1
|
Tahimic CGT, Steczina S, Sebastian A, Hum NR, Abegaz M, Terada M, Cimini M, Goukassian DA, Schreurs AS, Hoban-Higgins TM, Fuller CA, Loots GG, Globus RK, Shirazi-Fard Y. Simulated Microgravity Alters Gene Regulation Linked to Immunity and Cardiovascular Disease. Genes (Basel) 2024; 15:975. [PMID: 39202335 PMCID: PMC11353732 DOI: 10.3390/genes15080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Microgravity exposure induces a cephalad fluid shift and an overall reduction in physical activity levels which can lead to cardiovascular deconditioning in the absence of countermeasures. Future spaceflight missions will expose crew to extended periods of microgravity among other stressors, the effects of which on cardiovascular health are not fully known. In this study, we determined cardiac responses to extended microgravity exposure using the rat hindlimb unloading (HU) model. We hypothesized that exposure to prolonged simulated microgravity and subsequent recovery would lead to increased oxidative damage and altered expression of genes involved in the oxidative response. To test this hypothesis, we examined hearts of male (three and nine months of age) and female (3 months of age) Long-Evans rats that underwent HU for various durations up to 90 days and reambulated up to 90 days post-HU. Results indicate sex-dependent changes in oxidative damage marker 8-hydroxydeoxyguanosine (8-OHdG) and antioxidant gene expression in left ventricular tissue. Three-month-old females displayed elevated 8-OHdG levels after 14 days of HU while age-matched males did not. In nine-month-old males, there were no differences in 8-OHdG levels between HU and normally loaded control males at any of the timepoints tested following HU. RNAseq analysis of left ventricular tissue from nine-month-old males after 14 days of HU revealed upregulation of pathways involved in pro-inflammatory signaling, immune cell activation and differential expression of genes associated with cardiovascular disease progression. Taken together, these findings provide a rationale for targeting antioxidant and immune pathways and that sex differences should be taken into account in the development of countermeasures to maintain cardiovascular health in space.
Collapse
Affiliation(s)
- Candice G. T. Tahimic
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| | - Sonette Steczina
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Aimy Sebastian
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
| | - Metadel Abegaz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Masahiro Terada
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Universities Space Research Association, Washington, DC 20024, USA
| | - Maria Cimini
- Temple University School of Medicine, Philadelphia, PA 19140, USA;
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Universities Space Research Association, Washington, DC 20024, USA
| | - Tana M. Hoban-Higgins
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Charles A. Fuller
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Gabriela G. Loots
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
- Department of Orthopedic Surgery, University of California Davis Health, Sacramento, CA 95817, USA
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| |
Collapse
|
2
|
Gros A, Furlan FM, Rouglan V, Favereaux A, Bontempi B, Morel JL. Physical exercise restores adult neurogenesis deficits induced by simulated microgravity. NPJ Microgravity 2024; 10:69. [PMID: 38906877 PMCID: PMC11192769 DOI: 10.1038/s41526-024-00411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Cognitive impairments have been reported in astronauts during spaceflights and documented in ground-based models of simulated microgravity (SMG) in animals. However, the neuronal causes of these behavioral effects remain largely unknown. We explored whether adult neurogenesis, known to be a crucial plasticity mechanism supporting memory processes, is altered by SMG. Adult male Long-Evans rats were submitted to the hindlimb unloading model of SMG. We studied the proliferation, survival and maturation of newborn cells in the following neurogenic niches: the subventricular zone (SVZ)/olfactory bulb (OB) and the dentate gyrus (DG) of the hippocampus, at different delays following various periods of SMG. SMG exposure for 7 days, but not shorter periods of 6 or 24 h, resulted in a decrease of newborn cell proliferation restricted to the DG. SMG also induced a decrease in short-term (7 days), but not long-term (21 days), survival of newborn cells in the SVZ/OB and DG. Physical exercise, used as a countermeasure, was able to reverse the decrease in newborn cell survival observed in the SVZ and DG. In addition, depending on the duration of SMG periods, transcriptomic analysis revealed modifications in gene expression involved in neurogenesis. These findings highlight the sensitivity of adult neurogenesis to gravitational environmental factors during a transient period, suggesting that there is a period of adaptation of physiological systems to this new environment.
Collapse
Affiliation(s)
- Alexandra Gros
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Centre National d'Etudes Spatiales, F-75001, Paris, France
| | - Fandilla Marie Furlan
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Department of Genetics & Evolution, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Vanessa Rouglan
- CNRS, IINS, UMR 5297, University Bordeaux, F-33000, Bordeaux, France
| | | | - Bruno Bontempi
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
| | - Jean-Luc Morel
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France.
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France.
| |
Collapse
|
3
|
Vahle B, Heilmann L, Schauer A, Augstein A, Jarabo MEP, Barthel P, Mangner N, Labeit S, Bowen TS, Linke A, Adams V. Modulation of Titin and Contraction-Regulating Proteins in a Rat Model of Heart Failure with Preserved Ejection Fraction: Limb vs. Diaphragmatic Muscle. Int J Mol Sci 2024; 25:6618. [PMID: 38928324 PMCID: PMC11203682 DOI: 10.3390/ijms25126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.
Collapse
Affiliation(s)
- Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Leonard Heilmann
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Norman Mangner
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany;
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| |
Collapse
|
4
|
Le H, Rai V, Agrawal DK. Cholesterol: An Important Determinant of Muscle Atrophy in Astronauts. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2023; 6:67-79. [PMID: 37006714 PMCID: PMC10062007 DOI: 10.26502/jbb.2642-91280072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Since cholesterol is not routinely measured in astronauts before and after their return from space, there is no data on the role of blood cholesterol level in muscle atrophy and microgravity. Since the first moon landing, aerospace medicine became outdated and has not pushed boundaries like its rocket engineering counterpart. Since the 2019 astronaut twin study, there has yet to be another scientific breakthrough for aerospace medicine. Microgravity-induced muscle atrophy is the most known consequence of spaceflight. Yet, so far, there is no therapeutic solution to prevent it or any real efforts in understanding it on a cellular or molecular level. The most obvious reason to this unprecedented level of research is due to the small cohort of astronauts. With the establishment of private space industries and exponential recruitment of astronauts, there is more reason to push forward spaceflight-related health guidelines and ensure the safety of the brave humans who risk their lives for the progression of mankind. Spaceflight is considered the most challenging job and the failure to prevent injury or harm should be considered reckless negligence by the institutions that actively prevented sophistication of aerospace medicine. In this critical review, role of cholesterol is analyzed across the NASA-established parameters of microgravity-induced muscle atrophy with a focus on potential therapeutic targets for research.
Collapse
Affiliation(s)
- Hoangvi Le
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
5
|
Melnikov IY, Tyganov SA, Sharlo KA, Ulanova AD, Vikhlyantsev IM, Mirzoev TM, Shenkman BS. Calpain-dependent degradation of cytoskeletal proteins as a key mechanism for a reduction in intrinsic passive stiffness of unloaded rat postural muscle. Pflugers Arch 2022; 474:1171-1183. [PMID: 35931829 DOI: 10.1007/s00424-022-02740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
In mammals, prolonged mechanical unloading results in a significant decrease in passive stiffness of postural muscles. The nature of this phenomenon remains unclear. The aim of the present study was to investigate possible causes for a reduction in rat soleus passive stiffness after 7 and 14 days of unloading (hindlimb suspension, HS). We hypothesized that HS-induced decrease in passive stiffness would be associated with calpain-dependent degradation of cytoskeletal proteins or a decrease in actomyosin interaction. Wistar rats were subjected to HS for 7 and 14 days with or without PD150606 (calpain inhibitor) treatment. Soleus muscles were subjected to biochemical analysis and ex vivo measurements of passive tension with or without blebbistatin treatment (an inhibitor of actomyosin interactions). Passive tension of isolated soleus muscle was significantly reduced after 7- and 14-day HS compared to the control values. PD150606 treatment during 7- and 14-day HS induced an increase in alpha-actinin-2 and -3, desmin contents compared to control, partly prevented a decrease in intact titin (T1) content, and prevented a decrease in soleus passive tension. Incubation of soleus muscle with blebbistatin did not affect HS-induced reductions in specific passive tension in soleus muscle. Our study suggests that calpain-dependent breakdown of cytoskeletal proteins, but not a change in actomyosin interaction, significantly contributes to unloading-induced reductions in intrinsic passive stiffness of rat soleus muscle.
Collapse
Affiliation(s)
- I Y Melnikov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation.
| | - K A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - A D Ulanova
- Laboratory of Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - I M Vikhlyantsev
- Laboratory of Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - T M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - B S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| |
Collapse
|
6
|
Gros A, Lavenu L, Morel JL, De Deurwaerdère P. Simulated Microgravity Subtlety Changes Monoamine Function across the Rat Brain. Int J Mol Sci 2021; 22:ijms222111759. [PMID: 34769189 PMCID: PMC8584220 DOI: 10.3390/ijms222111759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Microgravity, one of the conditions faced by astronauts during spaceflights, triggers brain adaptive responses that could have noxious consequences on behaviors. Although monoaminergic systems, which include noradrenaline (NA), dopamine (DA), and serotonin (5-HT), are widespread neuromodulatory systems involved in adaptive behaviors, the influence of microgravity on these systems is poorly documented. Using a model of simulated microgravity (SMG) during a short period in Long Evans male rats, we studied the distribution of monoamines in thirty brain regions belonging to vegetative, mood, motor, and cognitive networks. SMG modified NA and/or DA tissue contents along some brain regions belonging to the vestibular/motor systems (inferior olive, red nucleus, cerebellum, somatosensorily cortex, substantia nigra, and shell of the nucleus accumbens). DA and 5-HT contents were reduced in the prelimbic cortex, the only brain area exhibiting changes for 5-HT content. However, the number of correlations of one index of the 5-HT metabolism (ratio of metabolite and 5-HT) alone or in interaction with the DA metabolism was dramatically increased between brain regions. It is suggested that SMG, by mobilizing vestibular/motor systems, promotes in these systems early, restricted changes of NA and DA functions that are associated with a high reorganization of monoaminergic systems, notably 5-HT.
Collapse
Affiliation(s)
- Alexandra Gros
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000 Bordeaux, France; (A.G.); (L.L.)
- Centre National d’Etudes Spatiales, F-75001 Paris, France
| | - Léandre Lavenu
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000 Bordeaux, France; (A.G.); (L.L.)
- Centre National d’Etudes Spatiales, F-75001 Paris, France
| | - Jean-Luc Morel
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000 Bordeaux, France; (A.G.); (L.L.)
- Correspondence: (J.-L.M.); (P.D.D.)
| | - Philippe De Deurwaerdère
- CNRS, INCIA, UMR5287, University Bordeaux, F-33000 Bordeaux, France
- Correspondence: (J.-L.M.); (P.D.D.)
| |
Collapse
|
7
|
Tyganov SA, Mochalova EP, Melnikov IY, Vikhlyantsev IM, Ulanova AD, Sharlo KA, Mirzoev TM, Shenkman BS. NOS-dependent effects of plantar mechanical stimulation on mechanical characteristics and cytoskeletal proteins in rat soleus muscle during hindlimb suspension. FASEB J 2021; 35:e21905. [PMID: 34569672 DOI: 10.1096/fj.202100783r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/11/2022]
Abstract
The study was aimed at investigating the mechanisms and structures which determine mechanical properties of skeletal muscles under gravitational unloading and plantar mechanical stimulation (PMS). We hypothesized that PMS would increase NO production and prevent an unloading-induced reduction in skeletal muscle passive stiffness. Wistar rats were hindlimb suspended and subjected to a daily PMS and one group of stimulated animals was also treated with nitric oxide synthase (NOS) inhibitor (L-NAME). Animals received mechanical stimulation of the feet for 4 h a day throughout 7-day hindlimb suspension (HS) according to a scheme that mimics the normal walking of the animal. Seven-day HS led to a significant reduction in soleus muscle weight by 25%. However, PMS did not prevent the atrophic effect induced by HS. Gravitational unloading led to a significant decrease in maximum isometric force and passive stiffness by 38% and 31%, respectively. The use of PMS prevented a decrease in the maximum isometric strength of the soleus muscle. At the same time, the passive stiffness of the soleus in the PMS group significantly exceeded the control values by 40%. L-NAME (NOS inhibitor) administration attenuated the effect of PMS on passive stiffness and maximum force of the soleus muscle. The content of the studied cytoskeletal proteins (α-actinin-2, α-actinin-3, desmin, titin, nebulin) decreased after 7-day HS, but this decrease was successfully prevented by PMS in a NOS-dependent manner. We also observed significant decreases in mRNA expression levels of α-actinin-2, desmin, and titin after HS, which was prevented by PMS. The study also revealed a significant NOS-dependent effect of PMS on the content of collagen-1a, but not collagen-3a. Thus, PMS during mechanical unloading is able to maintain soleus muscle passive tension and force as well as mRNA transcription and protein contents of cytoskeletal proteins in a NOS-dependent manner.
Collapse
Affiliation(s)
- Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina P Mochalova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Y Melnikov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ivan M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anna D Ulanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Kristina A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Shenkman BS, Tsaturyan AK, Vikhlyantsev IM, Kozlovskaya IB, Grigoriev AI. Molecular Mechanisms of Muscle Tone Impairment under Conditions of Real and Simulated Space Flight. Acta Naturae 2021; 13:85-97. [PMID: 34377559 PMCID: PMC8327152 DOI: 10.32607/actanaturae.10953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Kozlovskaya et al. [1] and Grigoriev et al. [2] showed that enormous loss of muscle stiffness (atonia) develops in humans under true (space flight) and simulated microgravity conditions as early as after the first days of exposure. This phenomenon is attributed to the inactivation of slow motor units and called reflectory atonia. However, a lot of evidence indicating that even isolated muscle or a single fiber possesses substantial stiffness was published at the end of the 20th century. This intrinsic stiffness is determined by the active component, i.e. the ability to form actin-myosin cross-bridges during muscle stretch and contraction, as well as by cytoskeletal and extracellular matrix proteins, capable of resisting muscle stretch. The main facts on intrinsic muscle stiffness under conditions of gravitational unloading are considered in this review. The data obtained in studies of humans under dry immersion and rodent hindlimb suspension is analyzed. The results and hypotheses regarding reduced probability of cross-bridge formation in an atrophying muscle due to increased interfilament spacing are described. The evidence of cytoskeletal protein (titin, nebulin, etc.) degradation during gravitational unloading is also discussed. The possible mechanisms underlying structural changes in skeletal muscle collagen and its role in reducing intrinsic muscle stiffness are presented. The molecular mechanisms of changes in intrinsic stiffness during space flight and simulated microgravity are reviewed.
Collapse
Affiliation(s)
- B. S. Shenkman
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| | - A. K. Tsaturyan
- Lomonosov Moscow State University Research Institute of Mechanics, Moscow, 119192 Russia
| | - I. M. Vikhlyantsev
- Institute of Experimental and Theoretical Biophysics, Moscow Region, Pushchino, 142290 Russia
| | - I. B. Kozlovskaya
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| | - A. I. Grigoriev
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| |
Collapse
|
9
|
Urinary Titin N-Fragment as a Biomarker of Muscle Atrophy, Intensive Care Unit-Acquired Weakness, and Possible Application for Post-Intensive Care Syndrome. J Clin Med 2021; 10:jcm10040614. [PMID: 33561946 PMCID: PMC7915692 DOI: 10.3390/jcm10040614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Titin is a giant protein that functions as a molecular spring in sarcomeres. Titin interconnects the contraction of actin-containing thin filaments and myosin-containing thick filaments. Titin breaks down to form urinary titin N-fragments, which are measurable in urine. Urinary titin N-fragment was originally reported to be a useful biomarker in the diagnosis of muscle dystrophy. Recently, the urinary titin N-fragment has been increasingly gaining attention as a novel biomarker of muscle atrophy and intensive care unit-acquired weakness in critically ill patients, in whom titin loss is a possible pathophysiology. Furthermore, several studies have reported that the urinary titin N-fragment also reflected muscle atrophy and weakness in patients with chronic illnesses. It may be used to predict the risk of post-intensive care syndrome or to monitor patients' condition after hospital discharge for better nutritional and rehabilitation management. We provide several tips on the use of this promising biomarker in post-intensive care syndrome.
Collapse
|
10
|
Nemoto A, Goyagi T. Tail suspension is useful as a sarcopenia model in rats. Lab Anim Res 2021; 37:7. [PMID: 33441192 PMCID: PMC7805154 DOI: 10.1186/s42826-020-00083-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Sarcopenia promotes skeletal muscle atrophy and exhibits a high mortality rate. Its elucidation is of the highest clinical importance, but an animal experimental model remains controversial. In this study, we investigated a simple method for studying sarcopenia in rats. Results Muscle atrophy was investigated in 24-week-old, male, tail-suspended (TS), Sprague Dawley and spontaneously hypertensive rats (SHR). Age-matched SD rats were used as a control group. The skeletal muscle mass weight, muscle contraction, whole body tension (WBT), cross-sectional area (CSA), and Muscle RING finger-1 (MuRF-1) were assessed. Enzyme-linked immunosorbent assay was used to evaluate the MuRF-1 levels. Two muscles, the extensor digitorum longus and soleus muscles, were selected for representing fast and slow muscles, respectively. All data, except CSA, were analyzed by a one-way analysis of variance, whereas CSA was analyzed using the Kruskal-Wallis test. Muscle mass weight, muscle contraction, WBT, and CSA were significantly lower in the SHR (n = 7) and TS (n = 7) groups than in the control group, whereas MuRF-1 expression was dominant. Conclusions TS and SHR presented sarcopenic phenotypes in terms of muscle mass, muscle contraction and CSA. TS is a useful technique for providing muscle mass atrophy and weakness in an experimental model of sarcopenia in rats.
Collapse
Affiliation(s)
- Akira Nemoto
- Department of Anesthesia and Intensive Care Medicine, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-0843, Japan
| | - Toru Goyagi
- Department of Anesthesia and Intensive Care Medicine, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-0843, Japan.
| |
Collapse
|
11
|
Popova S, Ulanova A, Gritsyna Y, Salmov N, Rogachevsky V, Mikhailova G, Bobylev A, Bobyleva L, Yutskevich Y, Morenkov O, Zakharova N, Vikhlyantsev I. Predominant synthesis of giant myofibrillar proteins in striated muscles of the long-tailed ground squirrel Urocitellus undulatus during interbout arousal. Sci Rep 2020; 10:15185. [PMID: 32938992 PMCID: PMC7495002 DOI: 10.1038/s41598-020-72127-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Molecular mechanisms underlying muscle-mass retention during hibernation have been extensively discussed in recent years. This work tested the assumption that protein synthesis hyperactivation during interbout arousal of the long-tailed ground squirrel Urocitellus undulatus should be accompanied by increased calpain-1 activity in striated muscles. Calpain-1 is known to be autolysed and activated in parallel. Western blotting detected increased amounts of autolysed calpain-1 fragments in the heart (1.54-fold, p < 0.05) and m. longissimus dorsi (1.8-fold, p < 0.01) of ground squirrels during interbout arousal. The total protein synthesis rate determined by SUnSET declined 3.67-fold in the heart (p < 0.01) and 2.96-fold in m. longissimus dorsi (p < 0.01) during interbout arousal. The synthesis rates of calpain-1 substrates nebulin and titin in muscles did not differ during interbout arousal from those in active summer animals. A recovery of the volume of m. longissimus dorsi muscle fibres, a trend towards a heart-muscle mass increase and a restoration of the normal titin content (reduced in the muscles during hibernation) were observed. The results indicate that hyperactivation of calpain-1 in striated muscles of long-tailed ground squirrels during interbout arousal is accompanied by predominant synthesis of giant sarcomeric cytoskeleton proteins. These changes may contribute to muscle mass retention during hibernation.
Collapse
Affiliation(s)
- Svetlana Popova
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anna Ulanova
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Yulia Gritsyna
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nikolay Salmov
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vadim Rogachevsky
- Laboratory of Signal Perception Mechanisms, Institute of Cell Biophysics, FRC PSCBR, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Gulnara Mikhailova
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexander Bobylev
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Liya Bobyleva
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Yana Yutskevich
- Kuban State University, Krasnodar, Krasnodar Krai, 350040, Russia
| | - Oleg Morenkov
- Laboratory of Cell Culture and Tissue Engineering, Institute of Cell Biophysics, FRC PSCBR, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezda Zakharova
- Laboratory of Natural and Artificial Hypobiosis Mechanisms, Institute of Cell Biophysics, FRC PSCBR, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ivan Vikhlyantsev
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
12
|
Ulanova AD, Gritsyna YV, Bobylev AG, Yakupova EI, Zhalimov VK, Belova SP, Mochalova EP, Nemirovskaya TL, Shenkman BS, Vikhlyantsev IM. Inhibition of Histone Deacetylase 1 Prevents the Decrease in Titin (Connectin) Content and Development of Atrophy in Rat m. soleus after 3-Day Hindlimb Unloading. Bull Exp Biol Med 2020; 169:450-457. [PMID: 32889570 DOI: 10.1007/s10517-020-04907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 10/23/2022]
Abstract
We studied the effect of histone deacetylase 1 (HDAC1) inhibition on titin content and expression of TTN gene in rat m. soleus after 3-day gravitational unloading. Male Wistar rats weighing 210±10 g were randomly divided into 3 groups: control, 3-day hindlimb suspension, and 3-day hindlimb suspension and injection of HDAC1 inhibitor CI-994 (1 mg/kg/day). In hindlimb-suspended rats, the muscle weight/animal body weight ratio was reduced by 13.8% (p<0.05) in comparison with the control, which attested to the development of atrophic changes in the soleus muscle. This was associated with a decrease in the content of NT-isoform of intact titin-1 by 28.6% (p˂0.05) and an increase in TTN gene expression by 1.81 times (p˂0.05) in the soleus muscle. Inhibition of HDAC1 by CI-994 during 3-day hindlimb suspension prevented the decrease in titin content and development of atrophy in rat soleus muscle. No significant differences in the TTN gene expression from the control were found. These results can be used when finding the ways of preventing or reducing the negative changes in the muscle caused by gravitational unloading.
Collapse
Affiliation(s)
- A D Ulanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - Yu V Gritsyna
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - A G Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - E I Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - V K Zhalimov
- Institute of Cell Biophysics, Russian Academy of Sciences - a Separate Division of Federal Research Center Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - S P Belova
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - E P Mochalova
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - T L Nemirovskaya
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - B S Shenkman
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - I M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|