1
|
Qiu H, Abudureyimu S, Liu M, Liu F, Gao Y. Study on the Interaction Between C3 Gene Polymorphism and Environment in Patients with Type 2 Diabetes Combined with Coronary Artery Disease. Diabetes Metab Syndr Obes 2024; 17:1467-1479. [PMID: 38562281 PMCID: PMC10982582 DOI: 10.2147/dmso.s447789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Objective This study was conducted to investigate the combined effect of genetic variation in the C3 gene and environmental factors on the risk of type 2 diabetes mellitus(T2DM) and coronary artery disease(CAD) in a population from Xinjiang, China. Methods We conducted a hospital-based case-control study with 896 participants (217 with T2DM+CAD and 679 healthy controls). A polymerase chain reaction-ligase detection reaction was used to identify and genotype TagSNPs in the C3 gene, and the influence of the interaction of two SNP loci (rs1047286 and rs11569562) with the environment on T2DM combined with CAD was evaluated through clinical data, statistical analysis of gene frequencies, and the formation of a gene-environment interaction model. Results We find that rs11569562 GG is an independent protective factor for T2DM and CAD (OR=0.353, p=0.012), and the variants at its locus may be closely associated with Activated Partial Thromboplastin Time (APTT), lipoprotein a (Lp(a)), Apolipoprotein A (APOA), Aspartate Aminotransferase (AST), Aspartate Aminotransferase (ALT) and AST/ALT levels (all P < 0.05); its GG genotype has significantly lower Gensini score and number of stenoses than the GA and AA genotypes. Multifactorial dimensionality reduction (MDR) finds a strong correlation between rs11569562 and AST (antagonistic effect) (4.44%); the role of rs11569562's influence remains strong in terms of the independent effects of each attribute (1.72%). Conclusions In this study, we find that variants in the C3 gene loci rs11569562 are associated with the incidence of type 2 diabetes mellitus combined with coronary heart disease in a Chinese population. It is expected to be an independent predictor of type 2 diabetes mellitus combined with coronary heart disease in the Chinese population. Rs11569562 may be associated with lipid levels and coagulation molecules. Clinical Trial Registration This trial registered on in 2014 at the China Clinical Trials Registry (ChiCTR-TRC-14005114).
Collapse
Affiliation(s)
- Haitang Qiu
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Shajidan Abudureyimu
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Mengjia Liu
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Clinical Medical Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Ying Gao
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
2
|
Yang S, Cao J, Sun C, Yuan L. The Regulation Role of the Gut-Islets Axis in Diabetes. Diabetes Metab Syndr Obes 2024; 17:1415-1423. [PMID: 38533266 PMCID: PMC10964787 DOI: 10.2147/dmso.s455026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut-islets axis is an important endocrine signaling axis that regulates the function of islets by modulating the gut micro-environment and its endocrine metabolism. The discovery of intestinal hormones, such as GLP-1 and GIP, has established a preliminary link between the gut and the islet, paving the way for the development of GLP-1 receptor agonists based on the regulation theory of the gut-islets axis for diabetes treatment. This discovery has created a new paradigm for diabetes management and rapidly made the regulation theory of the gut-islets axis a focal point of research attention. Recent years, with in-depth study on gut microbiota and the discovery of intestinal-derived extracellular vesicles, the concept of gut endocrine and the regulation theory of the gut-islets axis have been further expanded and updated, offering tremendous research opportunities. The gut-islets axis refers to the complex interplay between the gut and the islet, which plays a crucial role in regulating glucose homeostasis and maintaining metabolic health. The axis involves various components, including gut microbiota, intestinal hormones, amino acids and ACE2, which contribute to the communication and coordination between the gut and the islet.
Collapse
Affiliation(s)
- Songtao Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Jie Cao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Chuan Sun
- Department of Emergency Medical, Wuhan ASIA GENERAL Hospital, Wuhan, 430000, People’s Republic of China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
3
|
Ehsasatvatan M, Baghban Kohnehrouz B. A new trivalent recombinant protein for type 2 diabetes mellitus with oral delivery potential: design, expression, and experimental validation. J Biomol Struct Dyn 2024:1-16. [PMID: 38468545 DOI: 10.1080/07391102.2024.2329290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are increasingly used in clinical practice for the management of type 2 diabetes mellitus. However, the extremely short half-life of GLP-1 and the need for subcutaneous administration limit its clinical application. Thus, half-life extension and alternative delivery methods are highly desired. DARPin domains with high affinity for human serum albumin (HSA) have been selected for the half-life extension of therapeutic peptides and proteins. In the present study, novel trivalent fusion proteins as long-acting GLP-1 receptor agonists with potential for oral delivery were computationally engineered by incorporating a protease-resistant modified GLP-1, an anti-human serum albumin DARPin, and an approved cell-penetrating peptide (Penetratin, Tat, and Polyarginine) linked either by rigid or flexible linkers. Theoretical studies and molecular dynamics simulation results suggested that mGLP1-DARPin-Pen has acceptable quality and stability. Moreover, the potential affinity of the selected fusion proteins for GLP-1 receptor and human serum albumin was explored by molecular docking. The recombinant construct was cloned into the pET28a vector and expressed in Escherichia coli. SDS-PAGE analysis of the purified fusion protein matched its molecular size and was confirmed by western blot analysis. The results demonstrated that the engineered fusion protein could bind HSA with high affinity. Importantly, insulin secretion assays using a mouse pancreatic β-cell line (β-TC6) revealed that the engineered trivalent fusion protein retained the ability to stimulate cellular insulin secretion. Immunofluorescence microscopy analysis indicated the CPP-dependent cellular uptake of mGLP1-DARPin-Pen. These findings demonstrated that mGLP1-DARPin-Pen is a highly potent oral drug candidate that could be particularly useful in the treatment of type 2 diabetes mellitus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Ehsasatvatan
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahram Baghban Kohnehrouz
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Zhou Y, Li J, Gao G, Li Y, Zhang C. Exploring a novel long-acting glucagon-like peptide-1 receptor agonist built on the albumin-binding domain and XTEN scaffolds. Heliyon 2024; 10:e24340. [PMID: 38293540 PMCID: PMC10826136 DOI: 10.1016/j.heliyon.2024.e24340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
In recent years, glucagon-like peptide-1 (GLP-1) has demonstrated considerable potential in the treatment of type 2 diabetes (T2D) and obesity. However, the half-life of naturally occurring GLP-1 is quite short in vivo. Two common strategies employed for half-life extension are the use of the Albumin-binding domain (ABD) and XTEN polypeptide, which operate through different mechanisms. In this study, we designed an innovative GLP-1 receptor agonist with an extended duration of action. This new construct incorporated an albumin binding domain (ABD) and an XTEN sequence (either XTEN144 or XTEN288) as carriers. We referred to these fusion proteins as GLP-ABD-XTEN144 and GLP-ABD-XTEN288. In an E. coli system, the said constructs were efficaciously produced in substantial quantity. It was observed from in vitro studies that the fusion protein GLP-ABD-XTEN144 demonstrated a five times stronger affinity towards human serum albumin (HSA), boasting a binding affinity (Kd) of 5.50 nM. This was in contrast to GLP-ABD-XTEN288, whose Kd value was registered at 27.78 nM. Moreover, GLP-ABD-XTEN144 presented a half-life of 12.9 h in mice, thus exceeding the corresponding value for GLP-ABD-XTEN288, 7.32 h in mice. Both these fusion proteins significantly mitigated non-fasting blood sugar levels and overall food consumption for 48 h subsequent to a one-time injection in mice. Notably, GLP-ABD-XTEN144 exhibited more pronounced hypoglycemic activity and food inhibitory effects than GLP-ABD-XTEN288. The designed GLP-ABD-XTEN144 fusion protein shows promising prospects for clinical application in T2D treatment. Our findings also suggest that ABD and XTEN polypeptides synergistically contribute to half-life extension, further enhancing the pharmacokinetic characteristics of a payload.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianhui Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China
| | - Guosheng Gao
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| | - Yafeng Li
- Department of Pharmacology, Duchuangsanzhong Biotech Co., Ltd., Jiaxing, China
| | - Changzhen Zhang
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
5
|
Melander SA, Kayed A, Andreassen KV, Karsdal MA, Henriksen K. OXM-104, a potential candidate for the treatment of obesity, NASH and type 2 diabetes. Eur J Pharmacol 2024; 962:176215. [PMID: 38056618 DOI: 10.1016/j.ejphar.2023.176215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Dual glucagon-like peptide-1 (GLP-1) and glucagon receptor agonists are therapeutic agents with an interesting liver-specific mode of action suitable for metabolic complications. In this study, dual GLP-1 and glucagon receptor agonist OXM-104 is compared head-to-head with the once-daily dual GLP-1 and glucagon receptor agonist cotadutide and GLP-1 receptor agonist semaglutide to explore the metabolic efficacy of OXM-104. METHODS The in vitro potencies of OXM-104, cotadutide and semaglutide were assessed using reporter assays. In addition, in vivo efficacy was investigated using mouse models of diet-induced obesity (DIO mice), diabetes (db/db mice) and diet-induced NASH mice (MS-NASH). RESULTS OXM-104 was found to only activate the GLP-1 and glucagon with no cross-reactivity at the (GIP) receptor. Cotadutide was also found to activate the GLP-1 and glucagon receptors, whereas semaglutide only showed activity at the GLP-1 receptor. OXM-104, cotadutide, and semaglutide elicited marked reductions in body weight and improved glucose control. In contrast, hepatoprotective effects, i.e., reductions in steatosis and fibrosis, as well as liver fibrotic biomarkers, were more prominent with OXM-104 and cotadutide than those seen with semaglutide, demonstrated by an improved NAFLD activity score (NAS) by OXM-104 and cotadutide, underlining the importance of the glucagon receptor. CONCLUSION These results show that dual GLP-1 and glucagon receptor agonism is superior to GLP-1 alone. OXM-104 was found to be a promising therapeutic candidate for the treatment of metabolic complications such as obesity, type 2 diabetes and NASH.
Collapse
Affiliation(s)
| | | | | | | | - Kim Henriksen
- Nordic Bioscience, 2730 Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
6
|
Pharmacokinetic and pharmacodynamic studies of supaglutide in rats and monkeys. Eur J Pharm Sci 2022; 175:106218. [PMID: 35618199 DOI: 10.1016/j.ejps.2022.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/29/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
Abstract
We demonstrated recently that supaglutide, a novel GLP-1 mimetic generated by recombinant fusion protein techniques, exerted hypoglycemic effects in type 2 diabetes db/db mice and spontaneous diabetic monkeys. In this study, we investigated the pharmacokinetics and pharmacodynamics of supaglutide by single subcutaneous and intravenous injection(s) in rats and rhesus monkeys, as well as fourconsecutive subcutaneous injections in monkeys.We found the half-life (t1/2) of supaglutide was 39.7 hours and 35.8 hours at dosing 0.1 mg/kg upon subcutaneous or intravenous administration respectively, in rhesus monkeys. The plasma supaglutide peaked at 8-10 hours, while the plasma drug exposure levels increased with the increase of dose, showing approximately a linear pharmacokinetic characteristic. The elimination kinetics (Ke) were found to be similar between subcutaneous (∼0.025 in rats and ∼0.018 in monkeys) and intravenous administration (0.021 in rats and 0.020 in monkeys), whereas the bioavailability was found to be 31.1% in rats and 63.9% in monkeys. In monkeys, a single dose injection of supaglutide markedly decreased the random blood glucose levels that reaching the maxima effects in 14-16 hours, gradually recovered and returned to the baseline level approximately after 72 hours. 125I-supaglutide was found mainly distributed in the serum and organs rich in blood supply. Urine was found to be the primary excretion route of supaglutide, following by feces, but mostly not in bile.Our results show that supaglutide possess linear pharmacokinetic characteristics associated with prolonged hypoglycemic effects inanimals,suggestinga potential weekly dosing therapeutic reagent for the treatment of type 2 diabetes and metabolic diseases.
Collapse
|
7
|
Tan H, Su W, Zhang W, Zhang J, Sattler M, Zou P. Albumin-binding domain extends half-life of glucagon-like peptide-1. Eur J Pharmacol 2021; 890:173650. [PMID: 33049303 DOI: 10.1016/j.ejphar.2020.173650] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is considered to be a promising peptide for the treatment of type 2 diabetes mellitus (T2DM). However, the extremely short half-life of GLP-1 limits its clinical application. Albumin-binding domain (ABD) with high affinity for human serum albumin (HSA) has been used widely for half-life extension of therapeutic peptides and proteins. In the present study, novel GLP-1 receptor agonists were designed by genetic fusion of GLP-1 to three kinds of ABDs with different affinities for HSA: GA3, ABD035 and ABDCon. The bioactivities and half-lives of ABD-fusion GLP-1 proteins with different types and lengths of linkers were investigated in vitro and in vivo. The results demonstrated that ABD-fusion GLP-1 proteins could bind to HSA with high affinity. The blood glucose-lowering effect of GLP-1 was significantly improved and sustained by fusion to ABD. Meanwhile, the fusion proteins significantly inhibited food intake, which was beneficial for T2DM and obesity treatment. The half-life of GLP-1 was substantially extended by virtue of ABD. The in vivo results also showed that a longer linker inserted between GLP-1 and ABD resulted in a higher blood glucose-lowering effect. The fusion proteins generated by fusion of GLP-1 to GA3, ABD035 and ABDCon exhibited similar bioactivities and pharmacokinetics in vivo. These findings demonstrate that ABD-fusion GLP-1 proteins retain the bioactivities of natural GLP-1 and can be further developed for T2DM treatment and weight loss. It also indicates that the ABD-fusion strategy can be generally applicable to any peptide or protein, to improve pharmacodynamic and pharmacokinetic properties.
Collapse
Affiliation(s)
- Huanbo Tan
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wencheng Su
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wenyu Zhang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jie Zhang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Michael Sattler
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Peijian Zou
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|