1
|
Wang YQ, Dong YW, Qu HX, Qi JJ, Yan CX, Wei HK, Sun H, Sun BX, Liang S. Oleanolic acid promotes porcine oocyte maturation by activating the Nrf2/HO-1 signalling pathway. Theriogenology 2024; 230:203-211. [PMID: 39332380 DOI: 10.1016/j.theriogenology.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
This study investigated the potential role and underlying mechanisms of oleanolic acid (OA), a pentacyclic triterpene with antioxidant and anti-inflammatory properties, in porcine oocytes during in vitro maturation (IVM). The results showed that supplementation with 5 μM OA during IVM resulted in a greater percentage of mature oocytes, parthenogenetically activated embryos and somatic cell nuclear-transferred embryos. This was evidenced by significant increases in the rate of first polar body expulsion, the expansion of cumulus granulosa cells and the total cell number in blastocysts. Further analysis revealed that OA promoted fatty acid accumulation and upregulated the mRNA expression of genes involved in fatty acid β-oxidation. OA significantly increased the intracellular mitochondrial membrane potential and ATP levels and effectively inhibited BAX/BCL2 and Cleaved Caspase3 protein expression. Notably, OA increased the protein levels of intracellular Nrf2 and HO-1, and the GSH levels and the activities of the antioxidant enzymes SOD and catalase (CAT), while reducing ROS levels. Mechanistically, OA activated the Nrf2/HO-1 signalling pathway, which is crucial for regulating the expression of antioxidant-related targets in IVM porcine oocytes. Our findings indicated that OA improved antioxidant capacity by activating the Nrf2/HO-1 signalling pathway, thereby promoting porcine oocyte maturation.
Collapse
Affiliation(s)
- Yan-Qiu Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yan-Wei Dong
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - He-Xuan Qu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Chen-Xuan Yan
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Hua-Kai Wei
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Hao Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Sharma R, Mehan S, Khan Z, Das Gupta G, Narula AS. Therapeutic potential of oleanolic acid in modulation of PI3K/Akt/mTOR/STAT-3/GSK-3β signaling pathways and neuroprotection against methylmercury-induced neurodegeneration. Neurochem Int 2024; 180:105876. [PMID: 39368746 DOI: 10.1016/j.neuint.2024.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that gradually deteriorates motor neurons, leading to demyelination, muscle weakness, and eventually respiratory failure. The disease involves several pathological processes, such as increased glutamate levels, mitochondrial dysfunction, and persistent neuroinflammation, often exacerbated by environmental toxins like mercury. This study explores the therapeutic potential of Olea europaea active phytoconstituents oleanolic acid (OLA) against ALS by targeting the overactivated PI3K/Akt/mTOR/STAT-3/GSK-3β signalling pathways. Methods involved in-silico studies, in vitro and in vivo experiments in which varying doses of methylmercury 5 mg/kg, p.o. and OLA (100 and 200 mg/kg, i.p.) were administered to rats for 42 days. Behavioural assessments, gross morphological, histopathological, and neurochemical parameters were measured in cerebrospinal fluid (CSF), blood plasma, and brain homogenates (cerebral cortex, hippocampus, striatum, midbrain, cerebellum) along with complete blood count (CBC) analysis. Results revealed OLA's significant neuroprotective properties. OLA effectively modulated targeted pathways, reducing pro-inflammatory cytokines, restoring normal levels of myelin basic protein (MBP) and neurofilament light chain (NEFL), and reducing histopathological changes. Gross pathological studies indicated less tissue damage, while CBC analysis showed improved hematology parameters. Additionally, the combination of OLA and edaravone (10 mg/kg, i.p.) demonstrated enhanced efficacy, improving motor functions and extending survival in ALS model rats. In conclusion, OLA exhibits significant therapeutic potential for ALS, acting as a potent modulator of key pathological signaling pathways. The findings suggest the feasibility of integrating OLA into existing treatment regimens, potentially improving clinical outcomes for ALS patients. However, further research must validate these findings in human clinical trials.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
3
|
Vestuto V, Conte M, Vietri M, Mensitieri F, Santoro V, Di Muro A, Alfieri M, Moros M, Miranda MR, Amante C, Delli Carri M, Campiglia P, Dal Piaz F, Del Gaudio P, De Tommasi N, Leone A, Moltedo O, Pepe G, Cappetta E, Ambrosone A. Multiomic Profiling and Neuroprotective Bioactivity of Salvia Hairy Root-Derived Extracellular Vesicles in a Cellular Model of Parkinson's Disease. Int J Nanomedicine 2024; 19:9373-9393. [PMID: 39286353 PMCID: PMC11403015 DOI: 10.2147/ijn.s479959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Extracellular vesicles (EVs) are promising tools for nanomedicine and nanobiotechnology. The purification of mammalian-derived EVs involves intensive processes, and their therapeutic application raises multiple safety and regulatory issues. Plants have the potential to serve as nonconventional sources of therapeutically relevant EVs. In this context, we recently identified hairy roots (HRs) of medicinal plants as a novel biotechnological platform to produce EVs for human health. Methods Herein, we report the purification, omics profiling, and bioactivity of EVs isolated from HRs of the medicinal plants S. sclarea and S. dominica. EVs were isolated from conditioned media of HR cultures using differential ultracentrifugation (dUC) and size exclusion chromatography (SEC). The isolated EVs were characterized by nanoparticle tracking analysis (NTA) and electron microscopy. The proteomic and metabolomic profiles of the EVs were determined using mass spectrometry. Uptake studies and bioactivity assays, including confocal microscopy, MTT, flow cytometry, ROS quantification, and untargeted metabolomics analyses, were conducted in SH-SY5Y cells treated with the neurotoxin 6-hydroxydopamine (6-OHDA) to evaluate the therapeutic potential of EVs in an in vitro model of Parkinson's disease. Results S. sclarea HRs released nanosized round-shaped EVs with a distinctive molecular signature. HR EVs from S. sclarea and S. dominica revealed conserved cargo of secondary metabolites, predominantly triterpenoids, which are known for their antioxidant properties. We showed that HR EVs are safe, enter the cells, and strongly inhibit apoptosis in a cellular model of Parkinson's disease. Cellular metabolomics revealed that EVs preserved metabolic homeostasis and mitigated cellular oxidative stress when co-administered with 6-OHDA. Mechanistically, HR EVs inhibited 6-OHDA autoxidation and substantially reduced the accumulation of its oxidative products, which are responsible for 6-OHDA-induced toxicity. Conclusion Collectively, our findings provide compelling evidence that EVs isolated from the hairy roots of Salvia species are promising, non-mammalian alternative for the design of novel therapies targeting neurological disorders.
Collapse
Affiliation(s)
- Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Marisa Conte
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Mariapia Vietri
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, Italy
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Anna Di Muro
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Mariaevelina Alfieri
- Clinical Pathology, Santobono-Pausilipon Children's Hospital, AORN, Naples, 80122, Italy
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Chiara Amante
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | | | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, Italy
- Operative Unit of Clinical Pharmacology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | | | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Antonietta Leone
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Elisa Cappetta
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Alfredo Ambrosone
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| |
Collapse
|
4
|
Lee S, Jung DM, Kim EM, Kim KK. Establishments of G3BP1-GFP stress granule monitoring system for real-time stress assessment in human neuroblastoma cells. CHEMOSPHERE 2024; 361:142485. [PMID: 38821132 DOI: 10.1016/j.chemosphere.2024.142485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Acute stress caused by short-term exposure to deleterious chemicals can induce the aggregation of RNA-binding proteins (RBPs) in the cytosol and the formation of stress granules (SGs). The cytoplasmic RBP, Ras GTPase-activating protein-binding protein 1 (G3BP1) is a critical organizer of SG, and its aggregation is considered a hallmark of cellular stress. However, assembly of SG is a highly dynamic process that involves RBPs; hence, existing methods based on fixation processes or overexpression of RBPs exhibit limited efficacy in detecting the assembly of SG under stress conditions. In this study, we established a G3BP1- Green fluorescent protein (GFP) reporter protein in a human neuroblastoma cell line to overcome these limitations. GFP was introduced into the G3BP1 genomic sequence via homologous recombination to generate a G3BP1-GFP fusion protein and further analyze the aggregation processes. We validated the assembly of SG under stress conditions using the G3BP1-GFP reporter system. Additionally, this system supported the evaluation of bisphenol A-induced SG response in the established human neuroblastoma cell line. In conclusion, the established G3BP1-GFP reporter system enables us to monitor the assembly of the SG complex in a human neuroblastoma cell line in real time and can serve as an efficient tool for assessing potential neurotoxicity associated with short-term exposure to chemicals.
Collapse
Affiliation(s)
- Sangsoo Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Da-Min Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Bio and Environmental Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
5
|
Kang L, Han X, Chang X, Su Z, Fu F, Shan Y, Guo J, Li G. Redox-sensitive self-assembling polymer micelles based on oleanolic modified hydroxyethyl starch: Synthesis, characterisation, and oleanolic release. Int J Biol Macromol 2024; 266:131211. [PMID: 38552688 DOI: 10.1016/j.ijbiomac.2024.131211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Our study aimed at developing polymer micelles that possess redox sensitivity and excellent controlled release properties. 3,3'-dithiodipropionic acid (DTDPA, Abbreviation in synthetic polymers: SS) was introduced as ROS (Reactive oxygen species)response bond and connecting arm to couple hydroxyethyl starch (HES) with oleanolic acid (OA), resulting in the synthesis of four distinct grafting ratios of HES-SS-OA. FTIR (Fourier Transform infrared spectroscopy) and 1H NMR (1H Nuclear magnetic resonance spectra) were used to verify the triumphant combination of HES-SS-OA. Polymer micelles were found to encapsulate OA in an amorphous form, as indicated by the results of XRD (X-ray diffraction) and DSC (Differential scanning calorimetry). When the OA grafting rate on HES increased from 7.72 % to 11.75 %, the particle size decreased from 297.79 nm to 201.39 nm as the polymer micelles became compact due to enhanced hydrophobicity. In addition, the zeta potential changed from -16.42 mv to -25.78 mv, the PDI (polydispersity index) decreased from 0.3649 to 0.2435, and the critical micelle concentration (CMC) decreased from 0.0955 mg/mL to 0.0123 mg/mL. Results of erythrocyte hemolysis, cytotoxicity and cellular uptake illustrated that HES-SS-OA had excellent biocompatibility and minimal cytotoxicity for AML-12 cells. Disulfide bond breakage of HES-SS-OA in the presence of H2O2 and GSH confirmed the redox sensitivity of the HES-SS-OA micelles and their excellent controlled release properties for OA. These findings suggest that HES-SS-OA can be potentially used in the future as a healthcare drug and medicine for the prevention or adjuvant treatment of inflammation.
Collapse
Affiliation(s)
- Lingtao Kang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xiaolei Han
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Zhipeng Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Jiajing Guo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
6
|
Pingale TD, Gupta GL. Oleanolic acid-based therapeutics ameliorate rotenone-induced motor and depressive behaviors in parkinsonian male mice via controlling neuroinflammation and activating Nrf2-BDNF-dopaminergic signaling pathways. Toxicol Mech Methods 2024; 34:335-349. [PMID: 38084769 DOI: 10.1080/15376516.2023.2288198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 04/20/2024]
Abstract
Parkinson's disease (PD) is often accompanied by depression, which may appear before motor signs. Oleanolic acid (OA), a pentacyclic triterpenoid substance, have many pharmacological properties. However, its efficacy in treating PD-related chronic unpredictable stress (CUS) is unknown. Our study used behavioral, biochemical, and immunohistochemical techniques to assess how OA affected PDrelated CUS. Rotenone (1 mg/kg i.p. for first 21 days) was used to induce Parkinsonism, and modest psychological & environmental stresses generated CUS (from day 22 to day 43) in animals. The study included daily i.p.administration of OA (5, 10, and 20 mg/kg) from day 1 to day 57 in male swiss albino mice. Animals were evaluated for behavioral, biochemical parameters, neurotransmitters, and immunohistochemical expression following the treatment. Results of the study revealed that treatment with OA at all doses alleviated the core symptoms of CUS linked to PD and improved motor and non-motor function. OA therapy significantly lowered IL-1β, TNF-α (p < 0.01, < 0.01, < 0.001), IL-6 (p < 0.05, < 0.01, < 0.001), oxidative stress (p < 0.05, < 0.01, < 0.01), and elevated norepinephrine (p < 0.05, < 0.01, < 0.01), dopamine, and serotonin (p < 0.05, < 0.01, < 0.001) levels. Moreover, OA therapy substantially reduced α-synuclein (p < 0.05, < 0.01, < 0.01) aggregation and increased BDNF (p < 0.05, < 0.01, < 0.001) & Nrf-2 (p < 0.05, < 0.01, < 0.01) levels, which boosts neuronal dopamine survival. The study's findings indicated that OA ameliorates depressive-like behavior persuaded by CUS in PD, decreases neuroinflammation, and improves neurotransmitter concentration via activating Nrf2-BDNF-dopaminergic pathway.
Collapse
Affiliation(s)
- Tanvi Dayanand Pingale
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai India
| | - Girdhari Lal Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai India
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur India
| |
Collapse
|
7
|
Neha SL, Mishra AK, Rani L, Paroha S, Dewangan HK, Sahoo PK. Design and evaluations of a nanostructured lipid carrier loaded with dopamine hydrochloride for intranasal bypass drug delivery in Parkinson's disease. J Microencapsul 2023; 40:599-612. [PMID: 37787159 DOI: 10.1080/02652048.2023.2264386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
AIM The goal of this study is to optimisation and evaluation of dopamine-loaded NLC (NLC-DOPA) for achieve dopamine concentrations into brain for treatment of Parkinson's disease which causes progressive neuronal death. METHOD NLC-DOPA prepared by homogenisation method using solid lipids (Cholesterol and Soya lecithin), liquid lipid (Oleic acid) and surfactant (Poloxamer- 188) as major excipients, optimised by central composite design using design expert-13 software. The optimised formulations were characterised by particle size, zeta potential, entrapment efficiency, SEM, TEM, FTIR, DSC, XRD, stability study and in-vitro drug release. The histopathology of rat brain tissues and goat nasal tissues were performed. The ex-vivo (permeability and nasal ciliotoxicity study) and in vivo pharmacodynamics study were also accomplished to determine its efficacy and potency of NLC. RESULT The NLC-DOPA formulations were optimised in particle size and (EE)% with range from 85.53 ± 0.703 to 106.11 ± 0.822 nm and 82.17 ± 0.794 to 95.45 ± 0.891%, respectively. The optimised formulation F11 showing best goodness-fitted model kinetic, followed by Korsmeyer-Peppas equation and zero order kinetic. The SEM and TEM confirmed the spherical and smooth morphology of formulation. FTIR and DSC spectra were given compatibility of compound and XRD diffractograms confirmed the amorphous nature. An ex-vivo study was showed the high permeability coefficient (6.67*1 0 -4 cm/min, which is twice, compare to pure drug) and there was no damage in nasal mucosa, confirmed by the ciliotoxicity study. In-vivo study was shown significant effects of optimised NLC-DOPA on locomotor activity, force-swimming test and neurochemical assessment using rotenone induced Parkinson's model on Albino Wistar rats. CONCLUSION NLC-DOPA was prepared and optimised successfully with increased bioavailability of drug from the NLC into brain with reduce toxicity in effective treatment of Parkinson's disease.
Collapse
Affiliation(s)
- S L Neha
- Head of Department of Pharmaceutics, Delhi Institute of Pharmaceutical Science And Research, Delhi Pharmaceutical Science And Research University, New Delhi, India
| | - Ashwini Kumar Mishra
- Head of Department of Pharmaceutics, Delhi Institute of Pharmaceutical Science And Research, Delhi Pharmaceutical Science And Research University, New Delhi, India
| | - Laxmi Rani
- Head of Department of Pharmaceutics, Delhi Institute of Pharmaceutical Science And Research, Delhi Pharmaceutical Science And Research University, New Delhi, India
| | - Shweta Paroha
- Head of Department of Pharmaceutics, Delhi Institute of Pharmaceutical Science And Research, Delhi Pharmaceutical Science And Research University, New Delhi, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-05, Chandigarh Ludhiana Highway, Mohali, India
| | - Pravat Kumar Sahoo
- Head of Department of Pharmaceutics, Delhi Institute of Pharmaceutical Science And Research, Delhi Pharmaceutical Science And Research University, New Delhi, India
| |
Collapse
|
8
|
Kumar S, Awasthi A, Raj K, Singh S. L-theanine attenuates LPS-induced motor deficit in experimental rat model of Parkinson's disease: emphasis on mitochondrial activity, neuroinflammation, and neurotransmitters. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06382-y. [PMID: 37191688 DOI: 10.1007/s00213-023-06382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
RATIONALE Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons. The pathogenesis of PD includes oxidative stress, mitochondrial dysfunction, neuroinflammation, and neurotransmitter dysregulation. L-theanine is found in green tea and has antioxidant, anti-inflammatory, and neuroprotective effects with a high blood brain barrier permeability. OBJECTIVE The objective of this study was to investigate the possible neuroprotective effect of L-theanine in lipopolysaccharide (LPS) induced motor deficits and striatal neurotoxicity in a rat model of PD. METHODS LPS was infused at a dose of 5 μg/5 μl PBS stereotaxically into SNpc of rats. Treatment with L-theanine (50 and 100 mg/kg; po) and Sinemet (36 mg/kg; po) was given from day 7 to 21 in of LPS injected rat. On a weekly basis all behavioral parameters were assessed, and animals were sacrificed on day 22. The striatum tissue of brain was isolated for biochemicals (Nitrite, GSH, catalase, SOD, mitochondrial complexes I and IV), neuroinflammatory markers, and neurotransmitters (serotonin, dopamine, norepinephrine, GABA, and glutamate) estimations. RESULTS Results revealed that L-theanine dose-dependently and significantly reversed motor deficits, assessed through locomotor and rotarod activity. Moreover, L-theanine attenuated biochemical markers, reduced oxidative stress, and neurotransmitters dysbalance in the brain. L-theanine treatment at 100 mg/kg; po substantially reduced these pathogenic events by increasing mitochondrial activity, restoring neurotransmitter levels, and inhibiting neuroinflammation. CONCLUSIONS These data suggest that the positive effects of L-theanine on motor coordination may be mediated by the suppression of NF-κB induced by LPS. Therefore, L-theanine would have a new therapeutic potential for PD.
Collapse
Affiliation(s)
- Shivam Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Anupam Awasthi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Khadga Raj
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001.
| |
Collapse
|
9
|
Yamada S, Ko T, Ito M, Sassa T, Nomura S, Okuma H, Sato M, Imasaki T, Kikkawa S, Zhang B, Yamada T, Seki Y, Fujita K, Katoh M, Kubota M, Hatsuse S, Katagiri M, Hayashi H, Hamano M, Takeda N, Morita H, Takada S, Toyoda M, Uchiyama M, Ikeuchi M, Toyooka K, Umezawa A, Yamanishi Y, Nitta R, Aburatani H, Komuro I. TEAD1 trapping by the Q353R-Lamin A/C causes dilated cardiomyopathy. SCIENCE ADVANCES 2023; 9:eade7047. [PMID: 37058558 PMCID: PMC10104473 DOI: 10.1126/sciadv.ade7047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Mutations in the LMNA gene encoding Lamin A and C (Lamin A/C), major components of the nuclear lamina, cause laminopathies including dilated cardiomyopathy (DCM), but the underlying molecular mechanisms have not been fully elucidated. Here, by leveraging single-cell RNA sequencing (RNA-seq), assay for transposase-accessible chromatin using sequencing (ATAC-seq), protein array, and electron microscopy analysis, we show that insufficient structural maturation of cardiomyocytes owing to trapping of transcription factor TEA domain transcription factor 1 (TEAD1) by mutant Lamin A/C at the nuclear membrane underlies the pathogenesis of Q353R-LMNA-related DCM. Inhibition of the Hippo pathway rescued the dysregulation of cardiac developmental genes by TEAD1 in LMNA mutant cardiomyocytes. Single-cell RNA-seq of cardiac tissues from patients with DCM with the LMNA mutation confirmed the dysregulated expression of TEAD1 target genes. Our results propose an intervention for transcriptional dysregulation as a potential treatment of LMNA-related DCM.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuro Sassa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiromichi Okuma
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Bo Zhang
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Takanobu Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Yuka Seki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kanna Fujita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Manami Katoh
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Masayuki Kubota
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Hatsuse
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromu Hayashi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Masashi Toyoda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masashi Ikeuchi
- Division of Biofunctional Restoration, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Hetze S, Barthel L, Lückemann L, Günther HS, Wülfing C, Salem Y, Jakobs M, Hörbelt-Grünheidt T, Petschulat J, Bendix I, Weber-Stadlbauer U, Sure U, Schedlowski M, Hadamitzky M. Taste-immune associative learning amplifies immunopharmacological effects and attenuates disease progression in a rat glioblastoma model. Brain Behav Immun 2022; 106:270-279. [PMID: 36115545 DOI: 10.1016/j.bbi.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR)-signaling is one key driver of glioblastoma (GBM), facilitating tumor growth by promoting the shift to an anti-inflammatory, pro-cancerogenic microenvironment. Even though mTOR inhibitors such as rapamycin (RAPA) have been shown to interfere with GBM disease progression, frequently chaperoned toxic drug side effects urge the need for developing alternative or supportive treatment strategies. Importantly, previous work document that taste-immune associative learning with RAPA may be utilized to induce learned pharmacological placebo responses in the immune system. Against this background, the current study aimed at investigating the potential efficacy of a taste-immune associative learning protocol with RAPA in a syngeneic GBM rat model. Following repeated pairings of a novel gustatory stimulus with injections of RAPA, learned immune-pharmacological effects could be retrieved in GBM-bearing animals when re-exposed to the gustatory stimulus together with administering 10 % amount of the initial drug dose (0.5 mg/kg). These inhibitory effects on tumor growth were accompanied by an up-regulation of central and peripheral pro-inflammatory markers, suggesting that taste-immune associative learning with RAPA promoted the development of a pro-inflammatory anti-tumor microenvironment that attenuated GBM tumor growth to an almost identical outcome as obtained after 100 % (5 mg/kg) RAPA treatment. Together, our results confirm the applicability of taste-immune associative learning with RAPA in animal disease models where mTOR overactivation is one key driver. This proof-of-concept study may also be taken as a role model for implementing learning protocols as alternative or supportive treatment strategy in clinical settings, allowing the reduction of required drug doses and side effects without losing treatment efficacy.
Collapse
Affiliation(s)
- Susann Hetze
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Germany; Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany.
| | - Lennart Barthel
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Germany; Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Hauke S Günther
- Group for Interdisciplinary Neurobiology and Immunology (INI)-RESEARCH, University of Hamburg, Germany
| | - Clemens Wülfing
- Group for Interdisciplinary Neurobiology and Immunology (INI)-RESEARCH, University of Hamburg, Germany
| | - Yasmin Salem
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Marie Jakobs
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Tina Hörbelt-Grünheidt
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Jasmin Petschulat
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I/ Experimental Perinatal Neurosciences, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany; Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany.
| |
Collapse
|
11
|
Mioc M, Milan A, Malița D, Mioc A, Prodea A, Racoviceanu R, Ghiulai R, Cristea A, Căruntu F, Șoica C. Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I). Int J Mol Sci 2022; 23:ijms23147740. [PMID: 35887090 PMCID: PMC9322890 DOI: 10.3390/ijms23147740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.
Collapse
Affiliation(s)
- Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Daniel Malița
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
| | - Florina Căruntu
- Department of Medical Semiology II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Iranshahy M, Javadi B, Sahebkar A. Protective effects of functional foods against Parkinson's disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother Res 2022; 36:1952-1989. [PMID: 35244296 DOI: 10.1002/ptr.7425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
In Persian Medicine (PM), PD (brain-based tremor) is a known CNS disorder with several therapeutic and preventive options. In their medical textbooks and pharmacopeias, Persian great scientists such as Rhazes (854-925 AD), Avicenna (980-1037 AD), and Jorjani (1042-1136 AD), have discussed pharmacological and nutritional strategies for the prevention, slowing progression, and treatment of PD. In the present study, we surveyed plant- and animal-based foods recommended by PM for the prevention and treatment of CNS-related tremors. In vivo and in-vitro pharmacological evidence supporting the beneficial effects of PM-recommended foods in prevention and alleviating PD, major active phytochemicals along with the relevant mechanisms of action were studied. Several PM plants possess potent antioxidant, antiinflammatory, and PD preventing properties. Garlic and allicin, cabbage and isothiocyanates, chickpea seed and its O-methylated isoflavones biochanin A and formononetin, cinnamon, and cinnamaldehyde, saffron and its crocin, crocetin, and safranal, black cumin and its thymoquinone, black pepper and piperine, pistachio and genistein and daidzein, and resveratrol are among the most effective dietary itemsagainst PD. They act through attenuating neurotoxin-induced memory loss and behavioral impairment, oxidative stress, and dopaminergic cell death. PM-recommended foods can help alleviate PD progression and also discovering and developing new neuroprotective anti-PD pharmaceuticals.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Yang J, Li H, Hao Z, Jing X, Zhao Y, Cheng X, Ma H, Wang J, Wang J. Mitigation Effects of Selenium Nanoparticles on Depression-Like Behavior Induced by Fluoride in Mice via the JAK2-STAT3 Pathway. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3685-3700. [PMID: 35023338 DOI: 10.1021/acsami.1c18417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Depression is a mental health problem with typically high levels of distress and dysfunction, and 150 mg/L fluoride (F) can induce depression-like behavior. The development of depression is correlated with neuronal atrophy, insufficient secretion of monoamine neurotransmitters, extreme deviations from the normal microglial activation status, and immune-inflammatory response. Studies found that Se supplementation was related to the improvement of depression. In this study, we applied selenium nanoparticles (SeNPs) for F-induced depression disease mitigation by regulating the histopathology, metabolic index, genes, and protein expression related to the JAK2-STAT3 signaling pathway in vivo. Results showed that F and 2 mg Se/kg BW/day SeNPs lowered the dopamine (DA) content (P < 0.05), altered the microglial morphology, ramification index as well as solidity, and triggered the microglial neuroinflammatory response by increasing the p-STAT3 nuclear translocation (P < 0.01). Furthermore, F reduced the cortical Se content and the number of surviving neurons (P < 0.05), increasing the protein expressions of p-JAK2/JAK2 and p-STAT3/STAT3 of the cortex (P < 0.01), accompanied by the depression-like behavior. Importantly, 1 mg Se/kg BW/day SeNPs alleviated the microglial ramification index as well as solidity changes and decreased the interleukin-1β secretion induced by F by suppressing the p-STAT3 nuclear translocation (P < 0.01). Likewise, 1 mg Se/kg BW/day SeNPs restored the F-disturbed dopamine and noradrenaline secretion, increased the number of cortical surviving neurons, and reduced the vacuolation area, ultimately suppressing the occurrence of depression-like behavior through inhibiting the JAK2-STAT3 pathway activation. In conclusion, 1 mg Se/kg BW/day SeNPs have mitigation effects on the F-induced depression-like behavior. The mechanism of how SeNPs repair neural functions will benefit depression mitigation. This study also indicates that inhibiting the JAK/STAT pathway can be a promising novel treatment for depressive disorders.
Collapse
Affiliation(s)
- Jiarong Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Haojie Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Zijun Hao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Xiaoyuan Jing
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Xiaofang Cheng
- Department of Basic Science, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Haili Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| |
Collapse
|
14
|
The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020235. [PMID: 35213966 PMCID: PMC8879577 DOI: 10.3390/pharmaceutics14020235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
It has become increasingly apparent that defective insulin signaling may increase the risk for developing Alzheimer’s disease (AD), influence neurodegeneration through promotion of amyloid formation or by increasing inflammatory responses to intraneuronal β-amyloid. Recent work has demonstrated that hyperglycemia is linked to cognitive decline, with elevated levels of glucose causing oxidative stress in vulnerable tissues such as the brain. The ability of β-amyloid peptide to form β-sheet-rich aggregates and induce apoptosis has made amyloid fibrils a leading target for the development of novel pharmacotherapies used in managing and treatment of neuropathological conditions such as AD-related cognitive decline. Additionally, deposits of β-sheets folded amylin, a glucose homeostasis regulator, are also present in diabetic patients. Thus, therapeutic compounds capable of reducing intracellular protein aggregation in models of neurodegenerative disorders may prove useful in ameliorating type 2 diabetes mellitus symptoms. Furthermore, both diabetes and neurodegenerative conditions, such as AD, are characterized by chronic inflammatory responses accompanied by the presence of dysregulated inflammatory biomarkers. This review presents current evidence describing the role of various small bioactive molecules known to ameliorate amyloidosis and subsequent effects in prevention and development of diabetes and AD. It also highlights the potential efficacy of peptide–drug conjugates capable of targeting intracellular targets.
Collapse
|
15
|
Sapkota A, Choi JW. Oleanolic Acid Provides Neuroprotection against Ischemic Stroke through the Inhibition of Microglial Activation and NLRP3 Inflammasome Activation. Biomol Ther (Seoul) 2022; 30:55-63. [PMID: 34873072 PMCID: PMC8724842 DOI: 10.4062/biomolther.2021.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Oleanolic acid (OA), a natural pentacyclic triterpenoid, has been reported to exert protective effects against several neurological diseases through its anti-oxidative and anti-inflammatory activities. The goal of the present study was to evaluate the therapeutic potential of OA against acute and chronic brain injuries after ischemic stroke using a mouse model of transient middle cerebral artery occlusion (tMCAO, MCAO/reperfusion). OA administration immediately after reperfusion significantly attenuated acute brain injuries including brain infarction, functional neurological deficits, and neuronal apoptosis. Moreover, delayed administration of OA (at 3 h after reperfusion) attenuated brain infarction and improved functional neurological deficits during the acute phase. Such neuroprotective effects were associated with attenuation of microglial activation and lipid peroxidation in the injured brain after the tMCAO challenge. OA also attenuated NLRP3 inflammasome activation in activated microglia during the acute phase. In addition, daily administration of OA for 7 days starting from either immediately after reperfusion or 1 day after reperfusion significantly improved functional neurological deficits and attenuated brain tissue loss up to 21 days after the tMCAO challenge; these findings supported therapeutic effects of OA against ischemic stroke-induced chronic brain injury. Together, these findings showed that OA exerted neuroprotective effects against both acute and chronic brain injuries after tMCAO challenge, suggesting that OA is a potential therapeutic agent to treat ischemic stroke.
Collapse
Affiliation(s)
- Arjun Sapkota
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Ji Woong Choi
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
16
|
Elsherbeny MH, Kim J, Gouda NA, Gotina L, Cho J, Pae AN, Lee K, Park KD, Elkamhawy A, Roh EJ. Highly Potent, Selective, and Competitive Indole-Based MAO-B Inhibitors Protect PC12 Cells against 6-Hydroxydopamine- and Rotenone-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:1641. [PMID: 34679775 PMCID: PMC8533206 DOI: 10.3390/antiox10101641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
Monoamine oxidase B (MAO-B) is responsible for dopamine metabolism and plays a key role in oxidative stress by changing the redox state of neuronal and glial cells. To date, no disease-modifying therapy for Parkinson's disease (PD) has been identified. However, MAO-B inhibitors have emerged as a viable therapeutic strategy for PD patients. Herein, a novel series of indole-based small molecules was synthesized as new MAO-B inhibitors with the potential to counteract the induced oxidative stress in PC12 cells. At a single dose concentration of 10 µM, 10 compounds out of 30 were able to inhibit MAO-B with more than 50%. Among them, compounds 7b, 8a, 8b, and 8e showed 84.1, 99.3, 99.4, and 89.6% inhibition over MAO-B and IC50 values of 0.33, 0.02, 0.03, and 0.45 µM, respectively. When compared to the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), compounds 7b, 8a, 8b and 8e showed remarkable selectivity indices (SI > 305, 3649, 3278, and 220, respectively). A further kinetic study displayed a competitive mode of action for 8a and 8b over MAO-B with Ki values of 10.34 and 6.63 nM. Molecular docking studies of the enzyme-inhibitor binding complexes in MAO-B revealed that free NH and substituted indole derivatives share a common favorable binding mode: H-bonding with a crucial water "anchor" and Tyr326. Whereas in MAO-A the compounds failed to form favorable interactions, which explained their high selectivity. In addition, compounds 7b, 8a, 8b, and 8e exhibited safe neurotoxicity profiles in PC12 cells and partially reversed 6-hydroxydopamine- and rotenone-induced cell death. Accordingly, we report compounds 7b, 8a, 8b, and 8e as novel promising leads that could be further exploited for their multi-targeted role in the development of a new oxidative stress-related PD therapy.
Collapse
Affiliation(s)
- Mohamed H. Elsherbeny
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| | - Jushin Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Noha A. Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
| | - Lizaveta Gotina
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
| | - Ae Nim Pae
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
| | - Ki Duk Park
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
| |
Collapse
|
17
|
Gudoityte E, Arandarcikaite O, Mazeikiene I, Bendokas V, Liobikas J. Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential. Int J Mol Sci 2021; 22:4599. [PMID: 33925641 PMCID: PMC8124962 DOI: 10.3390/ijms22094599] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ursolic and oleanolic acids are secondary plant metabolites that are known to be involved in the plant defence system against water loss and pathogens. Nowadays these triterpenoids are also regarded as potential pharmaceutical compounds and there is mounting experimental data that either purified compounds or triterpenoid-enriched plant extracts exert various beneficial effects, including anti-oxidative, anti-inflammatory and anticancer, on model systems of both human or animal origin. Some of those effects have been linked to the ability of ursolic and oleanolic acids to modulate intracellular antioxidant systems and also inflammation and cell death-related pathways. Therefore, our aim was to review current studies on the distribution of ursolic and oleanolic acids in plants, bioavailability and pharmacokinetic properties of these triterpenoids and their derivatives, and to discuss their neuroprotective effects in vitro and in vivo.
Collapse
Affiliation(s)
- Evelina Gudoityte
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
- Celignis Limited, Unit 11 Holland Road, Plassey Technology Park Castletroy, County Limerick, Ireland
| | - Odeta Arandarcikaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
| | - Ingrida Mazeikiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Akademija, LT-58344 Kedainiai Distr., Lithuania;
| | - Vidmantas Bendokas
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Akademija, LT-58344 Kedainiai Distr., Lithuania;
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
18
|
Development and Evaluation of Oleanolic Acid Dosage Forms and Its Derivatives. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1308749. [PMID: 33299854 PMCID: PMC7710427 DOI: 10.1155/2020/1308749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Oleanolic acid is a pentacyclic triterpenoid compound that exists widely in medicinal herbs and other plants. Because of the extensive pharmacological activity, oleanolic acid has attracted more and more attention. However, the structural characteristics of oleanolic acid prevent it from being directly made into new drugs, which limits the application of oleanolic acid. Through the application of modern preparation techniques and methods, different oleanolic acid dosage forms and derivatives have been designed and synthesized. These techniques can improve the water solubility and bioavailability of oleanolic acid and lay a foundation for the new drug development. In this review, the recent progress in understanding the oleanolic acid dosage forms and its derivatives are discussed. Furthermore, these products were evaluated comprehensively from the perspective of characterization and pharmacokinetics, and this work may provide ideas and references for the development of oleanolic acid preparations.
Collapse
|
19
|
Combatting Nitrosative Stress and Inflammation with Novel Substituted Triazinoindole Inhibitors of Aldose Reductase in PC12 Cells Exposed to 6-Hydroxydopamine Plus High Glucose. Neurotox Res 2020; 39:210-226. [PMID: 33146867 DOI: 10.1007/s12640-020-00305-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/22/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Cellular redox dysregulation produced by aldose reductase (AR) in the presence of high blood sugar is a mechanism involved in neurodegeneration commonly observed in diabetes mellitus (DM) and Parkinson's disease (PD); therefore, AR is a key target for treatment of both diseases. The substituted triazinoindole derivatives 2-(3-thioxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl) acetic acid (cemtirestat or CMTI) and 2-(3-oxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl) acetic acid (COTI) are well-known AR inhibitors (ARIs). The neuroprotective properties of CMTI, COTI, the clinically used epalrestat (EPA), and the pyridoindole antioxidants stobadine and SMe1EC2 were all tested in the neurotoxic models produced by hyperglycemic glucotoxicity (HG, 75 mM D-glucose, 72 h), 6-hydroxydopamine (6-OHDA), and HG+6-OHDA models in PC12 cells. Cell viability decreased in all toxic models, increased by 1-5 μM EPA, and decreased by COTI at ≥ 2.5 μM. In the HG model alone, where compounds were present in the medium for 24 h after a continuous 24-h exposure to HG, cell viability was improved by 100 nM-5 μM EPA, 1-10 μM ARIs, and the antioxidants studied, but decreased by EPA at ≥ 10 μM. In the 6-OHDA model alone, where cells were treated with compounds for 24 h and further exposed to 100 μM 6-OHDA (8 h), only the antioxidants protected cell viability. In the HG+6-OHDA model, where cells were treated with all compounds (1 nM to 50 μM) for 48 h and exposed to 75 mM glucose for 24 h followed by incubation with 6-OHDA for 8 h, cell viability was protected by 100 nM-10 μM ARIs and 100-500 nM EPA, but not by antioxidants. All ARIs inhibited the HG+6-OHDA-induced increase in iNOS, IL-1β, TNF-α, 3-NT, and total oxidant status at 1-50 μM, while increased SOD, CAT, GPx, and total antioxidant status at 1-10 μM. EPA and CMTI also reduced the HG+6-OHDA-induced increase in the cellular levels of nuclear factor kB (NF-KB). The neuroprotective potential of the novel ARIs and the pyridoindole antioxidants studied constitutes a promising tool for the development of therapeutic strategies against DM-induced and PD-related neurodegeneration.
Collapse
|
20
|
Castellano JM, Garcia-Rodriguez S, Espinosa JM, Millan-Linares MC, Rada M, Perona JS. Oleanolic Acid Exerts a Neuroprotective Effect Against Microglial Cell Activation by Modulating Cytokine Release and Antioxidant Defense Systems. Biomolecules 2019; 9:biom9110683. [PMID: 31683841 PMCID: PMC6921051 DOI: 10.3390/biom9110683] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Microglia respond to adverse stimuli in order to restore brain homeostasis and, upon activation, they release a number of inflammatory mediators. Chronic microglial overactivation is related to neuroinflammation in Alzheimer's disease. In this work, we show that oleanolic acid (OA), a natural triterpene present in food and medicinal plants, attenuates the activation of BV2 microglial cells induced by lipopolysaccharide (LPS). Cell pretreatment with OA inhibited the release of IL-1β, IL-6, TNF-α, and NO, which was associated with the downregulation of the expression of genes encoding for these cytokines and inducible nitric oxide synthase (iNOS), and the reinforcement of the endogenous antioxidant cell defense. These findings advocate considering OA as a novel neuroprotective agent to inhibit oxidative stress and inflammatory response in activated microglia associated with Alzheimer's disease.
Collapse
Affiliation(s)
- José M Castellano
- Department of Food and Health, Instituto de la Grasa-CSIC, Campus of the University Pablo de Olavide, Building 46, 41013 Seville, Spain.
| | - Silvia Garcia-Rodriguez
- Department of Food and Health, Instituto de la Grasa-CSIC, Campus of the University Pablo de Olavide, Building 46, 41013 Seville, Spain.
| | - Juan M Espinosa
- Department of Food and Health, Instituto de la Grasa-CSIC, Campus of the University Pablo de Olavide, Building 46, 41013 Seville, Spain.
| | - María C Millan-Linares
- Department of Food and Health, Instituto de la Grasa-CSIC, Campus of the University Pablo de Olavide, Building 46, 41013 Seville, Spain.
| | - Mirela Rada
- Department of Food and Health, Instituto de la Grasa-CSIC, Campus of the University Pablo de Olavide, Building 46, 41013 Seville, Spain.
| | - Javier S Perona
- Department of Food and Health, Instituto de la Grasa-CSIC, Campus of the University Pablo de Olavide, Building 46, 41013 Seville, Spain.
| |
Collapse
|