1
|
Fabries P, Pontiggia A, Comte U, Beauchamps V, Quiquempoix M, Guillard M, Ayounts H, Van Beers P, Drogou C, Touron J, Erkel MC, Gignoux-Huon F, Nespoulous O, Pinalie T, Charlot K, Malgoyre A, Sauvet F, Koulmann N, Gomez-Merino D, Chennaoui M. Cognitive performance during exposure to moderate normobaric hypoxia after sleep restriction: Relationship to physiological and stress biomarkers. Physiol Behav 2024; 287:114666. [PMID: 39216809 DOI: 10.1016/j.physbeh.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Exposure to moderate levels of simulated hypoxia has subtle cognitive effects relative to ground level, in healthy individuals. However, there are few data on the cognitive consequences of the combination of hypoxia and partial sleep deprivation, which is a classic military or civilian operational context. In this study, we tested the hypothesis that exposure to moderate hypoxia while sleep-restricted impairs several domains of cognition, and we also assessed physiological parameters and salivary concentrations of cortisol and alpha-amylase. METHOD Seventeen healthy males completed two sessions of cognitive tests (sustained attention using the PVT psychomotor vigilance task and executive functions using the Go-NoGo inhibition task and N-Back working memory task) after 30 min (T + 30') and 4 h (T + 240') of exposure in a normobaric hypoxic tent (FIO2 = 13.6 %, ≃ 3,500 m) (HY). This was completed after one night of sleep restriction (3 a.m. to 6 a.m. bedtime, SRHY) and one night of habitual sleep (10 p.m. to 6 a.m. bedtime, HSHY) (with cross-over randomization). The two nights sleep architecture and physiological parameters (oxygen saturation (SpO2) and heart rate (HR) during T + 30' and T + 240'sessions were analyzed. Salivary cortisol and alpha-amylase (sAA) concentrations were analyzed before hypoxia, after the T + 30' and T + 240' cognitive sessions, and after leaving the hypoxic tent. RESULTS Sustained attention (RT and number of lapses in the PVT) and executive functions (Go-NoGo and 1-Back and 2-Back parameters, as inhibition and working memory signatures) were impaired in the SRHY condition compared to HSHY. SpO2 and HR were higher after 4 h compared with 30 min of hypoxia in the HSHY condition, while only HR was statistically higher in the SRHY condition. In SRHY, salivary AA concentration was lower and cortisol was higher than in HSHY. A significant increase in sAA concentration is observed after the cognitive session at 4 h of hypoxia exposure compared to that at 30 min, only in the SRHY condition. There are significant positive correlations between reaction time and the corresponding heart rate (a non-invasive marker of physiological stress) for the executive tasks in the two sleep conditions. This was not observed for salivary levels of sAA and cortisol, respective reliable indicators of the sympathoadrenomedullary system and the hypothalamic-pituitary adrenocortical system. CONCLUSION Exposure to moderate normobaric hypoxia (≃ 3500 m / ≃ 11,500 ft simulated) after a single night of 3-hour sleep impairs cognitive performance after 30 min and 4 h of exposure. The key determinants and/or mechanism(s) responsible for cognitive impairment when exposed to moderate hypoxia with sleep restriction, particularly on the executive function, have yet to be elucidated.
Collapse
Affiliation(s)
- Pierre Fabries
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; École du Val-de-Grâce (EVDG), Place Alphonse Laveran, Paris, France; LBEPS, Université Paris-Saclay, 91025 Evry, France.
| | - Anaïs Pontiggia
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Ulysse Comte
- École du Val-de-Grâce (EVDG), Place Alphonse Laveran, Paris, France; Hôpital d'Instruction des Armées Percy, 2 Rue Lieutenant Raoul Batany, 92140 Clamart, France
| | - Vincent Beauchamps
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; École du Val-de-Grâce (EVDG), Place Alphonse Laveran, Paris, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Michael Quiquempoix
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Mathias Guillard
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Haïk Ayounts
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Pascal Van Beers
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Catherine Drogou
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Julianne Touron
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Marie-Claire Erkel
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Françoise Gignoux-Huon
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France
| | - Olivier Nespoulous
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France
| | - Théo Pinalie
- LBEPS, Université Paris-Saclay, 91025 Evry, France
| | - Keyne Charlot
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; LBEPS, Université Paris-Saclay, 91025 Evry, France
| | - Alexandra Malgoyre
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; École du Val-de-Grâce (EVDG), Place Alphonse Laveran, Paris, France; LBEPS, Université Paris-Saclay, 91025 Evry, France
| | - Fabien Sauvet
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; École du Val-de-Grâce (EVDG), Place Alphonse Laveran, Paris, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | | | - Danielle Gomez-Merino
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Mounir Chennaoui
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| |
Collapse
|
2
|
Falla M. Simulated Acute Hypobaric Hypoxia Effects on Cognition in Helicopter Emergency Medical Service Personnel - A Randomized, Controlled, Single-Blind, Crossover Trial. HUMAN FACTORS 2024; 66:404-423. [PMID: 35640630 PMCID: PMC11977819 DOI: 10.1177/00187208221086407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/21/2022] [Indexed: 05/06/2023]
Abstract
OBJECTIVE To evaluate, under replicable, blinded and standardised conditions, the effect of acute exposure to hypobaric hypoxia (HH) (equivalent to 200 or 3000 or 5000 m above sea level (asl)) on selected cognitive domains and physiological parameters in personnel of helicopter emergency medical service (HEMS). METHODS We conducted a randomized clinical trial using a single-blind crossover design in an environmental chamber (terraXcube) to induce HH in 48 HEMS personnel. Participants performed cognitive tests (CT) before the ascent, after 5 min at altitude, and after simulated cardiopulmonary resuscitation (SCR). CT evaluated: sustained attention using the psychomotor vigilance test (PVT) that included measurement of reaction time (RT); risky decision making using the balloon analogue risk task (BART), and attention and speed of processing using the digit symbol substitution test (DSST). CT performance was subjectively rated with a visual analogue scale (VAS). Physiological data were recorded with a physiological monitoring system. Data were analysed using a linear mixed model and correlation analysis. RESULTS Mean reaction time was significantly slower (p = 0.002) at HH (5000 m asl), but there were no independent effects of HH on the other parameters of the PVT, BART or DSST. Participants did not detect subjectively the slower RT at altitude since VAS performance results showed a positive correlation with mean RT (p = 0.009). DSST results significantly improved (p = 0.001) after SCR. CONCLUSION Acute exposure of HEMS personnel to HH induced a slower RT but no changes in any other investigated measures of cognition. The reduced RT was not detected subjectively by the participants. Trial number 3489044136, ClinicalTrials.gov trial registration.
Collapse
Affiliation(s)
- Marika Falla
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy, Center for Mind/Brain Sciences, CIMeC, University of Trento, Rovereto (TN), Italy
| |
Collapse
|
3
|
Fan H, Meng Y, Zhu L, Fan M, Wang D, Zhao Y. A review of methods for assessment of cognitive function in high-altitude hypoxic environments. Brain Behav 2024; 14:e3418. [PMID: 38409925 PMCID: PMC10897364 DOI: 10.1002/brb3.3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 02/28/2024] Open
Abstract
Hypoxic environments like those present at high altitudes may negatively affect brain function. Varying levels of hypoxia, whether acute or chronic, are previously shown to impair cognitive function in humans. Assessment and prevention of such cognitive impairment require detection of cognitive changes and impairment using specific cognitive function assessment tools. This paper summarizes the findings of previous research, outlines the methods for cognitive function assessment used at a high altitude, elaborates the need to develop standardized and systematic cognitive function assessment tools for high-altitude hypoxia environments.
Collapse
Affiliation(s)
- Haojie Fan
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| | - Ying Meng
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| | - Lingling Zhu
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| | - Ming Fan
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
- School of Information Sciences & EngineeringLanzhou UniversityLanzhouChina
| | - Du‐Ming Wang
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yong‐Qi Zhao
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| |
Collapse
|
4
|
Chen X, Zhang J, Lin Y, Li Y, Wang H, Wang Z, Liu H, Hu Y, Liu L. Mechanism, prevention and treatment of cognitive impairment caused by high altitude exposure. Front Physiol 2023; 14:1191058. [PMID: 37731540 PMCID: PMC10507266 DOI: 10.3389/fphys.2023.1191058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 09/22/2023] Open
Abstract
Hypobaric hypoxia (HH) characteristics induce impaired cognitive function, reduced concentration, and memory. In recent years, an increasing number of people have migrated to high-altitude areas for work and study. Headache, sleep disturbance, and cognitive impairment from HH, severely challenges the physical and mental health and affects their quality of life and work efficiency. This review summarizes the manifestations, mechanisms, and preventive and therapeutic methods of HH environment affecting cognitive function and provides theoretical references for exploring and treating high altitude-induced cognitive impairment.
Collapse
Affiliation(s)
- Xin Chen
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiexin Zhang
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- Faculty of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Yuan Lin
- Sichuan Xincheng Biological Co., LTD., Chengdu, Sichuan, China
| | - Yan Li
- Department of General Surgery, The 77th Army Hospital, Leshan, Sichuan, China
| | - Han Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Zhanhao Wang
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huawei Liu
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yonghe Hu
- Faculty of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Bakker ME, Djerourou I, Belanger S, Lesage F, Vanni MP. Alteration of functional connectivity despite preserved cerebral oxygenation during acute hypoxia. Sci Rep 2023; 13:13269. [PMID: 37582847 PMCID: PMC10427674 DOI: 10.1038/s41598-023-40321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Resting state networks (RSN), which show the connectivity in the brain in the absence of any stimuli, are increasingly important to assess brain function. Here, we investigate the changes in RSN as well as the hemodynamic changes during acute, global hypoxia. Mice were imaged at different levels of oxygen (21, 12, 10 and 8%) over the course of 10 weeks, with hypoxia and normoxia acquisitions interspersed. Simultaneous GCaMP and intrinsic optical imaging allowed tracking of both neuronal and hemodynamic changes. During hypoxic conditions, we found a global increase of both HbO and HbR in the brain. The saturation levels of blood dropped after the onset of hypoxia, but surprisingly climbed back to levels similar to baseline within the 10-min hypoxia period. Neuronal activity also showed a peak at the onset of hypoxia, but dropped back to baseline as well. Despite regaining baseline sO2 levels, changes in neuronal RSN were observed. In particular, the connectivity as measured with GCaMP between anterior and posterior parts of the brain decreased. In contrast, when looking at these same connections with HbO measurements, an increase in connectivity in anterior-posterior brain areas was observed suggesting a potential neurovascular decoupling.
Collapse
Affiliation(s)
- Marleen E Bakker
- École d'Optométrie, Université de Montréal, 2500 Chem. De Polytechnique, Montréal, QC, H3T 1J4, Canada.
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.
| | - Ismaël Djerourou
- École d'Optométrie, Université de Montréal, 2500 Chem. De Polytechnique, Montréal, QC, H3T 1J4, Canada
| | | | - Frédéric Lesage
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada
- Montréal Heart Institute, Montréal, Canada
| | - Matthieu P Vanni
- École d'Optométrie, Université de Montréal, 2500 Chem. De Polytechnique, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
6
|
Etemadi M, Amiri E, Tadibi V, Grospretre S, Valipour Dehnou V, Machado DGDS. Anodal tDCS over the left DLPFC but not M1 increases muscle activity and improves psychophysiological responses, cognitive function, and endurance performance in normobaric hypoxia: a randomized controlled trial. BMC Neurosci 2023; 24:25. [PMID: 37020275 PMCID: PMC10077713 DOI: 10.1186/s12868-023-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been shown to have positive effects on exercise performance and cognitive function in the normal ambient condition. Hypoxia is deemed a stressful situation with detrimental effects on physiological, psychological, cognitive, and perceptual responses of the body. Nevertheless, no study has evaluated the efficacy of tDCS for counteracting the negative effects of hypoxic conditions on exercise performance and cognition so far. Hence, in the present study, we investigated the effects of anodal tDCS on endurance performance, cognitive function, and perceptual responses in hypoxia. PARTICIPANTS AND METHODS Fourteen endurance-trained males participated in five experimental sessions. After familiarization and measuring peak power output in hypoxia, in the first and second sessions, through the 3rd to 5th sessions, participants performed a cycling endurance task until exhaustion after 30 min hypoxic exposure at resting position followed by 20 min of anodal stimulation of the motor cortex (M1), left dorsolateral prefrontal cortex (DLPFC), or sham-tDCS. Color-word Stroop test and choice reaction time were measured at baseline and after exhaustion. Time to exhaustion, heart rate, saturated O2, EMG amplitude of the vastus lateralis, vastus medialis, and rectus femoris muscles, RPE, affective response, and felt arousal were also measured during the task under hypoxia. RESULTS The results showed a longer time to exhaustion (+ 30.96%, p=0.036), lower RPE (- 10.23%, p = 0.045) and higher EMG amplitude of the vastus medialis muscle (+ 37.24%, p=0.003), affective response (+ 260%, p=0.035) and felt arousal (+ 28.9%, p=0.029) in the DLPFC tDCS compared to sham. The choice reaction time was shorter in DLPFC tDCS compared to sham (- 17.55%, p=0.029), and no differences were seen in the color-word Stroop test among the conditions under hypoxia. M1 tDCS resulted in no significant effect for any outcome measure. CONCLUSIONS We concluded that, as a novel finding, anodal stimulation of the left DLPFC might provide an ergogenic aid for endurance performance and cognitive function under the hypoxic condition probably via increasing neural drive to the working muscles, lowering RPE, and increasing perceptual responses.
Collapse
Affiliation(s)
- Matin Etemadi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
- Room. 73, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-E Bostan, Kermanshah, 674441497, Iran.
| | - Vahid Tadibi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Sidney Grospretre
- EA4660-C3S Laboratory-Culture, Sports, Health and Society, University Bourgogne France-Comte, Besancon, France
| | - Vahid Valipour Dehnou
- Department of Sports Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| |
Collapse
|
7
|
Cognition and Neuropsychological Changes at Altitude-A Systematic Review of Literature. Brain Sci 2022; 12:brainsci12121736. [PMID: 36552195 PMCID: PMC9775937 DOI: 10.3390/brainsci12121736] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
High-altitude (HA) exposure affects cognitive functions, but studies have found inconsistent results. The aim of this systematic review was to evaluate the effects of HA exposure on cognitive functions in healthy subjects. A structural overview of the applied neuropsychological tests was provided with a classification of superordinate cognitive domains. A literature search was performed using PubMed up to October 2021 according to PRISMA guidelines. Eligibility criteria included a healthy human cohort exposed to altitude in the field (at minimum 2440 m [8000 ft]) or in a hypoxic environment in a laboratory, and an assessment of cognitive domains. The literature search identified 52 studies (29 of these were field studies; altitude range: 2440 m-8848 m [8000-29,029 ft]). Researchers applied 112 different neuropsychological tests. Attentional capacity, concentration, and executive functions were the most frequently studied. In the laboratory, the ratio of altitude-induced impairments (64.7%) was twice as high compared to results showing no change or improved results (35.3%), but altitudes studied were similar in the chamber compared to field studies. In the field, the opposite results were found (66.4 % no change or improvements, 33.6% impairments). Since better acclimatization can be assumed in the field studies, the findings support the hypothesis that sufficient acclimatization has beneficial effects on cognitive functions at HA. However, it also becomes apparent that research in this area would benefit most if a consensus could be reached on a standardized framework of freely available neurocognitive tests.
Collapse
|
8
|
Theunissen S, Balestra C, Bolognési S, Borgers G, Vissenaeken D, Obeid G, Germonpré P, Honoré PM, De Bels D. Effects of Acute Hypobaric Hypoxia Exposure on Cardiovascular Function in Unacclimatized Healthy Subjects: A "Rapid Ascent" Hypobaric Chamber Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095394. [PMID: 35564787 PMCID: PMC9102089 DOI: 10.3390/ijerph19095394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Background: This study aimed to observe the effects of a fast acute ascent to simulated high altitudes on cardiovascular function both in the main arteries and in peripheral circulation. Methods: We examined 17 healthy volunteers, between 18 and 50 years old, at sea level, at 3842 m of hypobaric hypoxia and after return to sea level. Cardiac output (CO) was measured with Doppler transthoracic echocardiography. Oxygen delivery was estimated as the product of CO and peripheral oxygen saturation (SpO2). The brachial artery’s flow-mediated dilation (FMD) was measured with the ultrasound method. Post-occlusion reactive hyperemia (PORH) was assessed by digital plethysmography. Results: During altitude stay, peripheral oxygen saturation decreased (84.9 ± 4.2% of pre-ascent values; p < 0.001). None of the volunteers presented any hypoxia-related symptoms. Nevertheless, an increase in cardiac output (143.2 ± 36.2% of pre-ascent values, p < 0.001) and oxygen delivery index (120.6 ± 28.4% of pre-ascent values; p > 0.05) was observed. FMD decreased (97.3 ± 4.5% of pre-ascent values; p < 0.05) and PORH did not change throughout the whole experiment. Τhe observed changes disappeared after return to sea level, and normoxia re-ensued. Conclusions: Acute exposure to hypobaric hypoxia resulted in decreased oxygen saturation and increased compensatory heart rate, cardiac output and oxygen delivery. Pre-occlusion vascular diameters increase probably due to the reduction in systemic vascular resistance preventing flow-mediated dilation from increasing. Mean Arterial Pressure possibly decrease for the same reason without altering post-occlusive reactive hyperemia throughout the whole experiment, which shows that compensation mechanisms that increase oxygen delivery are effective.
Collapse
Affiliation(s)
- Sigrid Theunissen
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium;
- Correspondence: (S.T.); (C.B.)
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium;
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Correspondence: (S.T.); (C.B.)
| | - Sébastien Bolognési
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium;
| | - Guy Borgers
- Hypobaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium; (G.B.); (D.V.)
| | - Dirk Vissenaeken
- Hypobaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium; (G.B.); (D.V.)
| | - Georges Obeid
- Military Hospital Queen Elizabeth, 1120 Brussels, Belgium; (G.O.); (P.G.)
| | - Peter Germonpré
- Military Hospital Queen Elizabeth, 1120 Brussels, Belgium; (G.O.); (P.G.)
| | - Patrick M. Honoré
- Department of Intensive Care Medicine, CHU-Brugmann, 1020 Brussels, Belgium; (P.M.H.); (D.D.B.)
| | - David De Bels
- Department of Intensive Care Medicine, CHU-Brugmann, 1020 Brussels, Belgium; (P.M.H.); (D.D.B.)
| |
Collapse
|
9
|
Effect of a speed ascent to the top of Europe on cognitive function in elite climbers. Eur J Appl Physiol 2022; 122:635-649. [PMID: 34993575 DOI: 10.1007/s00421-021-04855-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/19/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE The combined effects of acute hypoxia and exercise on cognition remain to be clarified. We investigated the effect of speed climbing to high altitude on reactivity and inhibitory control in elite climbers. METHODS Eleven elite climbers performed a speed ascent of the Mont-Blanc (4810 m) and were evaluated pre- (at 1000 m) and immediately post-ascent (at 3835 m). In both conditions, a Simon task was done at rest (single-task session, ST) and during a low-intensity exercise (dual-task session, DT). Prefrontal cortex (PFC) oxygenation and middle cerebral artery velocity (MCAv) were monitored using near-infrared spectroscopy and transcranial Doppler, respectively, during the cognitive task. Self-perceived mental fatigue and difficulty to perform the cognitive tests were estimated using a visual analog scale. Heart rate and pulse oxygenation (SpO2) were monitored during the speed ascent. RESULTS Elite climbers performed an intense (~ 50% of the time ≥ 80% of maximal heart rate) and prolonged (8h58 ± 6 min) exercise in hypoxia (minimal SpO2 at 4810 m: 78 ± 4%). Reaction time and accuracy during the Simon task were similar pre- and post-ascent (374 ± 28 ms vs. 385 ± 39 ms and 6 ± 4% vs. 5 ± 4%, respectively; p > 0.05), despite a reported higher mental fatigue and difficulty to perform the Simon task post-ascent (all p < 0.05). The magnitude of the Simon effect was unaltered (p > 0.05), suggesting a preserved cognitive control post-ascent. Pattern of PFC oxygenation and MCAv differed between pre- and post-ascent as well as between ST and DT conditions. CONCLUSIONS Cognitive control is not altered in elite climbers after a speed ascent to high-altitude despite substantial cerebral deoxygenation and fatigue perception.
Collapse
|
10
|
Falla M, Papagno C, Dal Cappello T, Vögele A, Hüfner K, Kim J, Weiss EM, Weber B, Palma M, Mrakic-Sposta S, Brugger H, Strapazzon G. A Prospective Evaluation of the Acute Effects of High Altitude on Cognitive and Physiological Functions in Lowlanders. Front Physiol 2021; 12:670278. [PMID: 33995130 PMCID: PMC8113692 DOI: 10.3389/fphys.2021.670278] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive function impairment due to high altitude exposure has been reported with some contradictory results regarding the possible selective cognitive domain involvement. We prospectively evaluated in 36 lowlanders, exposed for 3 consecutive days to an altitude of 3,269 m, specific cognitive abilities (attention, processing speed, and decision-making) required to safely explore the mountains, as well as to work at altitude. We simultaneously monitored the physiological parameters. Our study provides evidence of a reduced processing speed in lowlanders when exposed to altitude in the first 24 h. There was a fairly quick recovery since this impairment was no more detectable after 36 h of exposure. There were no clinically relevant effects on decision-making, while psychomotor vigilance was unaffected at altitude except for individuals with poor sleep. Significant changes were seen in physiological parameters (increased heart rate and reduced peripheral oxygen saturation). Our results may have practical implications, suggesting that individuals should practice prudence with higher ascent when performing risky activities in the first 24–36 h, even at altitudes below 3,500 m, due to an impairment of the cognitive performance that could worsen and lead to accidents.
Collapse
Affiliation(s)
- Marika Falla
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy.,Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Tomas Dal Cappello
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Anna Vögele
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Jenny Kim
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, United States
| | - Elisabeth M Weiss
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Bernhard Weber
- Department of Psychology, University of Graz, Graz, Austria
| | - Martin Palma
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | | | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| |
Collapse
|