear dynamics, in spike sequences of neuronal firing. Results The results demonstrate that sinusoidal electrical stimulation increased the firing rates of both pyramidal cells and interneurons, as well as altered their firing to stimulation-related patterns. Importantly, the sinusoidal stimulation increased, rather than decreased the scaling exponents of both Fano factor and Hurst exponent, indicating an increase in the long-range correlations of both pyramidal cells and interneurons. Discussion The results firstly reported that periodic sinusoidal stimulation without long-range correlations can increase the long-range correlations of neurons in the downstream post-synaptic area. These results provide new nonlinear mechanisms of brain sinusoidal stimulation and facilitate the development of new stimulation modes.
Collapse
Affiliation(s)
- Yue Yuan
- Zhejiang Lab, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiangyu Ye
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | | | | | - Zhaoxiang Wang
- Zhejiang Lab, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Wang Z, Feng Z, Yuan Y, Guo Z, Cui J, Jiang T. Dynamics of neuronal firing modulated by high-frequency electrical pulse stimulations at axons in rat hippocampus. J Neural Eng 2024; 21:026025. [PMID: 38530299 DOI: 10.1088/1741-2552/ad37da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Objective. The development of electrical pulse stimulations in brain, including deep brain stimulation, is promising for treating various brain diseases. However, the mechanisms of brain stimulations are not yet fully understood. Previous studies have shown that the commonly used high-frequency stimulation (HFS) can increase the firing of neurons and modulate the pattern of neuronal firing. Because the generation of neuronal firing in brain is a nonlinear process, investigating the characteristics of nonlinear dynamics induced by HFS could be helpful to reveal more mechanisms of brain stimulations. The aim of present study is to investigate the fractal properties in the neuronal firing generated by HFS.Approach. HFS pulse sequences with a constant frequency 100 Hz were applied in the afferent fiber tracts of rat hippocampal CA1 region. Unit spikes of both the pyramidal cells and the interneurons in the downstream area of stimulations were recorded. Two fractal indexes-the Fano factor and Hurst exponent were calculated to evaluate the changes of long-range temporal correlations (LRTCs), a typical characteristic of fractal process, in spike sequences of neuronal firing.Mainresults. Neuronal firing at both baseline and during HFS exhibited LRTCs over multiple time scales. In addition, the LRTCs significantly increased during HFS, which was confirmed by simulation data of both randomly shuffled sequences and surrogate sequences.Conclusion. The purely periodic stimulation of HFS pulses, a non-fractal process without LRTCs, can increase rather than decrease the LRTCs in neuronal firing.Significance. The finding provides new nonlinear mechanisms of brain stimulation and suggests that LRTCs could be a new biomarker to evaluate the nonlinear effects of HFS.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Zhejiang Lab, Hangzhou, People's Republic of China
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhouyan Feng
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yue Yuan
- Zhejiang Lab, Hangzhou, People's Republic of China
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zheshan Guo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan, People's Republic of China
| | - Jian Cui
- Zhejiang Lab, Hangzhou, People's Republic of China
| | - Tianzi Jiang
- Zhejiang Lab, Hangzhou, People's Republic of China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Liang Z, Lan Z, Wang Y, Bai Y, He J, Wang J, Li X. The EEG complexity, information integration and brain network changes in minimally conscious state patients during general anesthesia. J Neural Eng 2023; 20:066030. [PMID: 38055962 DOI: 10.1088/1741-2552/ad12dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Objective.General anesthesia (GA) can induce reversible loss of consciousness. Nonetheless, the electroencephalography (EEG) characteristics of patients with minimally consciousness state (MCS) during GA are seldom observed.Approach.We recorded EEG data from nine MCS patients during GA. We used the permutation Lempel-Ziv complexity (PLZC), permutation fluctuation complexity (PFC) to quantify the type I and II complexities. Additionally, we used permutation cross mutual information (PCMI) and PCMI-based brain network to investigate functional connectivity and brain networks in sensor and source spaces.Main results.Compared to the preoperative resting state, during the maintenance of surgical anesthesia state, PLZC decreased (p< 0.001), PFC increased (p< 0.001) and PCMI decreased (p< 0.001) in sensor space. The results for these metrics in source space are consistent with sensor space. Additionally, node network indicators nodal clustering coefficient (NCC) (p< 0.001) and nodal efficiency (NE) (p< 0.001) decreased in these two spaces. Global network indicators normalized average path length (Lave/Lr) (p< 0.01) and modularity (Q) (p< 0.05) only decreased in sensor space, while the normalized average clustering coefficient (Cave/Cr) and small-world index (σ) did not change significantly. Moreover, the dominance of hub nodes is reduced in frontal regions in these two spaces. After recovery of consciousness, PFC decreased in the two spaces, while PLZC, PCMI increased. NCC, NE, and frontal region hub node dominance increased only in the sensor space. These indicators did not return to preoperative levels. In contrast, global network indicatorsLave/LrandQwere not significantly different from the preoperative resting state in sensor space.Significance.GA alters the complexity of the EEG, decreases information integration, and is accompanied by a reconfiguration of brain networks in MCS patients. The PLZC, PFC, PCMI and PCMI-based brain network metrics can effectively differentiate the state of consciousness of MCS patients during GA.
Collapse
Affiliation(s)
- Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao 066004, People's Republic of China
| | - Zhilei Lan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao 066004, People's Republic of China
| | - Yong Wang
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519031, People's Republic of China
| | - Yang Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang 330006, Jiangxi, People's Republic of China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Juan Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao 066004, People's Republic of China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, People's Republic of China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
4
|
Piedade GS, Assumpcao de Monaco B, Guest JD, Cordeiro JG. Review of spinal cord stimulation for disorders of consciousness. Curr Opin Neurol 2023; 36:507-515. [PMID: 37889524 DOI: 10.1097/wco.0000000000001222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
PURPOSE OF REVIEW High-cervical spinal cord stimulation can alter cortical activity and cerebral metabolism. These effects are potentially beneficial for disorders of consciousness. A better understanding of the effects of clinical application of stimulation is needed. We aimed to evaluate the existing literature to determine the state of available knowledge. We performed a literature review of clinical studies assessing cervical spinal cord epidural stimulation for disorders of consciousness. Only peer-reviewed articles reporting preoperative and postoperative clinical status were included. RECENT FINDINGS Nineteen studies were included. A total of 532 cases were reported, and 255 patients were considered responsive (47.9%). Considering only studies published after the definition of minimally conscious state (MCS) as an entity, 402 individuals in unresponsive wakefulness syndrome (UWS) and 113 in MCS were reported. Responsiveness to SCS was reported in 170 UWS patients (42.3%) and in 78 MCS cases (69.0%), although the criteria for responsiveness and outcome measures varied among publications. SUMMARY Cervical SCS yielded encouraging results in patients with disorders of consciousness and seems to be more effective in MCS. More extensive investigation is needed to understand its potential role in clinical practice.
Collapse
Affiliation(s)
| | | | - James D Guest
- Department of Neurosurgery, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami
- The Miami Project to Cure Paralysis, Miller School of Medicine, Miami, Florida, USA
| | - Joacir Graciolli Cordeiro
- Department of Neurosurgery, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami
| |
Collapse
|
5
|
Qin X, Chen X, Wang B, Zhao X, Tang Y, Yao L, Liang Z, He J, Li X. EEG Changes during Propofol Anesthesia Induction in Vegetative State Patients Undergoing Spinal Cord Stimulation Implantation Surgery. Brain Sci 2023; 13:1608. [PMID: 38002567 PMCID: PMC10669685 DOI: 10.3390/brainsci13111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE To compare the EEG changes in vegetative state (VS) patients and non-craniotomy, non-vegetative state (NVS) patients during general anesthesia with low-dose propofol and to find whether it affects the arousal rate of VS patients. METHODS Seven vegetative state patients (VS group: five with traumatic brain injury, two with ischemic-hypoxic VS) and five non-craniotomy, non-vegetative state patients (NVS group) treated in the Department of Neurosurgery, Peking University International Hospital from January to May 2022 were selected. All patients were induced with 0.5 mg/kg propofol, and the Bispectral Index (BIS) changes within 5 min after administration were observed. Raw EEG signals and perioperative EEG signals were collected and analyzed using EEGLAB in the MATLAB software environment, time-frequency spectrums were calculated, and EEG changes were analyzed using power spectrums. RESULTS There was no significant difference in the general data before surgery between the two groups (p > 0.05); the BIS reduction in the VS group was significantly greater than that in the NVS group at 1 min, 2 min, 3 min, 4 min, and 5 min after 0.5 mg/kg propofol induction (p < 0.05). Time-frequency spectrum analysis showed the following: prominent α band energy around 10 Hz and decreased high-frequency energy in the NVS group, decreased high-frequency energy and main energy concentrated below 10 Hz in traumatic brain injury VS patients, higher energy in the 10-20 Hz band in ischemic-hypoxic VS patients. The power spectrum showed that the brain electrical energy of the NVS group was weakened R5 min after anesthesia induction compared with 5 min before induction, mainly concentrated in the small wave peak after 10 Hz, i.e., the α band peak; the energy of traumatic brain injury VS patients was weakened after anesthesia induction, but no α band peak appeared; and in ischemic-hypoxic VS patients, there was no significant change in low-frequency energy after anesthesia induction, high-frequency energy was significantly weakened, and a clear α band peak appeared slightly after 10 Hz. Three months after the operation, follow-up visits were made to the VS group patients who had undergone SCS surgery. One patient with traumatic brain injury VS was diagnosed with MCS-, one patient with ischemic-hypoxic VS had increased their CRS-R score by 1 point, and the remaining five patients had no change in their CRS scores. CONCLUSIONS Low doses of propofol cause great differences in the EEG of different types of VS patients, which may be the unique response of damaged nerve cell residual function to propofol, and these weak responses may also be the basis of brain recovery.
Collapse
Affiliation(s)
- Xuewei Qin
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Xuanling Chen
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Bo Wang
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Xin Zhao
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Yi Tang
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Lan Yao
- Department of Anesthesiology, Peking University International Hospital, Beijing 102206, China; (X.Q.); (X.Z.)
| | - Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China;
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China;
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Wu Y, Xu YY, Deng H, Zhang W, Zhang SX, Li JM, Xiong BT, Xiao LL, Li DH, Ren ZY, Qin YF, Yang RQ, Wang W. Spinal cord stimulation and deep brain stimulation for disorders of consciousness: a systematic review and individual patient data analysis of 608 cases. Neurosurg Rev 2023; 46:200. [PMID: 37578633 DOI: 10.1007/s10143-023-02105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
The application of spinal cord stimulation (SCS) and deep brain stimulation (DBS) for disorders of consciousness (DoC) has been increasingly reported. However, there is no sufficient evidence to determine how effective and safe SCS and DBS are for DoC owing to various methodological limitations. We conducted a systematic review to elucidate the safety and efficacy of SCS and DBS for DoC by systematically reviewing related literature by searching PubMed, EMBASE, Medline, and Cochrane Library. Twenty eligible studies with 608 patients were included in this study. Ten studies with 508 patients reported the efficacy of SCS for DoC, and the estimated overall effectiveness rate was 37%. Five studies with 343 patients reported the efficacy of SCS for VS, and the estimated effectiveness rate was 30%. Three studies with 53 patients reported the efficacy of SCS for MCS, and the estimated effectiveness rate was 63%. Five studies with 92 patients reported the efficacy of DBS for DoC, and the estimated overall effectiveness rate was 40%. Four studies with 63 patients reported the efficacy of DBS for VS, and the estimated effectiveness rate was 26%. Three studies with 19 patients reported the efficacy of DBS for MCS, and the estimated effectiveness rate was 74%. The adverse event rate of DoC was 8.1% and 18.2% after SCS and DBS, respectively. These results suggest that SCS and DBS can be considered reasonable treatments for DoC with considerable efficacy and safety.
Collapse
Affiliation(s)
- Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Yang-Yang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Wei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Shu-Xin Zhang
- Department of Histoembryology and Neurobiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Jia-Ming Li
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Bo-Tao Xiong
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Ling-Long Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Deng-Hui Li
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Zhi-Yi Ren
- Department of Histoembryology and Neurobiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi-Fan Qin
- Department of Histoembryology and Neurobiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Rui-Qing Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China.
| |
Collapse
|
7
|
Zhao T, Wei N, Li T, Chen K, Cui W, Wang Z, Wang F, Lin Y, Zhu J. Transplantation of glutamatergic neuronal precursor cells in the paraventricular thalamus and claustrum facilitates awakening with recovery of consciousness. CNS Neurosci Ther 2023; 29:1785-1804. [PMID: 36880283 PMCID: PMC10324366 DOI: 10.1111/cns.14137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Stem cells offer a promising therapeutic strategy for patients with disorders of consciousness (DOC) after severe traumatic brain injury (TBI), but the optimal transplantation sites and cells are not clear. Although the paraventricular thalamus (PVT) and claustrum (CLA) are associated with consciousness and are candidate transplantation targets, few studies have been designed to investigate this possibility. METHODS Controlled cortical injury (CCI) was performed to establish a mouse model of DOC. CCI-DOC paradigm was established to investigate the role of excitatory neurons of PVT and CLA in disorders of consciousness. The role of excitatory neuron transplantation in promoting arousal and recovery of consciousness was determined by optogenetics, chemogenetics, electrophysiology, Western blot, RT-PCR, double immunofluorescence labeling, and neurobehavioral experiments. RESULTS After CCI-DOC, neuronal apoptosis was found to be concentrated in the PVT and CLA. Prolonged awaking latency and cognitive decline were also seen after destruction of the PVT and CLA, suggesting that the PVT and CLA may be key nuclei in DOC. Awaking latency and cognitive performance could be altered by inhibiting or activating excitatory neurons, implying that excitatory neurons may play an important role in DOC. Furthermore, we found that the PVT and CLA function differently, with the PVT mainly involved in arousal maintenance while the CLA plays a role mainly in the generation of conscious content. Finally, we found that by transplanting excitatory neuron precursor cells in the PVT and CLA, respectively, we could facilitate awakening with recovery of consciousness, which was mainly manifested by shortened awaking latency, reduced duration of loss of consciousness (LOC), enhanced cognitive ability, enhanced memory, and improved limb sensation. CONCLUSION In this study, we found that the deterioration in the level and content of consciousness after TBI was associated with a large reduction in glutamatergic neurons within the PVT and CLA. Transplantation of glutamatergic neuronal precursor cells could play a beneficial role in promoting arousal and recovery of consciousness. Thus, these findings have the potential to provide a favorable basis for promoting awakening and recovery in patients with DOC.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research InstituteFujian Medical UniversityFuzhouFujianChina
- Department of Neurosurgery, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University Huashan Hospital, Institute of Brain ScienceFudan UniversityShanghaiChina
| | - Naili Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Tianwen Li
- Department of Neurosurgery, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University Huashan Hospital, Institute of Brain ScienceFudan UniversityShanghaiChina
| | - Kezhu Chen
- Department of Neurosurgery, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University Huashan Hospital, Institute of Brain ScienceFudan UniversityShanghaiChina
| | - Wenqiang Cui
- Department of NeurologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanShandongChina
| | - Zhifu Wang
- Department of Neurosurgery, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University Huashan Hospital, Institute of Brain ScienceFudan UniversityShanghaiChina
| | - Fan Wang
- Department of NeurologyPeking University Third HospitalBeijingChina
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research InstituteFujian Medical UniversityFuzhouFujianChina
| | - Jianhong Zhu
- Department of Neurosurgery, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University Huashan Hospital, Institute of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Wei X, Yan Z, Cai L, Lu M, Yi G, Wang J, Dong Y. Aberrant temporal correlations of ongoing oscillations in disorders of consciousness on multiple time scales. Cogn Neurodyn 2023; 17:633-645. [PMID: 37265651 PMCID: PMC10229524 DOI: 10.1007/s11571-022-09852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022] Open
Abstract
Changes in neural oscillation amplitude across states of consciousness has been widely reported, but little is known about the link between temporal dynamics of these oscillations on different time scales and consciousness levels. To address this question, we analyzed amplitude fluctuation of the oscillations extracted from spontaneous resting-state EEG recorded from the patients with disorders of consciousness (DOC) and healthy controls. Detrended fluctuation analysis (DFA) and measures of life-time and waiting-time were employed to characterize the temporal structure of EEG oscillations on long time scales (1-20 s) and short time scales (< 1 s), in groups with different consciousness states: patients in minimally conscious state (MCS), patients with unresponsive wakefulness syndrome (UWS) and healthy subjects. Results revealed increased DFA exponents that implies higher long-range temporal correlations (LRTC), especially in the central brain area in alpha and beta bands. On short time scales, declined bursts of oscillations were also observed. All the metrics exhibited lower individual variability in the UWS or MCS group, which may be attributed to the reduced spatial variability of oscillation dynamics. In addition, the temporal dynamics of EEG oscillations showed significant correlations with the behavioral responsiveness of patients. In summary, our findings shows that loss of consciousness is accompanied by alternation of temporal structure in neural oscillations on multiple time scales, and thus may help uncover the mechanism of underlying neuronal correlates of consciousness. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09852-9.
Collapse
Affiliation(s)
- Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Zhuang Yan
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Lihui Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Meili Lu
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, 300222 China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Yueqing Dong
- Xincheng Hospital of Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Functional Connectivity Increases in Response to High-Definition Transcranial Direct Current Stimulation in Patients with Chronic Disorder of Consciousness. Brain Sci 2022; 12:brainsci12081095. [PMID: 36009158 PMCID: PMC9405975 DOI: 10.3390/brainsci12081095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Highlights Functional connectivity induced by HD-tDCS in DLPFC has different trends in CRS-R score improvers and non-improvers. An increase in theta PLV in the left frontal–parietooccipital region was significantly associated with CRS-R changes. DOC patients with increased PLV of the alpha band in the intra-bifrontal region have a better prognosis than those without.
Abstract High-definition transcranial direct current stimulation (HD-tDCS) has been shown to play an important role in improving consciousness in patients with disorders of consciousness (DOCs), but its neuroelectrophysiological evidence is still lacking. To better explain the electrophysiological mechanisms of the effects of HD-tDCS on patients with DOCs, 22 DOC patients underwent 10 anodal HD-tDCS sessions of the left dorsolateral prefrontal cortex (DLPFC). This study used the Coma Recovery Scale-Revised (CRS-R) to assess the level of consciousness in DOC patients. According to whether the CRS-R score increased before and after stimulation, DOC patients were divided into a responsive group and a non-responsive group. By comparing the differences in resting-state EEG functional connectivity between different frequency bands and brain regions, as well as the relationship between functional connectivity values and clinical scores, the electrophysiological mechanism of the clinical effects of HD-tDCS was further explored. The change of the phase locking value (PLV) on the theta frequency band in the left frontal–parietooccipital region was positively correlated with the change in the CRS-R scores. As the number of interventions increased, we observed that in the responsive group, the change in PLV showed an upward trend, and the increase in the PLV appeared in the left frontal–parietooccipital region at 4–8 Hz and in the intra-bifrontal region at 8–13 Hz. In the non-responsive group, although the CRS-R scores did not change after stimulation, the PLV showed a downward trend, and the decrease in the PLV appeared in the intra-bifrontal region at 8–13 Hz. In addition, at the three-month follow-up, patients with increased PLV in the intra-bifrontal region at 8–13 Hz after repeated HD-tDCS stimulation had better outcomes than those without. Repeated anodal stimulation of the left DLPFC with HD-tDCS resulted in improved consciousness in some patients with DOCs. The increase in functional connectivity in the brain regions may be associated with the improvement of related awareness after HD-tDCS and may be a predictor of better long-term outcomes.
Collapse
|
10
|
He Q, Han B, Xia X, Dang Y, Chen X, He J, Yang Y. Related Factors and Outcome of Spinal Cord Stimulation Electrode Deviation in Disorders of Consciousness. Front Neurol 2022; 13:947464. [PMID: 35860489 PMCID: PMC9289267 DOI: 10.3389/fneur.2022.947464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Spinal cord stimulation (SCS) has been reported to be a promising neuromodulation method for patients with disorders of consciousness (DOC). Our previous studies found that clinical characteristics of patients and SCS stimulation parameters could affect the therapeutic effects of SCS, while surgical-related factors remain unknown. Through the improvement of surgical procedures, most of the SCS electrodes are implanted in the middle, while a small number of electrodes have still deviated. Methods A total of 137 patients received SCS treatment in our institutions from 1 January 2010 to 31 December 2020. Among them, 27 patients were found with electrode deviation and met the inclusion criteria. Patients were grouped according to whether the electrode deviation angle (EDA) is >30°, respectively. Clinical characteristics of patients and SCS stimulation parameters were compared. Potential related factors and outcomes were evaluated by Chi-square test or two-way repeated measures analysis. Results Twenty seven patients receiving cervical SCS treatment were found to have electrode deviation postoperatively. Among them, 12 patients were classified into the more deviation group. No significant difference was found among age, sex, pathogeny, course of DOC, C2–C5 distance, spinal cord to spinal canal ratio at C2 level, and preoperative JFK Coma Recovery Scale-Revised (CRS-R) scores. We found that the electrode direction significantly deviated to the contralateral side in the lateral decubitus position (P = 0.025). The maximum tolerant stimulation intensity in the less deviation group (1.70 ± 0.41) was significantly higher than that in the more deviation group (1.25 ± 0.34) (P = 0.006). Under the strongest stimulation, less unilateral limb tremor (P = 0.049) and paroxysmal sympathetic hyperactivity (PSH) episodes (P = 0.030) were found. EDA had a significant effect on postoperative CRS-R in patients, and patients in the less deviation group had significantly higher postoperative CRS-R (P < 0.01). There was also an interaction effect between EDA and postoperative time. With the prolonged postoperative time, the CRS-R improvement rate of patients with different EDA was different, and the CRS-R improved faster in patients with less EDA (P < 0.05). Conclusions Electrode deviation will affect the outcome of patients receiving cervical SCS treatment. The intraoperative surgical position is associated with postoperative electrode deviation direction. The reduction of EDA under 30° can increase maximum tolerant stimulation intensity, reduce complications, and further improve patients' outcomes.
Collapse
Affiliation(s)
- Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Bin Han
- Department of Neurosurgery, Zhongshan Hospital of Traditional Chinese Medicine, Guangdong, China
| | - Xiaoyu Xia
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Yuanyuan Dang
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing, China
- Jianghong He
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurosurgery, Chinese Institute for Brain Research, Beijing, China
- Department of Neurosurgery, Beijing Institute of Brain Disorders, Beijing, China
- *Correspondence: Yi Yang
| |
Collapse
|
11
|
Abstract
Background: Reviving patients with prolonged disorders of consciousness (DOCs) has always been focused and challenging in medical research. Owing to the limited effectiveness of available medicine, recent research has increasingly turned towards neuromodulatory therapies, involving the stimulation of neural circuits. We summarised the progression of research regarding neuromodulatory therapies in the field of DOCs, compared the differences among different studies, in an attempt to explore optimal stimulation patterns and parameters, and analyzed the major limitations of the relevant studies to facilitate future research. Methods: We performed a search in the PubMed database, using the concepts of DOCs and neuromodulation. Inclusion criteria were: articles in English, published after 2002, and reporting clinical trials of neuromodulatory therapies in human patients with DOCs. Results: Overall, 187 published articles met the search criteria, and 60 articles met the inclusion criteria. There are differences among these studies regarding the clinical efficacies of neurostimulation techniques for patients with DOCs, and large-sample studies are still lacking. Conclusions: Neuromodulatory techniques were used as trial therapies for DOCs wherein their curative effects were controversial. The difficulties in detecting residual consciousness, the confounding effect between the natural course of the disease and therapeutic effect, and the heterogeneity across patients are the major limitations. Large-sample, well-designed studies, and innovations for both treatment and assessment are anticipated in future research.
Collapse
|
12
|
Liu B, Zhang X, Wang L, Li Y, Hou J, Duan G, Guo T, Wu D. Outcome Prediction in Unresponsive Wakefulness Syndrome and Minimally Conscious State by Non-linear Dynamic Analysis of the EEG. Front Neurol 2021; 12:510424. [PMID: 33692735 PMCID: PMC7937604 DOI: 10.3389/fneur.2021.510424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: This study aimed to investigate the role of non-linear dynamic analysis (NDA) of the electroencephalogram (EEG) in predicting patient outcome in unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS). Methods: This was a prospective longitudinal cohort study. A total of 98 and 64 UWS and MCS cases, respectively, were assessed. During admission, EEGs were acquired under eyes-closed and pain stimulation conditions. EEG nonlinear indices, including approximate entropy (ApEn) and cross-ApEn, were calculated. The modified Glasgow Outcome Scale (mGOS) was employed to assess functional prognosis 1 year following brain injury. Results: The mGOS scores were improved in 25 (26%) patients with UWS and 42 (66%) with MCS. Under the painful stimulation condition, both non-linear indices were lower in patients with UWS than in those with MCS. The frontal region, periphery of the primary sensory area (S1), and forebrain structure might be the key points modulating disorders of consciousness. The affected local cortical networks connected to S1 and unaffected distant cortical networks connecting S1 to the prefrontal area played important roles in mGOS score improvement. Conclusions: NDA provides an objective assessment of cortical excitability and interconnections of residual cortical functional islands. The impaired interconnection of the residual cortical functional island meant a poorer prognosis. The activation in the affected periphery of the S1 and the increase in the interconnection of affected local cortical areas around the S1 and unaffected S1 to the prefrontal and temporal areas meant a relatively favorable prognosis.
Collapse
Affiliation(s)
- Baohu Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Zhang
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijia Wang
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Yuanyuan Li
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Hou
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoping Duan
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongyu Wu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Sugimura K, Iwasa Y, Kobayashi R, Honda T, Hashimoto J, Kashihara S, Zhu J, Yamamoto K, Kawahara T, Anno M, Nakagawa R, Hatano K, Nakao T. Association between long-range temporal correlations in intrinsic EEG activity and subjective sense of identity. Sci Rep 2021; 11:422. [PMID: 33431948 PMCID: PMC7801398 DOI: 10.1038/s41598-020-79444-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
The long-range temporal correlation (LRTC) in resting-state intrinsic brain activity is known to be associated with temporal behavioral patterns, including decision making based on internal criteria such as self-knowledge. However, the association between the neuronal LRTC and the subjective sense of identity remains to be explored; in other words, whether our subjective sense of consistent self across time relates to the temporal consistency of neural activity. The present study examined the relationship between the LRTC of resting-state scalp electroencephalography (EEG) and a subjective sense of identity measured by the Erikson Psychosocial Stage Inventory (EPSI). Consistent with our prediction based on previous studies of neuronal-behavioral relationships, the frontocentral alpha LRTC correlated negatively with identity confusion. Moreover, from the descriptive analyses, centroparietal beta LRTC showed negative correlations with identity confusion, and frontal theta LRTC showed positive relationships with identity synthesis. These results suggest that more temporal consistency (reversely, less random noise) in intrinsic brain activity is associated with less confused and better-synthesized identity. Our data provide further evidence that the LRTC of intrinsic brain activity might serve as a noise suppression mechanism at the psychological level.
Collapse
Affiliation(s)
- Kazumi Sugimura
- grid.257022.00000 0000 8711 3200Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8524 Japan
| | - Yasuhiro Iwasa
- grid.257022.00000 0000 8711 3200Graduate School of Education, Hiroshima University, Hiroshima, Japan
| | - Ryota Kobayashi
- grid.257022.00000 0000 8711 3200Graduate School of Education, Hiroshima University, Hiroshima, Japan
| | - Tatsuru Honda
- grid.257022.00000 0000 8711 3200Graduate School of Education, Hiroshima University, Hiroshima, Japan
| | - Junya Hashimoto
- grid.257022.00000 0000 8711 3200Graduate School of Education, Hiroshima University, Hiroshima, Japan
| | - Shiho Kashihara
- grid.257022.00000 0000 8711 3200Graduate School of Education, Hiroshima University, Hiroshima, Japan
| | - Jianhong Zhu
- grid.257022.00000 0000 8711 3200Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8524 Japan
| | - Kazuki Yamamoto
- grid.257022.00000 0000 8711 3200Graduate School of Education, Hiroshima University, Hiroshima, Japan
| | - Tsuyoshi Kawahara
- grid.257022.00000 0000 8711 3200Graduate School of Education, Hiroshima University, Hiroshima, Japan
| | - Mayo Anno
- grid.257022.00000 0000 8711 3200Faculty of Education, Hiroshima University, Hiroshima, Japan
| | - Risa Nakagawa
- grid.257022.00000 0000 8711 3200Graduate School of Education, Hiroshima University, Hiroshima, Japan
| | - Kai Hatano
- grid.261455.10000 0001 0676 0594Faculty of Liberal Arts and Science, Osaka Prefecture University, Osaka, Japan
| | - Takashi Nakao
- grid.257022.00000 0000 8711 3200Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8524 Japan
| |
Collapse
|
14
|
Li Y, He J, Yang B, Zhang H, Yang Z, Fu J, Huang L, Chen H, Yang X, Bao Y. Clinical diagnosis guidelines and neurorestorative treatment for chronic disorders of consciousness (2021 China version). JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chronic disorders of consciousness (DOC) include the vegetative state and the minimally consciousness state. The DOC diagnosis mainly relies on the evaluation of clinical behavioral scales, electrophysiological testing, and neuroimaging examinations. No specifically effective neurorestorative methods for chronic DOC currently exist. Any valuable exploration therapies of being able to repair functions and/or structures in the consciousness loop (e.g., drugs, hyperbaric medicines, noninvasive neurostimulation, sensory and environmental stimulation, invasive neuromodulation therapy, and cell transplantation) may become effective neurorestorative strategies for chronic DOC. In the viewpoint of Neurorestoratology, this guideline proposes the diagnostic and neurorestorative therapeutic suggestions and future exploration direction for this disease following the review of the existing treatment exploration achievements for chronic DOC.
Collapse
|
15
|
Liang Z, Shao S, Lv Z, Li D, Sleigh JW, Li X, Zhang C, He J. Constructing a Consciousness Meter Based on the Combination of Non-Linear Measurements and Genetic Algorithm-Based Support Vector Machine. IEEE Trans Neural Syst Rehabil Eng 2020; 28:399-408. [PMID: 31940541 DOI: 10.1109/tnsre.2020.2964819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Constructing a framework to evaluate consciousness is an important issue in neuroscience research and clinical practice. However, there is still no systematic framework for quantifying altered consciousness along the dimensions of both level and content. This study builds a framework to differentiate the following states: coma, general anesthesia, minimally conscious state (MCS), and normal wakefulness. METHODS This study analyzed electroencephalography (EEG) recorded from frontal channels in patients with disorders of consciousness (either coma or MCS), patients under general anesthesia, and healthy participants in normal waking consciousness (NWC). Four non-linear methods-permutation entropy (PE), sample entropy (SampEn), permutation Lempel-Ziv complexity (PLZC), and detrended fluctuation analysis (DFA)-as well as relative power (RP), extracted features from the EEG recordings. A genetic algorithm-based support vector machine (GA-SVM) classified the states of consciousness based on the extracted features. A multivariable linear regression model then built EEG indices for level and content of consciousness. RESULTS The PE differentiated all four states of consciousness (p<0.001). Altered contents of consciousness for NWC, MCS, coma, and general anesthesia were best differentiated by the SampEn, and PLZC. In contrast, the levels of consciousness for these four states were best differentiated by RP of Gamma and PE. A multi-dimensional index, combined with the GA-SVM, showed that the integration of PE, PLZC, SampEn, and DFA had the highest classification accuracy (92.3%). The GA-SVM was better than random forest and neural networks at differentiating these four states. The 'coordinate value' in the dimensions of level and content were constructed by the multivariable linear regression model and the non-linear measures PE, PLZC, SampEn, and DFA. CONCLUSIONS Multi-dimensional measurements, especially the PE, SampEn, PLZC, and DFA, when combined with GA-SVM, are promising methods for constructing a framework to quantify consciousness.
Collapse
|
16
|
Xiang XJ, Sun LZ, Xu CB, Xie Y, Pan MY, Ran J, Hu Y, Nong BX, Shen Q, Huang H, Huang SH, Yu YZ. The clinical effect of vagus nerve stimulation in the treatment of patients with a minimally conscious state. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: Vagus nerve stimulation (VNS) has recently been used in neurorehabilitation and the recovery of consciousness based on its effects on cortical plasticity. The aim of this study was to examine the therapeutic effects of VNS on patients with a minimally conscious state (MCS). Methods: All patients included in the study were assessed more than 5 months after injury and were receiving regular rehabilitation at our hospital from August 2018 to October 2019. Ten patients diagnosed with MCS by Coma Recovery Scale-Revised (CRS-R) test who underwent VNS surgery were enrolled. The scores on CRS-R evaluation at baseline (before VNS implantation) and 1, 3, and 6 months after VNS treatment were recorded. The stimulation parameters were chosen according to a previous study. All clinical rehabilitation protocols remained unchanged during the study. Furthermore, safety was assessed by analyzing treatment-emergent adverse events (TEAEs). Results: No significant improvement in the total CRS-R scores at the end of the 1-month follow-up was observed (p > 0.05). After 3 months of stimulation, a significant difference (p = 0.0078) was observed in the total CRS-R scores compared with the baseline. After 6 months of VNS treatment, CRS-R assessments showed a continuous significant improvement (p = 0.0039); one patient emerged from the MCS and recovered functional communication and object use. Interestingly, one item of CRS-R scores on visual domain was sensitive to VNS treatment (p = 0.0039). Furthermore, no serious adverse event occurred throughout the study. Conclusion: This exploratory study provides preliminary evidence suggesting that VNS is a safe and effective tool for consciousness recovery in patients with MCS.
Collapse
|