1
|
Cairo B, Gelpi F, Bari V, Anguissola M, Singh P, De Maria B, Ranucci M, Porta A. A model-based spectral directional approach reveals the long-term impact of COVID-19 on cardiorespiratory control and baroreflex. Biomed Eng Online 2025; 24:8. [PMID: 39901266 PMCID: PMC11792257 DOI: 10.1186/s12938-024-01327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Coronavirus disease 19 (COVID-19) patients might develop sequelae after apparent resolution of the infection. Autonomic dysfunction and baroreflex failure have been frequently reported. However, the long-term effect of COVID-19 on cardiorespiratory and cardiovascular neural controls has not been investigated with directional approaches able to open the closed-loop relationship between physiological variables. METHODS A model-based causal spectral approach, namely causal squared coherence (CK2), was applied to the beat-to-beat variability series of heart period (HP) and systolic arterial pressure (SAP), and to the respiratory signal (RESP) acquired at rest in supine position and during active standing (STAND) in COVID-19 survivors 9 months after their hospital discharge. Patients were categorized according to their need of ventilatory support during hospitalization as individuals that had no need of continuous positive airway pressure (noCPAP, n = 27), need of continuous positive airway pressure in sub-intensive care unit (CPAP, n = 14) and need of invasive mechanical ventilation in intensive care unit (IMV, n = 8). RESULTS The expected decrease of the strength of the HP-RESP dynamic interactions as well as the expected increase of the dependence of HP on SAP along baroreflex during STAND was not observed and this result held regardless of the severity of the disease, namely in noCPAP, CPAP and IMV cohorts. Regardless of the experimental condition, spectral causality markers did not vary across groups either. CONCLUSIONS CK2 markers, in association with an orthostatic challenge, were able to characterize the impairment of cardiorespiratory control and baroreflex in COVID-19 patients long after acute infection resolution and could be exploited to monitor the evolution of the COVID-19 patients after hospital discharge.
Collapse
Affiliation(s)
- Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Francesca Gelpi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Martina Anguissola
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Pavandeep Singh
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | | | - Marco Ranucci
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Italy.
| |
Collapse
|
2
|
Bari V, Cairo B, Gelpi F, Fancoli F, Curcio N, Matrone G, Righini P, Nano G, Porta A, Mazzaccaro D. Joint Analysis of Cardiovascular Control and Shear Wave Elastography to Determine Carotid Plaque Vulnerability. J Clin Med 2025; 14:648. [PMID: 39860656 PMCID: PMC11766208 DOI: 10.3390/jcm14020648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Carotid artery stenosis (CAS) is one of the main causes of stroke, and the vulnerability of plaque has been proved to be a determinant. A joint analysis of shear wave elastography, a radiofrequency echo-based wall tracking technique for arterial stiffness evaluation, and of autonomic and baroreflex function is proposed to noninvasively, preoperatively assess plaque vulnerability in asymptomatic CAS patients scheduled for carotid endarterectomy. Methods: Elastographic markers of arterial stiffness were derived preoperatively in 78 CAS patients (age: 74.2 + 7.7 years, 27 females). Autonomic and baroreflex markers were also assessed by means of an analysis of the beat-to-beat fluctuations in heart period and systolic arterial pressure, derived at rest in supine position (REST) and during active standing. Postoperative analysis identified 36 patients with vulnerable plaque (VULN) and 42 with stable plaque (STABLE). Results: Baroreflex sensitivity (BRS) at a respiratory rate decreased during STAND only in VULN patients, being much higher at REST compared to STABLE levels. Autonomic indexes were not helpful in separating experimental conditions and/or populations. The Young's modulus (YM) of the plaque was lower in the VULN group than in the STABLE one. Cardiovascular control and elastographic markers were significantly correlated only in VULN patients. A multivariate logistic regression model built combining YM and BRS at the respiratory rate improved the prediction of plaque vulnerability, reporting an area under the ROC curve of 0.694. Conclusions: Noninvasive techniques assessing shear wave elastography and baroreflex control could contribute to the early detection of plaque vulnerability in patients with asymptomatic CAS.
Collapse
Affiliation(s)
- Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (B.C.); (G.N.); (A.P.)
- Department of Cardiothoracic, Vascular Anaesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy;
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (B.C.); (G.N.); (A.P.)
| | - Francesca Gelpi
- Department of Cardiothoracic, Vascular Anaesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy;
| | - Fabiana Fancoli
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.F.); (P.R.); (D.M.)
| | - Nicoletta Curcio
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy;
| | - Giulia Matrone
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy;
| | - Paolo Righini
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.F.); (P.R.); (D.M.)
| | - Giovanni Nano
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (B.C.); (G.N.); (A.P.)
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.F.); (P.R.); (D.M.)
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (B.C.); (G.N.); (A.P.)
- Department of Cardiothoracic, Vascular Anaesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy;
| | - Daniela Mazzaccaro
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.F.); (P.R.); (D.M.)
| |
Collapse
|
3
|
Panerai RB, Davies A, Alshehri A, Beishon LC, Minhas JS. Subcomponent analysis of the directional sensitivity of dynamic cerebral autoregulation. Am J Physiol Heart Circ Physiol 2025; 328:H37-H46. [PMID: 39570199 DOI: 10.1152/ajpheart.00498.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
The origin of the directional sensitivity (DS) of dynamic cerebral autoregulation (dCA) is not known. In 140 healthy participants (67 male, 27.5 ± 6.1 yr old), middle cerebral artery velocity (MCAv, transcranial Doppler), arterial blood pressure (ABP, Finometer), and end-tidal CO2 (EtCO2, capnography) were recorded at rest. Critical closing pressure (CrCP) and resistance-area product (RAP) were obtained for each cardiac cycle, as well as mean MCAv and ABP (MAP). The integrated positive and negative derivatives of MAP (MAP+D and MAP-D, respectively) were used as simultaneous inputs to an autoregressive moving average model to generate two distinct MCAv step responses. Similar models allowed the estimation of corresponding MAP-CrCP and MAP-RAP responses to step changes in MAP+D and MAP-D. The strength of DS (ΔDS) was expressed by the difference in mean values of the step responses for the time interval 12-18 s. ΔDS was significant for MCAv (8.5 ± 46.9% vs. 26.7 ± 42.0%, P < 0.001) and RAP (-93.9 ± 48.1 vs. -74.5 ± 43.0%, P < 0.001), respectively, for MAP+D and MAP-D inputs, but not for CrCP (2.2 ± 48.1% vs. 0.72 ± 42.9%, P = 0.76). Compared with males, female participants had higher MCAv (63.9 ± 15.6 cm/s vs. 55.4 ± 12.9 cm/s, P < 0.001) but lower EtCO2 (P < 0.001) and RAP (P = 0.015). Sex did not influence ΔDS for any of the three-step responses. The presence of directional sensitivity in the RAP, but not in the CrCP transfer function, suggests that the origin could be solely myogenic, without metabolic involvement.NEW & NOTEWORTHY The directional sensitivity of the cerebral blood velocity response to a sudden change in mean arterial blood pressure (MAP) is mediated by the resistance-area product, without involvement from the cerebral critical closing pressure. The reduced amplitude of MAP spontaneous fluctuations at rest suggests that it is less likely that directional sensitivity has origins in the sympathetic control of cerebral blood vessels, thus generating the need to consider other alternatives.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Abdulaziz Alshehri
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- Emergency Medical Services Department, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
4
|
Veríssimo LF, Alves FHF, Estrada VB, da Costa Marques LA, Andrade KC, Bonancea AM, Okano NT, Corrêa FMDA, Pelosi GG. Cardiovascular effects of early maternal separation and escitalopram treatment in rats with depressive-like behaviour. Auton Neurosci 2024; 256:103223. [PMID: 39616948 DOI: 10.1016/j.autneu.2024.103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Depression and cardiovascular diseases are two of the world's major health problems. Escitalopram (ESC) is widely used because of its safety in relation to other drugs in that class; however, it can affect the cardiovascular system. The present study evaluated the cardiovascular parameters of depressive-like male rats and the cardiovascular effects of ESC treatment on that condition. The EMS protocol consisted of separating the litter from the dam for 3 h over 13 days. Animals were anesthetized with tribromoethanol (250 mg/kg, intraperitoneally) and the catheters were inserted into the femoral and into the femoral vein. Depressive-like rats showed an increase in the pressor response to phenylephrine (Emax:depressive = 50.36 ± 2.997 mmHg; non-depressive = 39.51 ± 3.328 mmHg; p < 0.05) and a reduction in the EC50 (depressive = 0.6203 ± 0.03005 μg/kg; non-depressive = 0.7320 ± 0.03519 μg/kg; p < 0.05) with no change in the other cardiovascular parameters. After treatment with ESC, a reduction of intrinsic heart rate was observed in the depressive-like rats (control: 342 ± 6 bpm; ESC: 316 ± 5 bpm; p < 0.05). In addition, ESC treatment increased the bradycardic (control: -97.81 ± 8.3 bpm; ESC: -137.1 ± 12.31 bpm; p = 0.0236; t = 2.502) during the baroreflex response, caused by an increase in cardiac parasympathetic modulation in the heart, in depressive-like rats (p < 0.001). The findings suggest that depressive-like rats showed cardiovascular changes, and that ESC treatment was able to reverse these changes, suggesting that ESC has a good safety profile for depressive patients with cardiovascular disease due to increased parasympathetic modulation.
Collapse
Affiliation(s)
- Luiz Fernando Veríssimo
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | | | - Viviane Batista Estrada
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | | | - Karoliny Coelho Andrade
- Department of Health Sciences Faculty of Medicine Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Amanda Monteiro Bonancea
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Natália Tavares Okano
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | | | - Gislaine Garcia Pelosi
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| |
Collapse
|
5
|
Gelpi F, Wu MA, Bari V, Cairo B, De Maria B, Fossali T, Colombo R, Porta A. Autonomic Function and Baroreflex Control in COVID-19 Patients Admitted to the Intensive Care Unit. J Clin Med 2024; 13:2228. [PMID: 38673501 PMCID: PMC11050480 DOI: 10.3390/jcm13082228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Autonomic function and baroreflex control might influence the survival rate of coronavirus disease 2019 (COVID-19) patients admitted to the intensive care unit (ICU) compared to respiratory failure patients without COVID-19 (non-COVID-19). This study describes physiological control mechanisms in critically ill COVID-19 patients admitted to the ICU in comparison to non-COVID-19 individuals with the aim of improving stratification of mortality risk. Methods: We evaluated autonomic and baroreflex control markers extracted from heart period (HP) and systolic arterial pressure (SAP) variability acquired at rest in the supine position (REST) and during a modified head-up tilt (MHUT) in 17 COVID-19 patients (age: 63 ± 10 years, 14 men) and 33 non-COVID-19 patients (age: 60 ± 12 years, 23 men) during their ICU stays. Patients were categorized as survivors (SURVs) or non-survivors (non-SURVs). Results: We found that COVID-19 and non-COVID-19 populations exhibited similar vagal and sympathetic control markers; however, non-COVID-19 individuals featured a smaller baroreflex sensitivity and an unexpected reduction in the HP-SAP association during the MHUT compared to the COVID-19 group. Nevertheless, none of the markers of the autonomic and baroreflex functions could distinguish SURVs from non-SURVs in either population. Conclusions: We concluded that COVID-19 patients exhibited a more preserved baroreflex control compared to non-COVID-19 individuals, even though this information is ineffective in stratifying mortality risk.
Collapse
Affiliation(s)
- Francesca Gelpi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.); (A.P.)
| | - Maddalena Alessandra Wu
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy;
- Division of Internal Medicine, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.); (A.P.)
- Department of Cardiothoracic, Vascular Anaesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.); (A.P.)
| | | | - Tommaso Fossali
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy; (T.F.); (R.C.)
| | - Riccardo Colombo
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy; (T.F.); (R.C.)
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.); (A.P.)
- Department of Cardiothoracic, Vascular Anaesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
| |
Collapse
|
6
|
De Maria B, Dalla Vecchia LA, Bari V, Cairo B, Gelpi F, Perego F, Takahashi ACM, Milan-Mattos JC, Minatel V, Rehder-Santos P, Esler M, Lambert E, Baumert M, Catai AM, Porta A. The degree of engagement of cardiac and sympathetic arms of the baroreflex does not depend on the absolute value and sign of arterial pressure variations. Physiol Meas 2023; 44:114002. [PMID: 37922536 DOI: 10.1088/1361-6579/ad0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Objective.The percentages of cardiac and sympathetic baroreflex patterns detected via baroreflex sequence (SEQ) technique from spontaneous variability of heart period (HP) and systolic arterial pressure (SAP) and of muscle nerve sympathetic activity (MSNA) burst rate and diastolic arterial pressure (DAP) are utilized to assess the level of the baroreflex engagement. The cardiac baroreflex patterns can be distinguished in those featuring both HP and SAP increases (cSEQ++) and decreases (cSEQ--), while the sympathetic baroreflex patterns in those featuring a MSNA burst rate decrease and a DAP increase (sSEQ+-) and vice versa (sSEQ-+). The present study aims to assess the modifications of the involvement of the cardiac and sympathetic arms of the baroreflex with age and postural stimulus intensity.Approach.We monitored the percentages of cSEQ++ (%cSEQ++) and cSEQ-- (%cSEQ--) in 100 healthy subjects (age: 21-70 years, 54 males, 46 females), divided into five sex-balanced groups consisting of 20 subjects in each decade at rest in supine position and during active standing (STAND). We evaluated %cSEQ++, %cSEQ--, and the percentages of sSEQ+- (%sSEQ+-) and sSEQ-+ (%sSEQ-+) in 12 young healthy subjects (age 23 ± 2 years, 3 females, 9 males) undergoing incremental head-up tilt.Main results.We found that: (i) %cSEQ++ and %cSEQ-- decreased with age and increased with STAND and postural stimulus intensity; (ii) %sSEQ+- and %sSEQ-+ augmented with postural challenge magnitude; (iii) the level of cardiac and sympathetic baroreflex engagement did not depend on either the absolute value of arterial pressure or the direction of its changes.Significance.This study stresses the limited ability of the cardiac and sympathetic arms of the baroreflex in controlling absolute arterial pressure values and the equivalent ability of both positive and negative arterial pressure changes in soliciting them.
Collapse
Affiliation(s)
| | | | - Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Francesca Gelpi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | | | - Vinicius Minatel
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | | | - Murray Esler
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Elisabeth Lambert
- School of Health Science, Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Australia
| | - Mathias Baumert
- Discipline of Biomedical Engineering, School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, Australia
| | - Aparecida Maria Catai
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
7
|
Porta A, Bari V, Cairo B, Gelpi F, De Maria B, Takahashi ACM, Catai AM. On the Validity of Single Regression Strategy for Granger Causality Assessment in Cardiovascular and Cardiorespiratory Control Studies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083510 DOI: 10.1109/embc40787.2023.10341180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Granger causality (GC) analysis is based on the comparison between prediction error variances computed over the full and restricted models after identifying the coefficients of appropriate vector regressions. GC markers can be computed via a double regression (DR) approach identifying two separate, independent models and a single regression (SR) strategy optimizing the description of the dynamics of the target over the full model and, then, reusing some parts of it in the restricted model. The present study compares the SR and DR strategies over heart period (HP), systolic arterial pressure (SAP) and respiration (R) beat-to-beat series collected during a graded orthostatic challenge induced by head-up tilt in 17 healthy individuals (age: 21-36 yrs; median: 29 yrs; 9 females and 8 males). We found that the DR approach was more powerful than the SR one in detecting the expected stronger involvement of the baroreflex during the challenge, while the expected weaker cardiorespiratory coupling was identified by both SR and DR strategies. The less powerful ability of the SR approach was the result of the greater variance of GC markers compared to the DR strategy. We conclude that, contrary to the suggestions present in literature, the SR approach is not necessarily associated with a smaller dispersion of GC markers. Moreover, we suggest that additional factors, such as the strategy utilized to build embedding spaces and metric utilized to compare prediction error variances, might play an important role in differentiating SR and DR approaches.
Collapse
|
8
|
Panerai RB, Barnes SC, Batterham AP, Robinson TG, Haunton VJ. Directional sensitivity of dynamic cerebral autoregulation during spontaneous fluctuations in arterial blood pressure at rest. J Cereb Blood Flow Metab 2023; 43:552-564. [PMID: 36420777 PMCID: PMC10063834 DOI: 10.1177/0271678x221142527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Directional sensitivity, the more efficient response of cerebral autoregulation to increases, compared to decreases, in mean arterial pressure (MAP), has been demonstrated with repeated squat-stand maneuvers (SSM). In 43 healthy subjects (26 male, 23.1 ± 4.2 years old), five min. recordings of cerebral blood velocity (bilateral Doppler ultrasound), MAP (Finometer), end-tidal CO2 (capnograph), and heart rate (ECG) were obtained during sitting (SIT), standing (STA) and SSM. A new analytical procedure, based on autoregressive-moving average models, allowed distinct estimates of the autoregulation index (ARI) by separating the MAP signal into its positive (MAP+D) and negative (MAP-D) derivatives. ARI+D was higher than ARI-D (p < 0.0001), SIT: 5.61 ± 1.58 vs 4.31 ± 2.16; STA: 5.70 ± 1.24 vs 4.63 ± 1.92; SSM: 4.70 ± 1.11 vs 3.31 ± 1.53, but the difference ARI+D-ARI-D was not influenced by the condition. A bootstrap procedure determined the critical number of subjects needed to identify a significant difference between ARI+D and ARI-D, corresponding to 24, 37 and 38 subjects, respectively, for SSM, STA and SIT. Further investigations are needed on the influences of sex, aging and other phenotypical characteristics on the phenomenon of directional sensitivity of dynamic autoregulation.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Sam C Barnes
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Angus P Batterham
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
9
|
Kostoglou K, Simpson DM, Payne SJ. Point/counterpoint: We should not take the direction of blood pressure change into consideration for dynamic cerebral autoregulation quantification. J Cereb Blood Flow Metab 2022; 42:2354-2356. [PMID: 36113047 PMCID: PMC9670004 DOI: 10.1177/0271678x221123442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past years, a wide range of studies have provided evidence of asymmetry in the response of static and dynamic cerebral autoregulation (CA) during increasing and decreasing pressure challenges. The main message is that CA is stronger during transient increases of arterial blood pressure rather than decreases. Here we do not argue against the presence of CA asymmetry but we seek to raise questions regarding the measurement of the effect and whether this effect needs to be taken into account, especially in clinical settings.
Collapse
Affiliation(s)
- Kyriaki Kostoglou
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - David M Simpson
- ISVR, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| |
Collapse
|
10
|
Exploring metrics for the characterization of the cerebral autoregulation during head-up tilt and propofol general anesthesia. Auton Neurosci 2022; 242:103011. [PMID: 35834916 DOI: 10.1016/j.autneu.2022.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/30/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
Techniques grounded on the simultaneous utilization of Tiecks' second order differential equations and spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV), recorded from middle cerebral arteries through a transcranial Doppler device, provide a characterization of cerebral autoregulation (CA) via the autoregulation index (ARI). These methods exploit two metrics for comparing the measured MCBFV series with the version predicted by Tiecks' model: normalized mean square prediction error (NMSPE) and normalized correlation ρ. The aim of this study is to assess the two metrics for ARI computation in 13 healthy subjects (age: 27 ± 8 yrs., 5 males) at rest in supine position (REST) and during 60° head-up tilt (HUT) and in 19 patients (age: 64 ± 8 yrs., all males), scheduled for coronary artery bypass grafting, before (PRE) and after (POST) propofol general anesthesia induction. Analyses were carried out over the original MAP and MCBFV pairs and surrogate unmatched couples built individually via time-shifting procedure. We found that: i) NMSPE and ρ metrics exhibited similar performances in passing individual surrogate test; ii) the two metrics could lead to different ARI estimates; iii) CA was not different during HUT or POST compared to baseline and this conclusion held regardless of the technique and metric for ARI estimation. Results suggest a limited impact of the sympathetic control on CA.
Collapse
|
11
|
Norcliffe-Kaufmann L. Stress and the baroreflex. Auton Neurosci 2022; 238:102946. [PMID: 35086020 DOI: 10.1016/j.autneu.2022.102946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/16/2021] [Accepted: 01/16/2022] [Indexed: 11/27/2022]
Abstract
The stress response to emotions elicits the release of glucocorticoids from the adrenal cortex, epinephrine from the adrenal medulla, and norepinephrine from the sympathetic nerves. The baroreflex adapts to buffer these responses to ensure that perfusion to the organs meets the demands while maintaining blood pressure within a within a narrow range. While stressor-evoked autonomic cardiovascular responses may be adaptive for the short-term, the recurrent exaggerated cardiovascular stress reactions can be maladaptive in the long-term. Prolonged stress or loss of the baroreflex's buffering capacity can predispose episodes of heightened sympathetic activity during stress leading to hypertension, tachycardia, and ventricular wall motion abnormalities. This review discusses 1) how the baroreflex responds to acute and chronic stressors, 2) how lesions in the neuronal pathways of the baroreflex alter the ability to respond or counteract the stress response, and 3) the techniques to assess baroreflex sensitivity and stress responses. Evidence suggests that loss of baroreflex sensitivity may predispose heightened autonomic responses to stress and at least in part explain the association between stress, mortality and cardiovascular diseases.
Collapse
|
12
|
Milanez M, Liberatore A, Nishi E, Bergamaschi C, Campos R, Koh I. Patterns of renal and splanchnic sympathetic vasomotor activity in an animal model of survival to experimental sepsis. Braz J Med Biol Res 2022; 55:e11873. [PMID: 35043862 PMCID: PMC8852156 DOI: 10.1590/1414-431x2021e11873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - E.E. Nishi
- Universidade Federal de São Paulo, Brasil
| | | | | | - I.H.J. Koh
- Universidade Federal de São Paulo, Brasil
| |
Collapse
|
13
|
Porta A, Gelpi F, Bari V, Cairo B, De Maria B, Tonon D, Rossato G, Ranucci M, Faes L. Categorizing the Role of Respiration in Cardiovascular and Cerebrovascular Variability Interactions. IEEE Trans Biomed Eng 2021; 69:2065-2076. [PMID: 34905489 DOI: 10.1109/tbme.2021.3135313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Respiration disturbs cardiovascular and cerebrovascular controls but its role is not fully elucidated. METHODS Respiration can be classified as a confounder if its observation reduces the strength of the causal relationship from source to target. Respiration is a suppressor if the opposite situation holds. We prove that a confounding/suppression (C/S) test can be accomplished by evaluating the sign of net redundancy/synergy balance in the predictability framework based on multivariate autoregressive modelling. In addition, we suggest that, under the hypothesis of Gaussian processes, the C/S test can be given in the transfer entropy decomposition framework as well. Experimental protocols: We applied the C/S test to variability series of respiratory movements, heart period, systolic arterial pressure, mean arterial pressure, and mean cerebral blood flow recorded in 17 pathological individuals (age: 648 yrs; 17 males) before and after induction of propofol-based general anesthesia prior to coronary artery bypass grafting, and in 13 healthy subjects (age: 278 yrs; 5 males) at rest in supine position and during head-up tilt with a table inclination of 60. RESULTS Respiration behaved systematically as a confounder for cardiovascular and cerebrovascular controls. In addition, its role was affected by propofol-based general anesthesia but not by a postural stimulus of limited intensity. CONCLUSION The C/S test can be fruitfully exploited to categorize the role of respiration over causal variability interactions. SIGNIFICANCE The application of the C/S test could favor the comprehension of the role of respiration in cardiovascular and cerebrovascular regulations.
Collapse
|
14
|
Bari V, De Maria B, Cairo B, Gelpi F, Lambert E, Esler M, Baumert M, Porta A. Assessing Correlation between Heart Rate Variability Markers Based on Laguerre Expansion and Direct Measures of Sympathetic Activity during Incremental Head-up Tilt. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5411-5414. [PMID: 34892350 DOI: 10.1109/embc46164.2021.9630873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Traditional frequency domain analysis of heart period (HP) variability allows the estimation of the parasympathetic modulation directed to the heart but the sympathetic one remains largely unknown. Recently, sympathetic and parasympathetic activity indexes (SAI and PAI) have been proposed to address this issue. SAI and PAI were derived from HP variability via the application of an orthonormal Laguerre expansion allowing the separation of HP variations driven by sympathetic and parasympathetic outflows. In this study, SAI and PAI were validated against tonic and variability measures of muscle sympathetic nerve activity (MSNA) and more traditional markers derived from HP variability. Indexes were calculated in 12 healthy subjects (9 females, age from 20 to 36 years, median 22.5 years) undergoing incremental head-up tilt. Results showed that traditional HP and MSNA variability markers as well as SAI and PAI were modified in proportion to the magnitude of the postural challenge. However, SAI was not correlated with any MSNA markers and PAI was not linked to respiratory sinus arrhythmia. SAI and PAI can capture modifications of cardiac control induced by the orthostatic challenge but they might be weak surrogates of vagal and sympathetic activities and/or modulations.Clinical Relevance- SAI and PAI markers are useful to characterize cardiac control but poorly linked with autonomic nervous system state.
Collapse
|
15
|
Kathpalia A, Nagaraj N. Time-Reversibility, Causality and Compression-Complexity. ENTROPY 2021; 23:e23030327. [PMID: 33802138 PMCID: PMC8000281 DOI: 10.3390/e23030327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/30/2022]
Abstract
Detection of the temporal reversibility of a given process is an interesting time series analysis scheme that enables the useful characterisation of processes and offers an insight into the underlying processes generating the time series. Reversibility detection measures have been widely employed in the study of ecological, epidemiological and physiological time series. Further, the time reversal of given data provides a promising tool for analysis of causality measures as well as studying the causal properties of processes. In this work, the recently proposed Compression-Complexity Causality (CCC) measure (by the authors) is shown to be free of the assumption that the "cause precedes the effect", making it a promising tool for causal analysis of reversible processes. CCC is a data-driven interventional measure of causality (second rung on the Ladder of Causation) that is based on Effort-to-Compress (ETC), a well-established robust method to characterize the complexity of time series for analysis and classification. For the detection of the temporal reversibility of processes, we propose a novel measure called the Compressive Potential based Asymmetry Measure. This asymmetry measure compares the probability of the occurrence of patterns at different scales between the forward-time and time-reversed process using ETC. We test the performance of the measure on a number of simulated processes and demonstrate its effectiveness in determining the asymmetry of real-world time series of sunspot numbers, digits of the transcedental number π and heart interbeat interval variability.
Collapse
Affiliation(s)
- Aditi Kathpalia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Czech Academy of Sciences, Pod Vodárenskou věží 271/2, 182 07 Prague, Czech Republic
- Consciousness Studies Programme, National Institute of Advanced Studies (NIAS), Indian Institute of Science Campus, Bengaluru 560012, India;
- Correspondence:
| | - Nithin Nagaraj
- Consciousness Studies Programme, National Institute of Advanced Studies (NIAS), Indian Institute of Science Campus, Bengaluru 560012, India;
| |
Collapse
|
16
|
Porta A, Fantinato A, Bari V, Gelpi F, Cairo B, De Maria B, Bertoldo EG, Fiolo V, Callus E, De Vincentiis C, Volpe M, Molfetta R, Ranucci M. Evaluation of the impact of surgical aortic valve replacement on short-term cardiovascular and cerebrovascular controls through spontaneous variability analysis. PLoS One 2020; 15:e0243869. [PMID: 33301491 PMCID: PMC7728248 DOI: 10.1371/journal.pone.0243869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Abstract
We assessed the effect of surgical aortic valve replacement (SAVR) on cardiovascular and cerebrovascular controls via spontaneous variability analyses of heart period, approximated as the temporal distance between two consecutive R-wave peaks on the electrocardiogram (RR), systolic, diastolic and mean arterial pressure (SAP, DAP and MAP) and mean cerebral blood flow (MCBF). Powers in specific frequency bands, complexity, presence of nonlinear dynamics and markers of cardiac baroreflex and cerebral autoregulation were calculated. Variability series were acquired before (PRE) and after (POST) SAVR in 11 patients (age: 76±5 yrs, 7 males) at supine resting and during active standing. Parametric spectral analysis was performed based on the autoregressive model. Complexity was assessed via a local nonlinear prediction approach exploiting the k-nearest-neighbor strategy. The presence of nonlinear dynamics was checked by comparing the complexity marker computed over the original series with the distribution of the same index assessed over a set of surrogates preserving distribution and power spectral density of the original series. Cardiac baroreflex and cerebral autoregulation were estimated by assessing the transfer function from SAP to RR and from MAP to MCBF and squared coherence function via the bivariate autoregressive approach. We found that: i) orthostatic challenge had no effect on cardiovascular and cerebrovascular control markers in PRE; ii) RR variance was significantly reduced in POST; iii) complexity of SAP, DAP and MAP variabilities increased in POST with a greater likelihood of observing nonlinear dynamics over SAP compared to PRE at supine resting; iv) the amplitude of MCBF variations and MCBF complexity in POST remained similar to PRE; v) cardiac baroreflex sensitivity decreased in POST, while cerebrovascular autoregulation was preserved. SAVR induces important changes of cardiac and vascular autonomic controls and baroreflex regulation in patients exhibiting poor reactivity of cardiovascular regulatory mechanisms, while cerebrovascular autoregulation seems to be less affected.
Collapse
Affiliation(s)
- Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
- * E-mail:
| | - Angela Fantinato
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Vlasta Bari
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Francesca Gelpi
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | - Valentina Fiolo
- Clinical Psychology Service, IRCCS Policlinico San Donato, Milan, Italy
| | - Edward Callus
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Clinical Psychology Service, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Marianna Volpe
- Department of Cardiac Rehabilitation, IRCCS Policlinico San Donato, Milan, Italy
| | - Raffaella Molfetta
- Department of Cardiac Rehabilitation, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Ranucci
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
17
|
Larson M, Chantigian DP, Asirvatham-Jeyaraj N, Van de Winckel A, Keller-Ross ML. Slow-Paced Breathing and Autonomic Function in People Post-stroke. Front Physiol 2020; 11:573325. [PMID: 33192570 PMCID: PMC7662434 DOI: 10.3389/fphys.2020.573325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: To determine if acute slow breathing at 6 breaths/min would improve baroreflex sensitivity (BRS) and heart rate variability (HRV), and lower blood pressure (BP) in adults after stroke. Methods: Twelve individuals completed two randomized study visits where they performed a 15-min bout of breathing exercises at 6 breaths/min (slow) and at 12 breaths/min (control). Continuous BP and heart rate (HR) were measured throughout, and BRS, BRS response to elevations in blood pressure (BRSup), BRS response to depressions in blood pressure (BRSdown), and HRV were calculated and analyzed before (pre), during, and after (post) breathing exercises. Results: BRS increased from pre to post slow breathing by 10% (p = 0.012), whereas BRSup increased from pre to during slow breathing by 30% (p = 0.04). BRSdown increased from pre to post breathing for both breathing conditions (p < 0.05). HR (control: Δ - 4 ± 4; slow: Δ - 3 ± 4 beats/min, time, p < 0.01) and systolic BP (control: Δ - 0.5 ± 5; slow: Δ - 6.3 ± 8 mmHg, time, p < 0.01) decreased after both breathing conditions. Total power, low frequency power, and standard deviation of normal inter-beat intervals (SDNN) increased during the 6-breaths/min condition (condition × time, p < 0.001), whereas high frequency increased during both breathing conditions (time effect, p = 0.009). Conclusions: This study demonstrated that in people post-stroke, slow breathing may increase BRS, particularly BRSup, more than a typical breathing space; however, paced breathing at either a slow or typical breathing rate appears to be beneficial for acutely decreasing systolic BP and HR and increasing HRV.
Collapse
Affiliation(s)
- Mia Larson
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Daniel P. Chantigian
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Ninitha Asirvatham-Jeyaraj
- Indian Institute of Science, Bangalore, India
- Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Ann Van de Winckel
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Manda L. Keller-Ross
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
18
|
de Abreu RM, Catai AM, Cairo B, Rehder-Santos P, da Silva CD, Signini ÉDF, Sakaguchi CA, Porta A. A Transfer Entropy Approach for the Assessment of the Impact of Inspiratory Muscle Training on the Cardiorespiratory Coupling of Amateur Cyclists. Front Physiol 2020; 11:134. [PMID: 32158402 PMCID: PMC7052290 DOI: 10.3389/fphys.2020.00134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/07/2020] [Indexed: 12/23/2022] Open
Abstract
The strength of cardiorespiratory interactions diminishes with age. Physical exercise can reduce the rate of this trend. Inspiratory muscle training (IMT) is a technique capable of improving cardiorespiratory interactions. This study evaluates the effect of IMT on cardiorespiratory coupling in amateur cyclists. Thirty male young healthy cyclists underwent a sham IMT of very low intensity (SHAM, n = 9), an IMT of moderate intensity at 60% of the maximal inspiratory pressure (MIP60, n = 10) and an IMT of high intensity at the critical inspiratory pressure (CIP, n = 11). Electrocardiogram, non-invasive arterial pressure, and thoracic respiratory movement (RM) were recorded before (PRE) and after (POST) training at rest in supine position (REST) and during active standing (STAND). The beat-to-beat series of heart period (HP) and systolic arterial pressure (SAP) were analyzed with the RM signal via a traditional non-causal approach, such as squared coherence function, and via a causal model-based transfer entropy (TE) approach. Cardiorespiratory coupling was quantified via the HP-RM squared coherence at the respiratory rate (K 2 HP-R M), the unconditioned TE from RM to HP (TER M → HP) and the TE from RM to HP conditioned on SAP (TER M → HP| SAP). In PRE condition we found that STAND led to a decrease of TER M → HP| SAP. After SHAM and CIP training this tendency was confirmed, while MIP60 inverted it by empowering cardiorespiratory coupling. This behavior was observed in presence of unvaried SAP mean and with usual responses of the baroreflex control and HP mean to STAND. TER M → HP and K 2 HP- RM were not able to detect the post-training increase of cardiorespiratory coupling strength during STAND, thus suggesting that conditioning out SAP is important for the assessment of cardiorespiratory interactions. Since the usual response of HP mean, SAP mean and baroreflex sensitivity to postural stressor were observed after MIP60 training, we conclude that the post-training increase of cardiorespiratory coupling during STAND in MIP60 group might be the genuine effect of some rearrangements at the level of central respiratory network and its interactions with sympathetic drive and vagal activity.
Collapse
Affiliation(s)
| | - Aparecida Maria Catai
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | | | | | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic – Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
19
|
Kawada T, Yamamoto H, Hayama Y, Nishikawa T, Tanaka K, Sugimachi M. Contrasting open-loop dynamic characteristics of sympathetic and vagal systems during baroreflex-mediated heart rate control in rats. Am J Physiol Regul Integr Comp Physiol 2019; 317:R879-R890. [DOI: 10.1152/ajpregu.00231.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although heart rate (HR) is governed by the sympathetic and parasympathetic nervous systems, a head-to-head comparison of the open-loop dynamic characteristics of the total arc from a baroreceptor pressure input to the HR response has yet to be performed. We estimated the transfer function from carotid sinus pressure input to the HR response ( HCSP→HR) before and after bilateral vagotomy ( n = 7) as well as before and after the administration of a β-blocker propranolol ( n = 8) in anesthetized male Wistar-Kyoto rats. The carotid sinus pressure was perturbed according to a Gaussian white noise signal so that the input power spectra were relatively flat between 0.01 and 1 Hz. The gain plot of HCSP→HR was V-shaped. Vagotomy reduced the dynamic gain at 1 Hz (0.0598 ± 0.0065 to 0.0025 ± 0.0004 beats·min−1·mmHg−1, P < 0.001) but not at 0.01 or 0.1 Hz. β-Blockade reduced the dynamic gain at 0.01 Hz (0.247 ± 0.069 to 0.077 ± 0.017 beats·min−1·mmHg−1, P = 0.020) but not at 0.1 or 1 Hz. We also estimated the efferent limb transfer function from electrical vagal efferent stimulation to the HR response ( HVN→HR) under β-blockade conditions. We associated the model parameters of HVN→HR with the mean HR and the standard deviation of HR so that HVN→HR could be estimated based only on the HR data. We finally estimated the neural arc transfer function from a pressure input to efferent vagal nerve activity by dividing HCSP→HR by HVN→HR. The mathematically determined vagal neural arc showed derivative characteristics with its phase near zero radians at the lowest frequency.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiromi Yamamoto
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yohsuke Hayama
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kunihiko Tanaka
- Graduate School of Health and Medicine, Gifu University of Medical Science, Gifu, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
20
|
De Maria B, Bari V, Cairo B, Vaini E, Martins de Abreu R, Perseguini NM, Milan-Mattos J, Rehder-Santos P, Minatel V, Catai AM, Dalla Vecchia LA, Porta A. Cardiac baroreflex hysteresis is one of the determinants of the heart period variability asymmetry. Am J Physiol Regul Integr Comp Physiol 2019; 317:R539-R551. [PMID: 31365303 DOI: 10.1152/ajpregu.00112.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In heart period (HP) variability (HPV) recordings the percentage of negative HP variations tends to be greater than that of positive ones and this pattern is referred to as HPV asymmetry (HPVA). HPVA has been studied in several experimental conditions in healthy and pathological populations, but its origin is unclear. The baroreflex (BR) exhibits an asymmetric behavior as well given that it reacts more importantly to positive than negative arterial pressure (AP) variations. We tested the hypothesis that the BR asymmetry (BRA) is a HPVA determinant over spontaneous fluctuations of HP and systolic AP (SAP). We studied 100 healthy subjects (age from 21 to 70 yr, 54 men) comprising 20 subjects in each age decade. Electrocardiogram and noninvasive AP were recorded for 15 min at rest in supine position (REST) and during active standing (STAND). The HPVA was evaluated via Porta's index and Guzik's index, while the BRA was assessed as the difference, and normalized difference, between BR sensitivities computed over positive and negative SAP variations via the sequence method applied to HP and SAP variability. HPVA significantly increased during STAND and decreased progressively with age. BRA was not significantly detected both at REST and during STAND. However, we found a significant positive association between BRA and HPVA markers during STAND persisting even within the age groups. This study supports the use of HPVA indexes as descriptors of BRA and identified a challenge soliciting the BR response like STAND to maximize the association between HPVA and BRA markers.
Collapse
Affiliation(s)
- Beatrice De Maria
- Istituto di Ricovero e Cura a Carattere Scientifico Istituti Clinici Scientifici Maugeri, Milan, Italy
| | - Vlasta Bari
- Department of Cardiothoracic, Vascular Anesthesia, and Intensive Care, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Emanuele Vaini
- Department of Cardiothoracic, Vascular Anesthesia, and Intensive Care, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, San Donato Milanese, Milan, Italy
| | | | | | - Juliana Milan-Mattos
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Patricia Rehder-Santos
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Vinícius Minatel
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Aparecida Maria Catai
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | | | - Alberto Porta
- Department of Cardiothoracic, Vascular Anesthesia, and Intensive Care, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|