1
|
Yang T, Wei B, Liu J, Si X, Wang L, Jiang C. A landscape of metabolic variation among clinical outcomes of peritoneal dialysis in end-stage renal disease. Clin Chim Acta 2024; 555:117826. [PMID: 38342423 DOI: 10.1016/j.cca.2024.117826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Peritoneal dialysis (PD) helps prevent lethal complications of end-stage renal disease (ESRD). However, the clinical outcomes are affected by PD-related complications. We investigated metabolic biomarkers to estimate the clinical outcomes of PD and identify patients at high risk of downstream complications and recurrent/relapsing infections. METHODS Metabolites of normal control and ESRD patient were compared via an untargeted metabolomic analysis. Potential metabolic biomarkers were selected and quantified using a multiple reaction monitoring-based target metabolite detection method. A nomogram was built to predict the clinical outcomes of PD patients using clinical features and potential metabolic biomarkers with the least absolute shrinkage and selection operator Cox regression model. RESULTS Twenty-five endogenous metabolites were identified and analyzed. ESRD-poor clinical outcome-related metabolic modules were constructed. Adenine, isoleucine, tyramine, xanthosine, phenylacetyl-L-glutamine, and cholic acid were investigated using the weighted gene correlation network analysis blue module. Potential metabolic biomarkers were differentially expressed between the NC and ESRD groups and the poor and good clinical outcomes of PD groups. A 3-metabolite fingerprint classifier of isoleucine, cholic acid, and adenine was included in a nomogram predicting the clinical outcomes of PD. CONCLUSION Metabolic variations can predict the clinical outcomes of PD in ESRD patients.
Collapse
Affiliation(s)
- Ting Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Bangbang Wei
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xinxin Si
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Department of Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Lianyungang 222005, China.
| | - Lulu Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
2
|
Kim HJ, Choo M, Kwon HN, Yoo KD, Kim Y, Tsogbadrakh B, Kang E, Park S, Oh KH. Metabolomic profiling of overnight peritoneal dialysis effluents predicts the peritoneal equilibration test type. Sci Rep 2023; 13:3803. [PMID: 36882429 PMCID: PMC9992441 DOI: 10.1038/s41598-023-29741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
This study primarily aimed to evaluate whether peritoneal equilibration test (PET) results can be predicted through the metabolomic analysis of overnight peritoneal dialysis (PD) effluents. From a total of 125 patients, overnight PD effluents on the day of the first PET after PD initiation were analyzed. A modified 4.25% dextrose PET was performed, and the PET type was categorized according to the dialysate-to-plasma creatinine ratio at the 4-h dwell time during the PET as follows: high, high average, low average, or low transporter. Nuclear magnetic resonance (NMR)-based metabolomics was used to analyze the effluents and identify the metabolites. The predictive performances derived from the orthogonal projection to latent structure discriminant analysis (OPLS-DA) modeling of the NMR spectrum were estimated by calculating the area under the curve (AUC) using receiver operating characteristic curve analysis. The OPLS-DA score plot indicated significant metabolite differences between high and low PET types. The relative concentrations of alanine and creatinine were greater in the high transporter type than in the low transporter type. The relative concentrations of glucose and lactate were greater in the low transporter type than in the high transporter type. The AUC of a composite of four metabolites was 0.975 in distinguish between high and low PET types. Measured PET results correlated well with the total NMR metabolic profile of overnight PD effluents.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Munki Choo
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hyuk Nam Kwon
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, Korea.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kyung Don Yoo
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Yunmi Kim
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Korea
| | | | - Eunjeong Kang
- Transplantation Center, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sunghyouk Park
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, Korea.
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Grobe N, Scheiber J, Zhang H, Garbe C, Wang X. Omics and Artificial Intelligence in Kidney Diseases. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:47-52. [PMID: 36723282 DOI: 10.1053/j.akdh.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 01/20/2023]
Abstract
Omics applications in nephrology may have relevance in the future to improve clinical care of kidney disease patients. In a short term, patients will benefit from specific measurement and computational analyses around biomarkers identified at various omics-levels. In mid term and long term, these approaches will need to be integrated into a holistic representation of the kidney and all its influencing factors for individualized patient care. Research demonstrates robust data to justify the application of omics for better understanding, risk stratification, and individualized treatment of kidney disease patients. Despite these advances in the research setting, there is still a lack of evidence showing the combination of omics technologies with artificial intelligence and its application in clinical diagnostics and care of patients with kidney disease.
Collapse
Affiliation(s)
| | | | | | - Christian Garbe
- Frankfurter Innovationszentrum Biotechnologie, Frankfurt am Main, Germany
| | | |
Collapse
|
4
|
Yang B, Yin H, Wang J, Gan J, Li J, Han R, Pei M, Song L, Yang H. A metabolic biomarker panel of restless legs syndrome in peritoneal dialysis patients. Metabolomics 2022; 18:79. [PMID: 36260187 DOI: 10.1007/s11306-022-01938-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Restless legs syndrome (RLS) is a neuromotor disorder, and dialysis patients are more likely to develop RLS. RLS often causes sleep disorders, anxiety and depression in patients. It will increase the risk of death and severely affect the life of patients. At present, RLS has not received enough recognition and attention, and the misdiagnosis rate can reach more than 10%. METHODS The discovery set selected 30 peritoneal dialysis (PD) patients and 27 peritoneal dialysis patients with RLS (PD-RLS). A metabolomics method based on ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometric method (UPLC-Q-TOF/MS) was used to analyze the differential metabolites of the two groups. 51 PD patients and 51 PD-RLS patients were included in the validation set. The receiver operating characteristic (ROC) analysis was used to evaluate the early diagnostic biomarkers, and the correlation between the differential metabolites and laboratory test indexes was analyzed to explore the biological function of the differential metabolites. RESULTS Through the integrated analysis, four metabolites can be used as markers for the diagnosis of PD-RLS, including Hippuric acid, Phenylacetylglutamine, N,N,N-Trimethyl-L-alanyl-L-proline betaine and Threonic acid. Through ROC analysis, it is found that they can be used as a metabolic biomarker panel, and the area under the curve of this combination is more than 0.9, indicating that the panel has good diagnostic and predictive ability. CONCLUSION Metabolomics based on UPLC-Q-TOF/MS technology can effectively identify the potential biomarkers, and provide a theoretical basis for the early diagnosis, prevention and treatment on PD-RLS.
Collapse
Affiliation(s)
- Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongqing Yin
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jianwei Wang
- Department of Nephrology, Qian'an Traditional Chinese Medicine Hospital, Tianjin, 301617, He Bei, China
| | - Jiali Gan
- Department of Pathology, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jingfang Li
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Han
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ming Pei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lili Song
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Proteome-Wide Differential Effects of Peritoneal Dialysis Fluid Properties in an In Vitro Human Endothelial Cell Model. Int J Mol Sci 2022; 23:ijms23148010. [PMID: 35887356 PMCID: PMC9317527 DOI: 10.3390/ijms23148010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
To replace kidney function, peritoneal dialysis (PD) utilizes hyperosmotic PD fluids with specific physico-chemical properties. Their composition induces progressive damage of the peritoneum, leading to vasculopathies, decline of membrane function, and PD technique failure. Clinically used PD fluids differ in their composition but still remain bioincompatible. We mapped the molecular pathomechanisms in human endothelial cells induced by the different characteristics of widely used PD fluids by proteomics. Of 7894 identified proteins, 3871 were regulated at least by 1 and 49 by all tested PD fluids. The latter subset was enriched for cell junction-associated proteins. The different PD fluids individually perturbed proteins commonly related to cell stress, survival, and immune function pathways. Modeling two major bioincompatibility factors of PD fluids, acidosis, and glucose degradation products (GDPs) revealed distinct effects on endothelial cell function and regulation of cellular stress responses. Proteins and pathways most strongly affected were members of the oxidative stress response. Addition of the antioxidant and cytoprotective additive, alanyl-glutamine (AlaGln), to PD fluids led to upregulation of thioredoxin reductase-1, an antioxidant protein, potentially explaining the cytoprotective effect of AlaGln. In conclusion, we mapped out the molecular response of endothelial cells to PD fluids, and provided new evidence for their specific pathomechanisms, crucial for improvement of PD therapies.
Collapse
|
6
|
Stepanova N, Snisar L, Burdeyna O. Peritoneal dialysis and peritoneal fibrosis: molecular mechanisms, risk factors and prospects for prevention. UKRAINIAN JOURNAL OF NEPHROLOGY AND DIALYSIS 2022:81-90. [DOI: 10.31450/ukrjnd.4(76).2022.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Peritoneal dialysis (PD) leads to structural and functional changes in the peritoneal membrane, the endpoint of which is peritoneal fibrosis. Peritoneal fibrosis is diagnosed in 50% and 80% of PD patients within 1 and 2 years of treatment initiation, respectively. A key role in the development of peritoneal fibrosis is played by mesothelial-mesenchymal transformation, a complex biological process of transition from mesothelium to mesenchyme. This review summarizes the current knowledge on the changes in peritoneal function and morphology, the molecular mechanisms of peritoneal fibrosis development, and its clinical consequences during PD. Special attention is given to established and potential risk factors for peritoneal fibrosis, and existing prevention strategies are considered.
Collapse
|
7
|
Alanyl-Glutamine Protects against Lipopolysaccharide-Induced Liver Injury in Mice via Alleviating Oxidative Stress, Inhibiting Inflammation, and Regulating Autophagy. Antioxidants (Basel) 2022; 11:antiox11061070. [PMID: 35739966 PMCID: PMC9220087 DOI: 10.3390/antiox11061070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
Acute liver injury is a worldwide problem with a high rate of morbidity and mortality, and effective pharmacological therapies are still urgently needed. Alanyl-glutamine (Ala-Gln), a dipeptide formed from L-alanine and L-glutamine, is known as a protective compound that is involved in various tissue injuries, but there are limited reports regarding the effects of Ala-Gln in acute liver injury. This present study aimed to investigate the protective effects of Ala-Gln in lipopolysaccharide (LPS)-induced acute liver injury in mice, with a focus on inflammatory responses and oxidative stress. The acute liver injury induced using LPS (50 μg/kg) and D-galactosamine (D-Gal) (400 mg/kg) stimulation in mice was significantly attenuated after Ala-Gln treatment (500 and 1500 mg/kg), as evidenced by reduced plasma alanine transaminase (ALT) (p < 0.01, p < 0.001), aspartate transaminase (AST) (p < 0.05, p < 0.001), and lactate dehydrogenase (LDH) (p < 0.01, p < 0.001) levels, and accompanied by improved histopathological changes. In addition, LPS/D-Gal-induced hepatic apoptosis was also alleviated by Ala-Gln administration, as shown by a greatly decreased ratio of TUNEL-positive hepatocytes, from approximately 10% to 2%, and markedly reduced protein levels of cleaved caspase-3 (p < 0.05, p < 0.001) in liver. Moreover, we found that LPS/D-Gal-triggered oxidative stress was suppressed after Ala-Gln treatment, the effect of which might be dependent on the elevation of SOD and GPX activities, and on GSH levels in liver. Interestingly, we observed that Ala-Gln clearly inhibited LPS/D-Gal exposure-induced macrophage accumulation and the production of proinflammatory factors in the liver. Furthermore, Ala-Gln greatly regulated autophagy in the liver in LPS/D-Gal-treated mice. Using RAW264.7 cells, we confirmed the anti-inflammatory role of Ala-Gln-targeting macrophages.
Collapse
|
8
|
Krediet RT. Aging of the Peritoneal Dialysis Membrane. Front Physiol 2022; 13:885802. [PMID: 35574465 PMCID: PMC9096116 DOI: 10.3389/fphys.2022.885802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Long-term peritoneal dialysis as currently performed, causes structural and functional alterations of the peritoneal dialysis membrane. This decay is brought about by the continuous exposure to commercially available glucose-based dialysis solutions. This review summarizes our knowledge on the peritoneum in the initial phase of PD, during the first 2 years and the alterations in function and morphology in long-term PD patients. The pseudohypoxia hypothesis is discussed and how this glucose-induced condition can be used to explain all peritoneal alterations in long-term PD patients. Special attention is paid to the upregulation of hypoxia inducing factor-1 and the subsequent stimulation of the genes coding for glucose transporter-1 (GLUT-1) and the growth factors transforming growth factor-β (TGFβ), vascular endothelial growth factor (VEGF), plasminogen growth factor activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF). It is argued that increased pseudohypoxia-induced expression of GLUT-1 in interstitial fibroblasts is the key factor in a vicious circle that augments ultrafiltration failure. The practical use of the protein transcripts of the upregulated growth factors in peritoneal dialysis effluent is considered. The available and developing options for prevention and treatment are examined. It is concluded that low glucose degradation products/neutral pH, bicarbonate buffered solutions with a combination of various osmotic agents all in low concentration, are currently the best achievable options, while other accompanying measures like the use of RAAS inhibitors and tamoxifen may be valuable. Emerging developments include the addition of alanyl glutamine to the dialysis solution and perhaps the use of nicotinamide mononucleotide, available as nutritional supplement.
Collapse
|
9
|
Fibrosis of Peritoneal Membrane as Target of New Therapies in Peritoneal Dialysis. Int J Mol Sci 2022; 23:ijms23094831. [PMID: 35563220 PMCID: PMC9102299 DOI: 10.3390/ijms23094831] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Peritoneal dialysis (PD) is an efficient renal replacement therapy for patients with end-stage renal disease. Even if it ensures an outcome equivalent to hemodialysis and a better quality of life, in the long-term, PD is associated with the development of peritoneal fibrosis and the consequents patient morbidity and PD technique failure. This unfavorable effect is mostly due to the bio-incompatibility of PD solution (mainly based on high glucose concentration). In the present review, we described the mechanisms and the signaling pathway that governs peritoneal fibrosis, epithelial to mesenchymal transition of mesothelial cells, and angiogenesis. Lastly, we summarize the present and future strategies for developing more biocompatible PD solutions.
Collapse
|
10
|
Impact of Metabolomics Technologies on the Assessment of Peritoneal Membrane Profiles in Peritoneal Dialysis Patients: A Systematic Review. Metabolites 2022; 12:metabo12020145. [PMID: 35208219 PMCID: PMC8879920 DOI: 10.3390/metabo12020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
Peritoneal dialysis (PD) is an effective and frequent dialysis modality in adults, particularly preferred in infants and young children with end-stage renal disease (ESRD). Long-term exposure of the peritoneal membrane to dialysis solutions results in severe morphologic and functional alterations. Peritoneal dialysis effluent biomarkers are based on omics technologies, which could predict the onset or confirm the diagnosis of peritoneal membrane dysfunction, would allow the development of accurate early prognostic tools and, potentially, the identification of future therapeutic targets. The purpose of our study was to critically review the literature on the impact and the effectiveness of metabolomics technologies in peritoneal health. The main search was performed in electronic databases (PubMed/MEDLINE, Embase and Cochrane Central Register of Controlled Trials) from inception to December 2020, using various combinations of Medical Subject Headings (MeSH). The main search highlighted nine studies, of which seven were evaluated in detail. Metabolomics technologies may provide significant input in the recognition of peritoneal membrane dysfunction in PD patients and provide evidence of early intervention strategies that could protect peritoneum health and function.
Collapse
|
11
|
How to Improve the Biocompatibility of Peritoneal Dialysis Solutions (without Jeopardizing the Patient's Health). Int J Mol Sci 2021; 22:ijms22157955. [PMID: 34360717 PMCID: PMC8347640 DOI: 10.3390/ijms22157955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022] Open
Abstract
Peritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of the peritoneal membrane due to fibrosis. This is primarily driven by hyperglycaemia due to its effects, through multiple cytokine and transcription factor signalling-and their metabolic sequelae-on the synthesis of collagen and other extracellular membrane components. In this review, we outline these interactions and explore how novel PD solution formulations are aimed at utilizing this knowledge to minimise the complications associated with fibrosis, while maintaining adequate rates of ultrafiltration across the peritoneal membrane and preservation of patient urinary volumes. We discuss the development of a new generation of reduced-glucose PD solutions that employ a variety of osmotically active constituents and highlight the biochemical rationale underlying optimization of oxidative metabolism within the peritoneal membrane. They are aimed at achieving optimal clinical outcomes and improving the whole-body metabolic profile of patients, particularly those who are glucose-intolerant, insulin-resistant, or diabetic, and for whom daily exposure to high doses of glucose is contraindicated.
Collapse
|
12
|
Herzog R, Bartosova M, Tarantino S, Wagner A, Unterwurzacher M, Sacnun JM, Lichtenauer AM, Kuster L, Schaefer B, Alper SL, Aufricht C, Schmitt CP, Kratochwill K. Peritoneal Dialysis Fluid Supplementation with Alanyl-Glutamine Attenuates Conventional Dialysis Fluid-Mediated Endothelial Cell Injury by Restoring Perturbed Cytoprotective Responses. Biomolecules 2020; 10:biom10121678. [PMID: 33334074 PMCID: PMC7765520 DOI: 10.3390/biom10121678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022] Open
Abstract
Long-term clinical outcome of peritoneal dialysis (PD) depends on adequate removal of small solutes and water. The peritoneal endothelium represents the key barrier and peritoneal transport dysfunction is associated with vascular changes. Alanyl-glutamine (AlaGln) has been shown to counteract PD-induced deteriorations but the effect on vascular changes has not yet been elucidated. Using multiplexed proteomic and bioinformatic analyses we investigated the molecular mechanisms of vascular pathology in-vitro (primary human umbilical vein endothelial cells, HUVEC) and ex-vivo (arterioles of patients undergoing PD) following exposure to PD-fluid. An overlap of 1813 proteins (40%) of over 3100 proteins was identified in both sample types. PD-fluid treatment significantly altered 378 in endothelial cells and 192 in arterioles. The HUVEC proteome resembles the arteriolar proteome with expected sample specific differences of mainly immune system processes only present in arterioles and extracellular region proteins primarily found in HUVEC. AlaGln-addition to PD-fluid revealed 359 differentially abundant proteins and restored the molecular process landscape altered by PD fluid. This study provides evidence on validity and inherent limitations of studying endothelial pathomechanisms in-vitro compared to vascular ex-vivo findings. AlaGln could reduce PD-associated vasculopathy by reducing endothelial cellular damage, restoring perturbed abundances of pathologically important proteins and enriching protective processes.
Collapse
Affiliation(s)
- Rebecca Herzog
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (M.B.); (B.S.); (C.P.S.)
| | - Silvia Tarantino
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Zytoprotec GmbH, 1090 Vienna, Austria
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
| | - Markus Unterwurzacher
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
| | - Juan Manuel Sacnun
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Zytoprotec GmbH, 1090 Vienna, Austria
| | - Anton M. Lichtenauer
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
| | - Lilian Kuster
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
| | - Betti Schaefer
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (M.B.); (B.S.); (C.P.S.)
| | - Seth L. Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Aufricht
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
| | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (M.B.); (B.S.); (C.P.S.)
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
- Correspondence: ; Tel.: +43-140400-80
| |
Collapse
|
13
|
Alanyl-Glutamine Restores Tight Junction Organization after Disruption by a Conventional Peritoneal Dialysis Fluid. Biomolecules 2020; 10:biom10081178. [PMID: 32823646 PMCID: PMC7464725 DOI: 10.3390/biom10081178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding and targeting the molecular basis of peritoneal solute and protein transport is essential to improve peritoneal dialysis (PD) efficacy and patient outcome. Supplementation of PD fluids (PDF) with alanyl-glutamine (AlaGln) increased small solute transport and reduced peritoneal protein loss in a recent clinical trial. Transepithelial resistance and 10 kDa and 70 kDa dextran transport were measured in primary human endothelial cells (HUVEC) exposed to conventional acidic, glucose degradation products (GDP) containing PDF (CPDF) and to low GDP containing PDF (LPDF) with and without AlaGln. Zonula occludens-1 (ZO-1) and claudin-5 were quantified by Western blot and immunofluorescence and in mice exposed to saline and CPDF for 7 weeks by digital imaging analyses. Spatial clustering of ZO-1 molecules was assessed by single molecule localization microscopy. AlaGln increased transepithelial resistance, and in CPDF exposed HUVEC decreased dextran transport rates and preserved claudin-5 and ZO-1 abundance. Endothelial clustering of membrane bound ZO-1 was higher in CPDF supplemented with AlaGln. In mice, arteriolar endothelial claudin-5 was reduced in CPDF, but restored with AlaGln, while mesothelial claudin-5 abundance was unchanged. AlaGln supplementation seals the peritoneal endothelial barrier, and when supplemented to conventional PD fluid increases claudin-5 and ZO-1 abundance and clustering of ZO-1 in the endothelial cell membrane.
Collapse
|
14
|
Grunert T, Herzog R, Wiesenhofer FM, Vychytil A, Ehling-Schulz M, Kratochwill K. Vibrational Spectroscopy of Peritoneal Dialysis Effluent for Rapid Assessment of Patient Characteristics. Biomolecules 2020; 10:biom10060965. [PMID: 32604921 PMCID: PMC7357123 DOI: 10.3390/biom10060965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Peritoneal dialysis (PD) offers specific advantages over hemodialysis, enabling increased autonomy of patients with end-stage renal disease, but PD-related complications need to be detected in a timely manner. Fourier transform infrared (FTIR) spectroscopy could provide rapid and essential insights into the patients' risk profiles via molecular fingerprinting of PD effluent, an abundant waste material that is rich in biological information. In this study, we measured FTIR spectroscopic profiles in PD effluent from patients taking part in a randomized controlled trial of alanyl-glutamine addition to the PD-fluid. Principal component analysis of FTIR spectra enabled us to differentiate between effluent samples from patients immediately after completion of instillation of the PD-fluid into the patients' cavity and 4 h later as well as between patients receiving PD-fluid supplemented with 8 mM alanyl-glutamine compared with control. Moreover, feasibility of FTIR spectroscopy coupled to supervised classification algorithms to predict patient-, PD-, as well as immune-associated parameters were investigated. PD modality (manual continuous ambulatory PD (CAPD) vs. cycler-assisted automated PD (APD)), residual urine output, ultrafiltration, transport parameters, and cytokine concentrations showed high predictive potential. This study provides proof-of-principle that molecular signatures determined by FTIR spectroscopy of PD effluent, combined with machine learning, are suitable for cost-effective, high-throughput diagnostic purposes in PD.
Collapse
Affiliation(s)
- Tom Grunert
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
- Correspondence: (T.G.); (K.K.)
| | - Rebecca Herzog
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (F.M.W.)
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian M. Wiesenhofer
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (F.M.W.)
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Vychytil
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (F.M.W.)
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (T.G.); (K.K.)
| |
Collapse
|
15
|
Roumeliotis S, Dounousi E, Salmas M, Eleftheriadis T, Liakopoulos V. Unfavorable Effects of Peritoneal Dialysis Solutions on the Peritoneal Membrane: The Role of Oxidative Stress. Biomolecules 2020; 10:biom10050768. [PMID: 32423139 PMCID: PMC7277773 DOI: 10.3390/biom10050768] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
One of the main limitations to successful long-term use of peritoneal dialysis (PD) as a renal replacement therapy is the harmful effects of PD solutions to the structure and function of the peritoneal membrane (PM). In PD, the PM serves as a semipermeable membrane that, due to exposure to PD solutions, undergoes structural alterations, including peritoneal fibrosis, vasculopathy, and neoangiogenesis. In recent decades, oxidative stress (OS) has emerged as a novel risk factor for mortality and cardiovascular disease in PD patients. Moreover, it has become evident that OS plays a pivotal role in the pathogenesis and development of the chronic, progressive injury of the PM. In this review, we aimed to present several aspects of OS in PD patients, including the pathophysiologic effects on the PM, clinical implications, and possible therapeutic antioxidant strategies that might protect the integrity of PM during PD therapy.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Marios Salmas
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-994-694
| |
Collapse
|
16
|
Moore GM, Gitai Z. Both clinical and environmental Caulobacter species are virulent in the Galleria mellonella infection model. PLoS One 2020; 15:e0230006. [PMID: 32163465 PMCID: PMC7067423 DOI: 10.1371/journal.pone.0230006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
The Caulobacter genus, including the widely-studied model organism Caulobacter crescentus, has been thought to be non-pathogenic and thus proposed as a bioengineering vector for various environmental remediation and medical purposes. However, Caulobacter species have been implicated as the causative agents of several hospital-acquired infections, raising the question of whether these clinical isolates represent an emerging pathogenic species or whether Caulobacters on whole possess previously-unappreciated virulence capability. Given the proposed environmental and medical applications for C. crescentus, understanding the potential pathogenicity of this bacterium is crucial. Consequently, we sequenced a clinical Caulobacter isolate to determine if it has acquired novel virulence determinants. We found that the clinical isolate represents a new species, Caulobacter mirare that, unlike C. crescentus, grows well in standard clinical culture conditions. C. mirare phylogenetically resembles both C. crescentus and the related C. segnis, which was also thought to be non-pathogenic. The similarity to other Caulobacters and lack of obvious pathogenesis markers suggested that C. mirare is not unique amongst Caulobacters and that consequently other Caulobacters may also have the potential to be virulent. We tested this hypothesis by characterizing the ability of Caulobacters to infect the model animal host Galleria mellonella. In this context, two different lab strains of C. crescentus proved to be as pathogenic as C. mirare, while lab strains of E. coli were non-pathogenic. Further characterization showed that Caulobacter pathogenesis in the Galleria model is mediated by lipopolysaccharide (LPS), and that differences in LPS chemical composition across species could explain their differential toxicity. Taken together, our findings suggest that many Caulobacter species can be virulent in specific contexts and highlight the importance of broadening our methods for identifying and characterizing potential pathogens.
Collapse
Affiliation(s)
- Gabriel M. Moore
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
17
|
Hirahara I, Kusano E, Jin D, Takai S. Hypermetabolism of glutathione, glutamate and ornithine via redox imbalance in methylglyoxal-induced peritoneal injury rats. J Biochem 2020; 167:185-194. [PMID: 31593282 DOI: 10.1093/jb/mvz077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Peritoneal dialysis (PD) is a blood purification treatment for patients with reduced renal function. However, the peritoneum is exposed to oxidative stress during PD and long-term PD results in peritoneal damage, leading to the termination of PD. Methylglyoxal (MGO) contained in commercial PD fluids is a source of strong oxidative stress. The aim of this study was to clarify the mechanism of MGO-induced peritoneal injury using metabolome analysis in rats. We prepared peritoneal fibrosis rats by intraperitoneal administration of PD fluids containing MGO for 21 days. As a result, MGO-induced excessive proliferation of mesenchymal cells with an accumulation of advanced glycation end-products (AGEs) at the surface of the thickened peritoneum in rats. The effluent levels of methionine sulfoxide, an oxidative stress marker and glutathione peroxidase activity were increased in the MGO-treated rats. The levels of glutathione, glutamate, aspartate, ornithine and AGEs were also increased in these rats. MGO upregulated the gene expression of transporters and enzymes related to the metabolism of glutathione, glutamate and ornithine in the peritoneum. These results suggest that MGO may induce peritoneal injury with mesenchymal cell proliferation via increased redox metabolism, directly or through the formation of AGEs during PD.
Collapse
Affiliation(s)
- Ichiro Hirahara
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 568-8686
| | - Eiji Kusano
- JCHO Utsunomiya Hospital, 11-17 Minamitakasago-chou, Utsunomiya, Tochigi 321-0143, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 568-8686
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 568-8686
| |
Collapse
|