1
|
Grosiak M, Koteja P, Hambly C, Speakman JR, Sadowska ET. Limits to sustained energy intake. XXXIV. Can the heat dissipation limit (HDL) theory explain reproductive aging? J Exp Biol 2024; 227:jeb246592. [PMID: 38264846 DOI: 10.1242/jeb.246592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
According to the heat dissipation limit (HDL) theory, reproductive performance is limited by the capacity to dissipate excess heat. We tested the novel hypotheses that (1) the age-related decline in reproductive performance is due to an age-related decrease of heat dissipation capacity and (2) the limiting mechanism is more severe in animals with high metabolic rates. We used bank voles (Myodes glareolus) from lines selected for high swim-induced aerobic metabolic rate, which have also increased basal metabolic rate, and unselected control lines. Adult females from three age classes - young (4 months), middle-aged (9 months) and old (16 months) - were maintained at room temperature (20°C), and half of the lactating females were shaved to increase heat dissipation capacity. Old females from both selection lines had a decreased litter size, mass and growth rate. The peak-lactation average daily metabolic rate was higher in shaved than in unshaved mothers, and this difference was more profound among old than young and middle-aged voles (P=0.02). In females with large litters, milk production tended to be higher in shaved (least squares mean, LSM±s.e.: 73.0±4.74 kJ day-1) than in unshaved voles (61.8±4.78 kJ day-1; P=0.05), but there was no significan"t effect of fur removal on the growth rate [4.47±2.29 g (4 days-1); P=0.45]. The results provide mixed support of the HDL theory and no support for the hypotheses linking the differences in reproductive aging with either a deterioration in thermoregulatory capability or genetically based differences in metabolic rate.
Collapse
Affiliation(s)
- Marta Grosiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
2
|
The Endocannabinoid System and Physical Exercise. Int J Mol Sci 2023; 24:ijms24031989. [PMID: 36768332 PMCID: PMC9916354 DOI: 10.3390/ijms24031989] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (ECS) is involved in various processes, including brain plasticity, learning and memory, neuronal development, nociception, inflammation, appetite regulation, digestion, metabolism, energy balance, motility, and regulation of stress and emotions. Physical exercise (PE) is considered a valuable non-pharmacological therapy that is an immediately available and cost-effective method with a lot of health benefits, one of them being the activation of the endogenous cannabinoids. Endocannabinoids (eCBs) are generated as a response to high-intensity activities and can act as short-term circuit breakers, generating antinociceptive responses for a short and variable period of time. A runner's high is an ephemeral feeling some sport practitioners experience during endurance activities, such as running. The release of eCBs during sustained physical exercise appears to be involved in triggering this phenomenon. The last decades have been characterized by an increased interest in this emotional state induced by exercise, as it is believed to alleviate pain, induce mild sedation, increase euphoric levels, and have anxiolytic effects. This review provides information about the current state of knowledge about endocannabinoids and physical effort and also an overview of the studies published in the specialized literature about this subject.
Collapse
|
3
|
Hanhimäki E, Watts PC, Koskela E, Koteja P, Mappes T, Hämäläinen AM. Evolved high aerobic capacity has context-specific effects on gut microbiota. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.934164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota is expected to coevolve with the host's physiology and may play a role in adjusting the host's energy metabolism to suit the host's environment. To evaluate the effects of both evolved host metabolism and the environmental context in shaping the gut microbiota, we used a unique combination of (1) experimental evolution to create selection lines for a fast metabolism and (2) a laboratory-to-field translocation study. Mature bank voles Myodes glareolus from lines selected for high aerobic capacity (A lines) and from unselected control (C lines) were released into large (0.2 ha) outdoor enclosures for longitudinal monitoring. To examine whether the natural environment elicited a similar or more pronounced impact on the gut microbiota of the next generation, we also sampled the field-reared offspring. The gut microbiota were characterized using 16S rRNA amplicon sequencing of fecal samples. The artificial selection for fast metabolism had minimal impact on the gut microbiota in laboratory conditions but in field conditions, there were differences between the selection lines (A lines vs. C lines) in the diversity, community, and resilience of the gut microbiota. Notably, the selection lines differed in the less abundant bacteria throughout the experiment. The lab-to-field transition resulted in an increase in alpha diversity and an altered community composition in the gut microbiota, characterized by a significant increase in the relative abundance of Actinobacteria and a decrease of Patescibacteria. Also, the selection lines showed different temporal patterns in changes in microbiota composition, as the average gut microbiota alpha diversity of the C lines, but not A lines, was temporarily reduced during the initial transition to the field. In surviving young voles, the alpha diversity of gut microbiota was significantly higher in A-line than C-line voles. These results indicate that the association of host metabolism and gut microbiota is context-specific, likely mediated by behavioral or physiological modifications in response to the environment.
Collapse
|
4
|
Evolution of an increased performance under acute challenge does not exacerbate vulnerability to chronic stress. Sci Rep 2022; 12:2126. [PMID: 35136150 PMCID: PMC8825808 DOI: 10.1038/s41598-022-06060-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
Abstract
An adequate stress response plays a vital role in coping with challenges. However, if selection for improved coping with an acute challenge affects the entire stress response system, susceptibility to adverse effects of chronic stressors can be deepened. Here, we used bank voles from lines selected for high swim-induced aerobic metabolism (A) and unselected control (C), and asked if the selection affected sensitivity to chronic mild stress (CMS). The voles were first habituated to daily weighing and feces collection for three weeks, and then for two weeks were exposed to CMS or remained undisturbed. The habituation itself resulted in an increased swim-induced oxygen consumption in both line types, and a decreased body mass. The CMS treatment caused reduction of food consumption in the second week of the experiment, and, in males, a decline in the metabolic rate. Paradoxically, fecal corticosterone metabolites decreased in the CMS-treated group. The response to CMS did not differ between the line types. Thus, the selection for increased performance was not traded off by increased vulnerability to chronic stress. The counter-intuitive results may even lead to a speculation that bank voles—and perhaps also other animals—prefer experiencing unpredictable, unpleasant stressors over the monotony of standard laboratory housing.
Collapse
|
5
|
Neurobiological Processes Induced by Aerobic Exercise through the Endocannabinoidome. Cells 2021; 10:cells10040938. [PMID: 33920695 PMCID: PMC8072750 DOI: 10.3390/cells10040938] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Evidence suggesting the triangulation of the endocannabinoid system, exercise, and neurological health is emerging. In addition to the endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), the expanded endocannabinoid system, known as the endocannabinoidome (eCBome), appears to be an important player in this relationship. The eCBome includes several endocannabinoid-like mediators such as N-acylethanolamines and 2-monoacylglycerols, the enzymes involved in their biosynthesis and degradation, and the receptors they affect. This review aims to relate the functional interactions between aerobic exercise, and the molecular and cellular pathways related to endocannabinoids, in the hypothalamus, hippocampus, and the periphery, with special attention given to associations with emotional state, cognition, and mental health. Given the well-documented roles of many eCBome members in regulating stress and neurological processes, we posit that the eCBome is an important effector of exercise-induced central and peripheral adaptive mechanisms that benefit mental health. Gut microbiota imbalance, affecting the gut-brain axis and metabolism, also influences certain eCBome-modulated inflammation pathways. The integrity of the gut microbiota could thus be crucial in the onset of neuroinflammation and mental conditions. Further studies on how the modulation by exercise of the peripheral eCBome affects brain functions could reveal to be key elements in the prevention and treatment of neuropsychological disorders.
Collapse
|
6
|
Grosiak M, Koteja P, Bauchinger U, Sadowska ET. Age-Related Changes in the Thermoregulatory Properties in Bank Voles From a Selection Experiment. Front Physiol 2020; 11:576304. [PMID: 33329026 PMCID: PMC7711078 DOI: 10.3389/fphys.2020.576304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023] Open
Abstract
As with many physiological performance traits, the capacity of endotherms to thermoregulate declines with age. Aging compromises both the capacity to conserve or dissipate heat and the thermogenesis, which is fueled by aerobic metabolism. The rate of metabolism, however, not only determines thermogenic capacity but can also affect the process of aging. Therefore, we hypothesized that selection for an increased aerobic exercise metabolism, which has presumably been a crucial factor in the evolution of endothermic physiology in the mammalian and avian lineages, affects not only the thermoregulatory traits but also the age-related changes of these traits. Here, we test this hypothesis on bank voles (Myodes glareolus) from an experimental evolution model system: four lines selected for high swim-induced aerobic metabolism (A lines), which have also increased the basal, average daily, and maximum cold-induced metabolic rates, and four unselected control (C) lines. We measured the resting metabolic rate (RMR), evaporative water loss (EWL), and body temperature in 72 young adult (4 months) and 65 old (22 months) voles at seven ambient temperatures (13-32°C). The RMR was 6% higher in the A than in the C lines, but, regardless of the selection group or temperature, it did not change with age. However, EWL was 12% higher in the old voles. An increased EWL/RMR ratio implies either a compromised efficiency of oxygen extraction in the lungs or increased skin permeability. This effect was more profound in the A lines, which may indicate their increased vulnerability to aging. Body temperature did not differ between the selection and age groups below 32°C, but at 32°C it was markedly higher in the old A-line voles than in those from other groups. As expected, the thermogenic capacity, measured as the maximum cold-induced oxygen consumption, was decreased by about 13% in the old voles from both selection groups, but the performance of old A-line voles was the same as that of the young C-line ones. Thus, the selection for high aerobic exercise metabolism attenuated the adverse effects of aging on cold tolerance, but this advantage has been traded off by a compromised coping with hot conditions by aged voles.
Collapse
Affiliation(s)
- Marta Grosiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Edyta T. Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Lipowska MM, Sadowska ET, Bauchinger U, Goymann W, Bober-Sowa B, Koteja P. Does selection for behavioral and physiological performance traits alter glucocorticoid responsiveness in bank voles? J Exp Biol 2020; 223:jeb219865. [PMID: 32561625 DOI: 10.1242/jeb.219865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
One of the key elements of an animal's Darwinian fitness is its ability to adequately respond to and cope with challenging situations. Glucocorticoid hormones, such as corticosterone, affect an organism's ability to overcome such challenges. We hypothesized that changes in the glucocorticoid response curve contribute to the evolution of increased performance during challenging conditions, and tested it on bank voles (Myodes glareolus) from a multidirectional artificial selection experiment, which involves lines selected for high aerobic exercise metabolism achieved during swimming (A - Aerobic), predatory behavior towards a cricket (P - Predatory) and ability to maintain body mass on a low-quality herbivorous diet (H - Herbivorous), as well as unselected control lines (C - Control). We elicited a glucocorticoid response either by restraining the animal or by maximum pharmacological stimulation, and measured plasma corticosterone levels at baseline, during the response and during the recovery phase. Response-level corticosterone was higher in females, and recovery from maximal level was faster than that of males. Selection did not affect baseline or stress-induced corticosterone levels, but it decreased the maximum corticosterone level in Aerobic and Predatory lines, reducing the difference between stress-induced and maximum levels. Recovery from restraint-induced corticosterone level tended to be slower in the Herbivorous than in the other lines, an effect that was stronger in females than in males. In conclusion, successful selection for increased performance in challenging conditions was not associated with changes in absolute values of the glucocorticoid response to stress, but can affect other characteristics of the glucocorticoid response curve.
Collapse
Affiliation(s)
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology PAS, 02-093 Warszawa, Poland
| | - Wolfgang Goymann
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Barbara Bober-Sowa
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Lipowska MM, Sadowska ET, Bauchinger U, Koteja P. Stress coping and evolution of aerobic exercise performance: corticosterone levels in voles from a selection experiment. ACTA ACUST UNITED AC 2019; 222:jeb.209593. [PMID: 31548286 DOI: 10.1242/jeb.209593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/19/2019] [Indexed: 01/31/2023]
Abstract
The locomotor performance achieved in a challenging situation depends not only on physiological limitations, such as the aerobic exercise capacity, but also on behavioral characteristics, such as adequate coping with stress. The stress response is mediated largely by the hypothalamic-pituitary-adrenal (HPA) axis, through modulated release of glucocorticoids. We used a unique experimental evolution model system to test the hypothesis that the evolution of an increased aerobic exercise performance can be facilitated by modification of the glucocorticoid-related stress-coping mechanisms. Bank voles (Myodes glareolus) from 'aerobic' (A) lines, selected for 22 generations for high maximum swim-induced rate of oxygen consumption (V̇ O2,swim), achieved a 64% higher V̇ O2,swim than those from unselected, control lines. The temporal pattern of exercise during the swimming trial also evolved, and the A-line voles achieved V̇ O2,swim later in the course of the trial, which indicates a modification of the stress response characteristics. Both V̇ O2,swim and the average metabolic rate measured during the trial tended to increase with baseline corticosterone level, and decreased with the post-exercise corticosterone level. Thus, increased baseline corticosterone level promotes high metabolic performance, but a high corticosterone response to swimming acts as an inhibitor rather than stimulator of intense activity. However, neither of the corticosterone traits differed between the A-selected and control lines. Thus, the experiment did not provide evidence that evolution of increased aerobic performance is facilitated by the modification of glucocorticoid levels. The results, however, do not exclude the possibility that other aspects of the HPA axis function evolved in response to the selection.
Collapse
Affiliation(s)
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|