1
|
Han Y, Li Y, Wu Z, Pei Y, Lu S, Yu H, Sun Y, Zhang X. Progress in diagnosis and treatment of hypertension combined with left ventricular hypertrophy. Ann Med 2024; 56:2405080. [PMID: 39301864 PMCID: PMC11418038 DOI: 10.1080/07853890.2024.2405080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Hypertension, a worldwide cardiovascular issue, is known to result in significant damage to the left ventricle. Left ventricular hypertrophy refers to an increase in ventricular mass, which is not only the primary independent risk factor for cardiovascular disease onset but also independently related to the risk of death. OBJECTIVES We sought to synthesize the existing literature on the occurrence and correlation between hypertension and left ventricular hypertrophy and the progress. METHODS A scoping review was performed based on the methodological framework developed by Arksey & O'Malley. Search in the Pubmed database with no language restrictions, as of September 1, 2024. RESULTS Of the 8110 articles retrieved, 110 were finally included. The selected articles were published between 1987 and 2024, with 55.5% (61/110) of the studies in the last five years and 14.5% (16/110) of 2024. The studies covered diagnosis, epidemiology, pathophysiology, prognosis, and treatment of hypertension with left ventricular hypertrophy. CONCLUSION The literature reviewed suggests that studies on hypertension combined with left ventricular hypertrophy covered a variety of clinical progress, especially the clinical trial results of some new drugs that may bring great hope for treatment.
Collapse
Affiliation(s)
- Yongjin Han
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yanqiu Li
- Department of Cardiology, Yixian People’s Hospital, Jinzhou, Liaoning Province, China
| | - Zhen Wu
- Department of Cardiology, Yixian People’s Hospital, Jinzhou, Liaoning Province, China
| | - Ying Pei
- Department of Cardiology, Yixian People’s Hospital, Jinzhou, Liaoning Province, China
| | - Saien Lu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Haijie Yu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xueyao Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Gori T. Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist). Cells 2022; 11:cells11132094. [PMID: 35805178 PMCID: PMC9265311 DOI: 10.3390/cells11132094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Coronary stents are among the most common therapies worldwide. Despite significant improvements in the biocompatibility of these devices throughout the last decades, they are prone, in as many as 10–20% of cases, to short- or long-term failure. In-stent restenosis is a multifactorial process with a complex and incompletely understood pathophysiology in which inflammatory reactions are of central importance. This review provides a short overview for the clinician on the cellular types responsible for restenosis with a focus on the role of endothelial progenitor cells. The mechanisms of restenosis are described, along with the cell-based attempts made to prevent it. While the focus of this review is principally clinical, experimental evidence provides some insight into the potential implications for prevention and therapy of coronary stent restenosis.
Collapse
Affiliation(s)
- Tommaso Gori
- German Center for Cardiac and Vascular Research (DZHK) Standort Rhein-Main, Department of Cardiology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Yifan C, Jianfeng S, Jun P. Development and Validation of a Random Forest Diagnostic Model of Acute Myocardial Infarction Based on Ferroptosis-Related Genes in Circulating Endothelial Cells. Front Cardiovasc Med 2021; 8:663509. [PMID: 34262953 PMCID: PMC8274450 DOI: 10.3389/fcvm.2021.663509] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
The high incidence and mortality of acute myocardial infarction (MI) drastically threaten human life and health. In the past few decades, the rise of reperfusion therapy has significantly reduced the mortality rate, but the MI diagnosis is still by means of the identification of myocardial injury markers without highly specific biomarkers of microcirculation disorders. Ferroptosis is a novel reported type of programmed cell death, which plays an important role in cancer development. Maintaining iron homeostasis in cells is essential for heart function, and its role in the pathological process of ischemic organ damages remains unclear. Being quickly detected through blood tests, circulating endothelial cells (CECs) have the potential for early judgment of early microcirculation disorders. In order to explore the role of ferroptosis-related genes in the early diagnosis of acute MI, we relied on two data sets from the GEO database to first detect eight ferroptosis-related genes differentially expressed in CECs between the MI and healthy groups in this study. After comparing different supervised learning algorithms, we constructed a random forest diagnosis model for acute MI based on these ferroptosis-related genes with a compelling diagnostic performance in both the validation (AUC = 0.8550) and test set (AUC = 0.7308), respectively. These results suggest that the ferroptosis-related genes might play an important role in the early stage of MI and have the potential as specific diagnostic biomarkers for MI.
Collapse
|
4
|
Chen JS, Pei Y, Li CE, Li YN, Wang QY, Yu J. Comparative efficacy of different types of antihypertensive drugs in reversing left ventricular hypertrophy as determined with echocardiography in hypertensive patients: A network meta-analysis of randomized controlled trials. J Clin Hypertens (Greenwich) 2020; 22:2175-2183. [PMID: 33190366 DOI: 10.1111/jch.14047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022]
Abstract
Reversing left ventricular hypertrophy (LVH) can reduce the incidence of adverse cardiovascular events. However, there is no clear superiority-inferiority differentiation between angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), beta-blockers (BB), calcium channel blockers (CCB), and diuretics in reversing LVH in hypertensive patients. To provide further evidence for choosing the optimal antihypertensive drug for improving LVH, we performed a network meta-analysis of randomized controlled trials (RCTs) based on the Cochrane library database, Embase, and Pubmed, and identified 49 studies involving 5402 patients that were eligible for inclusion. It was found that ARB could improve LVH in hypertensive patients more effectively than CCB (MD -4.07, 95%CI -8.03 to -0.24) and BB (MD -4.57, 95%CI -8.07 to -1.12). Matched comparison of renin-angiotensin system inhibitors (RASi) showed that the effect of ACEI in reducing left ventricular mass index (LVMi) was not effective as that of ARB (MD -3.72, 95%CI -7.52 to -0.11). The surface under the cumulative ranking for each intervention indicated that the use of ARB was more effective among the different types of antihypertensive drugs (97%). This network meta-analysis revealed that the use of ARB in antihypertensive therapy could achieve better efficacy in reversing LVH in hypertensive patients.
Collapse
Affiliation(s)
- Jian-Shu Chen
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Ying Pei
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Cai-E Li
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Yin-Ning Li
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Qiong-Ying Wang
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Jing Yu
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China.,Department of Cardiology, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Endothelial progenitor cells as the target for cardiovascular disease prediction, personalized prevention, and treatments: progressing beyond the state-of-the-art. EPMA J 2020; 11:629-643. [PMID: 33240451 DOI: 10.1007/s13167-020-00223-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Stimulated by the leading mortalities of cardiovascular diseases (CVDs), various types of cardiovascular biomaterials have been widely investigated in the past few decades. Although great therapeutic effects can be achieved by bare metal stents (BMS) and drug-eluting stents (DES) within months or years, the long-term complications such as late thrombosis and restenosis have limited their further applications. It is well accepted that rapid endothelialization is a promising approach to eliminate these complications. Convincing evidence has shown that endothelial progenitor cells (EPCs) could be mobilized into the damaged vascular sites systemically and achieve endothelial repair in situ, which significantly contributes to the re-endothelialization process. Therefore, how to effectively capture EPCs via specific molecules immobilized on biomaterials is an important point to achieve rapid endothelialization. Further, in the context of predictive, preventive, personalized medicine (PPPM), the abnormal number alteration of EPCs in circulating blood and certain inflammation responses can also serve as important indicators for predicting and preventing early cardiovascular disease. In this contribution, we mainly focused on the following sections: the definition and classification of EPCs, the mechanisms of EPCs in treating CVDs, the potential diagnostic role of EPCs in predicting CVDs, as well as the main strategies for cardiovascular biomaterials to capture EPCs.
Collapse
|
6
|
Vascular Remodeling in Moyamoya Angiopathy: From Peripheral Blood Mononuclear Cells to Endothelial Cells. Int J Mol Sci 2020; 21:ijms21165763. [PMID: 32796702 PMCID: PMC7460840 DOI: 10.3390/ijms21165763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
The pathophysiological mechanisms of Moyamoya angiopathy (MA), which is a rare cerebrovascular condition characterized by recurrent ischemic/hemorrhagic strokes, are still largely unknown. An imbalance of vasculogenic/angiogenic mechanisms has been proposed as one possible disease aspect. Circulating endothelial progenitor cells (cEPCs) have been hypothesized to contribute to vascular remodeling of MA, but it remains unclear whether they might be considered a disease effect or have a role in disease pathogenesis. The aim of the present study was to provide a morphological, phenotypical, and functional characterization of the cEPCs from MA patients to uncover their role in the disease pathophysiology. cEPCs were identified from whole blood as CD45dimCD34+CD133+ mononuclear cells. Morphological, biochemical, and functional assays were performed to characterize cEPCs. A significant reduced level of cEPCs was found in blood samples collected from a homogeneous group of adult (mean age 46.86 ± 11.7; 86.36% females), Caucasian, non-operated MA patients with respect to healthy donors (HD; p = 0.032). Since no difference in cEPC characteristics and functionality was observed between MA patients and HD, a defective recruitment mechanism could be involved in the disease pathophysiology. Collectively, our results suggest that cEPC level more than endothelial progenitor cell (EPC) functionality seems to be a potential marker of MA. The validation of our results on a larger population and the correlation with clinical data as well as the use of more complex cellular model could help our understanding of EPC role in MA pathophysiology.
Collapse
|
7
|
Hegyesi H, Sándor N, Sáfrány G, Lovas V, Kovács Á, Takács A, Kőhidai L, Turiák L, Kittel Á, Pálóczi K, Bertók L, Buzás EI. Radio-detoxified LPS alters bone marrow-derived extracellular vesicles and endothelial progenitor cells. Stem Cell Res Ther 2019; 10:313. [PMID: 31665090 PMCID: PMC6819448 DOI: 10.1186/s13287-019-1417-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
Stem cell-based therapies raise hope for cell replacement and provide opportunity for cardiac regenerative medicine and tumor therapy. Extracellular vesicles are a membrane-enclosed intercellular delivery system with the potential to improve the therapeutic efficacy of the treatment of a variety of disorders. As the incidence of breast cancer continues to rise, radiotherapy has emerged as a leading treatment modality. Radiotherapy also increases the risk of coronary heart disease and cardiac mortality. In a chest-irradiated mouse model of cardiac injury, we investigated the effects of local irradiation. We found an increased lethality after 16 Gy irradiation. Importantly, radio-detoxified LPS (RD-LPS) treatment prolonged the survival significantly. By flow cytometry, we demonstrated that upon administration of RD-LPS, the number of bone marrow-derived endothelial progenitor cells increased in the bone marrow and, in particular, in the circulation. Furthermore, mass spectrometry analysis showed that RD-LPS altered the proteomic composition of bone marrow cell-derived small extracellular vesicles (sEVs). RD-LPS treatment increased interferon-induced transmembrane protein-3 (IFITM3) expression markedly both in bone marrow cells and in bone marrow cell-derived small extracellular vesicles. This is the first study to demonstrate that radio-detoxified LPS treatment induces an increase of circulating endothelial progenitor cells (EPCs) in parallel with a reduced radiotherapy-related mortality. While the total number of bone marrow-derived extracellular vesicles was significantly increased 24 h after treatment in the RD-LPS groups, the number of endothelial progenitor cells was reduced in animals injected with GW4896 (a chemical inhibitor of exosome biogenesis) as compared with controls. In contrast to these in vivo results, in vitro experiments did not support the effect of sEVs on EPCs. Our data raise the intriguing possibility that IFITM3 may serve as a marker of the radio-detoxified LPS treatment.
Collapse
Affiliation(s)
- Hargita Hegyesi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary. .,National Research Directorate for Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary.
| | - Nikolett Sándor
- National Research Directorate for Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | - Géza Sáfrány
- National Research Directorate for Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | - Virág Lovas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Árpád Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Angéla Takács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Kittel
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Krisztina Pálóczi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Lóránd Bertók
- National Research Directorate for Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | - Edit Irén Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,MTA-SE Immune-Proteogenomics Extracellular Vesicles Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|