1
|
Ashok K, Nagaraja Bhargava C, Venkatesh R, Balasubramani V, Murugan M, Geethalakshmi V, Manamohan M, Kumar Jha G, Asokan R. Molecular characterization and CRISPR/Cas9 validation of the precursor of egg yolk protein gene, vitellogenin of Leucinodes orbonalis Guenée (Lepidoptera: Crambidae). Gene 2025; 933:148925. [PMID: 39277149 DOI: 10.1016/j.gene.2024.148925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Vitellogenin (Vg), a yolk protein precursor, plays an important role in the oocyte development of insects and is an important target of genetic pest management. Vg is synthesized in the fat body, transported through haemolymph and accumulates in developing oocytes. In this regard, the eggplant shoot and fruit borer, Leucinodes orbonalis (Lepidoptera: Crambidae) is the major pest in South and South East Asia and a serious concern for farmers. Therefore, in the present study, we have cloned and characterized Vg from L. orbonalis (LoVg) for further applications. The cloned Vg consisted of 5,370 base pairs encoding 1,790 amino acid residues long protein. Further, sequence alignment revealed that LoVg has three conserved domains: a Vitellogenin N domain (LPD-N), a domain of unknown function protein families (DUF1943), and a von Willebrand factor type D domain (VWD). Using phylogenetic analysis, it was found that LoVg evolved alongside homologous proteins from different insects. The real-time expression levels of LoVg were significantly greater in female adults followed by the pupal stage. This suggests that Vg production and absorption in L. orbonalis occurs in the later pupal stage. Our studies showed that editing LoVg using CRISPR/Cas9 did not affect the total number of eggs laid but affected egg hatchability. These studies help us to design newer approaches in insect pest management through genetic suppression for sustainable pest management.
Collapse
Affiliation(s)
- Karuppannasamy Ashok
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India; Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - Chikmagalur Nagaraja Bhargava
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India; Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Rajendran Venkatesh
- Department of Bioinformatics, Alagappa University, Karaikudi, Karnataka, India
| | - Venkatasamy Balasubramani
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Vellingiri Geethalakshmi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Maligeppagol Manamohan
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Girish Kumar Jha
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ramasamy Asokan
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India.
| |
Collapse
|
2
|
Wei Z, Wang Y, Zheng K, Wang Z, Liu R, Wang P, Li Y, Gao P, Akbari OS, Yang X. Loss-of-function in testis-specific serine/threonine protein kinase triggers male infertility in an invasive moth. Commun Biol 2024; 7:1256. [PMID: 39363033 PMCID: PMC11450154 DOI: 10.1038/s42003-024-06961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Genetic biocontrol technologies present promising and eco-friendly strategies for the management of pest and insect-transmitted diseases. Although considerable advancements achieve in gene drive applications targeting mosquitoes, endeavors to combat agricultural pests have been somewhat restricted. Here, we identify that the testis-specific serine/threonine kinases (TSSKs) family is uniquely expressed in the testes of Cydia pomonella, a prominent global invasive species. We further generated male moths with disrupted the expression of TSSKs and those with TSSKs disrupted using RNA interference and CRISPR/Cas9 genetic editing techniques, resulting in significant disruptions in spermiogenesis, decreased sperm motility, and hindered development of eggs. Further explorations into the underlying post-transcriptional regulatory mechanisms reveales the involvement of lnc117962 as a competing endogenous RNA (ceRNA) for miR-3960, thereby regulating TSSKs. Notably, orchard trials demonstrates that the release of male strains can effectively suppress population growth. Our findings indicate that targeting TSSKs could serve as a feasible avenue for managing C. pomonella populations, offering significant insights and potential strategies for controlling invasive pests through genetic sterile insect technique (gSIT) technology.
Collapse
Affiliation(s)
- Zihan Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Yaqi Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Kangwu Zheng
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China.
| | - Ronghua Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Pengcheng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Yuting Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Ping Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
3
|
Li XL, Li DD, Cai XY, Cheng DF, Lu YY. Reproductive behavior of fruit flies: courtship, mating, and oviposition. PEST MANAGEMENT SCIENCE 2024; 80:935-952. [PMID: 37794312 DOI: 10.1002/ps.7816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Many species of the Tephritidae family are invasive and cause huge damage to agriculture and horticulture, owing to their reproductive characteristics. In this review, we have summarized the existing studies on the reproductive behavior of Tephritidae, particularly those regarding the genes and external factors that are associated with courtship, mating, and oviposition. Furthermore, we outline the issues that still need to be addressed in fruit fly reproduction research. The review highlights the implications for understanding the reproductive behavior of fruit flies and discusses methods for their integrated management and biological control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Lian Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dou-Dou Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin-Yan Cai
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dai-Feng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Stryapunina I, Itoe MA, Trinh Q, Vidoudez C, Du E, Mendoza L, Hulai O, Kauffman J, Carew J, Shaw WR, Catteruccia F. Precise coordination between nutrient transporters ensures fertility in the malaria mosquito Anopheles gambiae. PLoS Genet 2024; 20:e1011145. [PMID: 38285728 PMCID: PMC10852252 DOI: 10.1371/journal.pgen.1011145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/08/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024] Open
Abstract
Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp knockdown triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely inviable, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.
Collapse
Affiliation(s)
- Iryna Stryapunina
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Maurice A. Itoe
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Queenie Trinh
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Cambridge, Massachusetts, United States of America
| | - Esrah Du
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lydia Mendoza
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Oleksandr Hulai
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jamie Kauffman
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - John Carew
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - W. Robert Shaw
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Flaminia Catteruccia
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
5
|
Ibanez F, Vieira Rocha S, Dawson WO, El-Mohtar C, Robertson C, Stelinski LL, Soares-Costa A. Gene silencing of cathepsins B and L using CTV-based, plant-mediated RNAi interferes with ovarial development in Asian citrus psyllid (ACP), Diaphorina citri. FRONTIERS IN PLANT SCIENCE 2023; 14:1219319. [PMID: 37841623 PMCID: PMC10570424 DOI: 10.3389/fpls.2023.1219319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a vector of the bacteria Candidatus Liberibacter americanus (CLam) and Candidatus Liberibacter asiaticus (CLas), which are phloem-restricted and associated with the most important and destructive worldwide citrus disease, Huanglongbing (HLB). Currently, no cure for HLB has been described. Therefore, measures have focused on reducing D. citri populations. In these insects, cathepsin B (DCcathB) and L (DCcathL) enzymes play an important role in digestion, and are involved in embryogenesis, immune defense, and ecdysis. In this study, we used a CTV-based vector to deliver dsRNA (CTV-dsRNA) into Citrus macrophylla plants targeting DCcathB and DCcathL genes in D. citri that fed on the phloem of these CTV-RNAi infected plants. Subsequently, we evaluated expression of DCcathB and DCcathL genes as well as the Vitellogenin (Vg) gene by RT-qPCR in D. citri fed on CTV-dsRNA occurring in plant phloem. It was found that a defective phenotype in D. citri females as a result of knockdown of DCcathB and DCcathL genes mediated by CTV dsRNA. These results showed that Psyllids fed on plants treated with the CTV-dsRNA exhibited downregulation of the Vg gene, one of the most important genes associated with embryogenic and female development, which was associated with dsRNA-mediated silencing of the two cathepsin genes. Based on our findings, a CTV-based strategy for delivering RNAi via plants that targets DCcathB and DCcathL genes may represent a suitable avenue for development of dsRNA-based tools to manage D. citri that limits the spread of HLB.
Collapse
Affiliation(s)
- Freddy Ibanez
- Department of Entomology, Texas A&M AgriLife Research, Weslaco, TX, ;United States
| | - Sâmara Vieira Rocha
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, ;Brazil
| | - William O. Dawson
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Choaa El-Mohtar
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Cecile Robertson
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Lukasz L. Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Andrea Soares-Costa
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| |
Collapse
|
6
|
Li H, Mo J, Wang X, Pan B, Xu S, Li S, Zheng X, Lu W. IPS (In-Plant System) Delivery of Double-Stranded Vitellogenin and Vitellogenin receptor via Hydroponics for Pest Control in Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Int J Mol Sci 2023; 24:ijms24119497. [PMID: 37298448 DOI: 10.3390/ijms24119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Diaphorina citri, a vector of citrus huanglongbing (HLB) disease, frequently leads to HLB outbreaks and reduces Rutaceae crop production. Recent studies have investigated the effects of RNA interference (RNAi) targeting the Vitellogenin (Vg4) and Vitellogenin receptor (VgR) genes, which are involved in egg formation in this pest, providing a theoretical foundation for developing new strategies to manage D. citri populations. This study presents RNAi methods for Vg4 and VgR gene expression interference and reveals that dsVgR is more effective than dsVg4 against D. citri. We demonstrated that dsVg4 and dsVgR persisted for 3-6 days in Murraya odorifera shoots when delivered via the in-plant system (IPS) and effectively interfered with Vg4 and VgR gene expression. Following Vg4 and VgR gene expression interference, egg length and width in the interference group were significantly smaller than those in the negative control group during the 10-30-day development stages. Additionally, the proportion of mature ovarian eggs in the interference group was significantly lower than that in the negative control group at the 10, 15, 20, 25, and 30-day developmental stages. DsVgR notably suppresses oviposition in D. citri, with fecundity decreasing by 60-70%. These results provide a theoretical basis for controlling D. citri using RNAi to mitigate the spread of HLB disease.
Collapse
Affiliation(s)
- Hailin Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junlan Mo
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaoyun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Biqiong Pan
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shu Xu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Shuangrong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Wang J, Yu S, Wang L, Liu T, Yang X, Hu X, Wang Y. Capsaicin decreases fecundity in the Asian malaria vector Anopheles stephensi by inhibiting the target of rapamycin signaling pathway. Parasit Vectors 2022; 15:458. [PMID: 36510333 PMCID: PMC9743593 DOI: 10.1186/s13071-022-05593-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases threaten human health, but mosquito control faces various challenges, such as resistance to chemical insecticides. Thus, there is an urgent need for more effective and environment-friendly control agents. Capsaicin can downregulate the mTOR signaling pathway of tumor cells. The TOR signaling pathway can mediate the expression of vitellogenin (Vg) to regulate the fecundity of insects. Whether capsaicin has the potential to inhibit fecundity of mosquitoes by regulating TOR pathway and Vg expression is currently unclear. METHODS Anopheles stephensi were fed with blood of mice administered capsaicin by gavage or sugar containing capsaicin followed by a blood feeding with normal mice. Then, the engorged female mosquitoes were tubed individually and underwent oviposition. The eggs and individuals in the subsequent development stages, including larvae, pupae, and emerging adults, were counted and compared between the capsaicin treatment and control groups. Additionally, total RNA and protein were extracted from the engorged mosquitoes at 24 h post blood feeding. Real-time PCR and western blot were performed to detect the transcriptional level and protein expression of the key fecundity-related molecules of mosquitoes. Finally, TOR signaling pathway was inhibited via rapamycin treatment, and changes in fecundity and the key molecule transcription and protein expression levels were examined to verify the role of TOR signaling pathway in the effect of capsaicin on mosquito fecundity. RESULTS The laid and total eggs (laid eggs plus retained eggs) of An. stephensi were significantly reduced by feeding on the blood of capsaicin-treated mice (P < 0.01) or capsaicin-containing sugar (P < 0.01) compared with those in the control group. Moreover, the transcription and protein expression or phosphorylation levels of fecundity-related molecules, such as Akt, TOR, S6K, and Vg, were significantly decreased by capsaicin treatment. However, the effects disappeared between control group and CAP group after the TOR signaling pathway was inhibited by rapamycin. CONCLUSIONS Capsaicin can decrease the fecundity of An. stephensi by inhibiting the TOR signaling pathway. These data can help us to not only understand the effect of capsaicin on the reproductive ability of An. stephensi and its underlying mechanism, but also develop new efficient, safe, and pollution-free mosquito vector control agents.
Collapse
Affiliation(s)
- Jing Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Shasha Yu
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Luhan Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Tingting Liu
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Xuesen Yang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Xiaobing Hu
- Centers for Disease Control and Prevention of Western Theater Command, Lanzhou, 730020 China
| | - Ying Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| |
Collapse
|
8
|
Xiong Y, Jiang C, Amir MB, Dong Y, Xie L, Liao Y, He W, Lu Z, Chen W. Antibody-Based Methods Reveal the Protein Expression Properties of Glucosinolate Sulfatase 1 and 2 in Plutella xylostella. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:5. [PMID: 36449010 PMCID: PMC9710514 DOI: 10.1093/jisesa/ieac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 06/17/2023]
Abstract
The glucosinolates (GLs) and myrosinase defensive systems in cruciferous plants were circumvented by Plutella xylostella using glucosinolate sulfatases (PxGSSs) during pest-plant interaction. Despite identifying three duplicated GSS-encoding genes in P. xylostella, limited information regarding their spatiotemporal and induced expression is available. Here, we investigated the tissue- and stage-specific expression and induction in response to GLs of PxGSS1 and PxGSS2 (PxGSS1/2) at the protein level, which shares a high degree of similarity in protein sequences. Western blotting (WB) analysis showed that PxGSS1/2 exhibited a higher protein level in mature larvae, their guts, and gut content. A significantly high protein and transcript levels of PxGSS1/2 were also detected in the salivary glands using WB and qRT-PCR. The immunofluorescence (IF) and immunohistochemistry (IHC) results confirmed that PxGSS1/2 is widely expressed in the larval body. The IHC was more appropriate than IF when autofluorescence interference was present in collected samples. Furthermore, the content of PxGSS1/2 did not change significantly under treatments of GL mixture from Arabidopsis thaliana ecotype Col-0, or commercial ally (sinigrin), 4-(methylsulfinyl)butyl, 3-(methylsulfinyl)propyl, and indol-3-ylmethyl GLs indicating that the major GLs from leaves of A. thaliana Col-0 failed to induce the expression of proteins for both PxGSS1 and PxGSS2. Our study systemically characterized the expression properties of PxGSS1/2 at the protein level, which improves our understanding of PxGSS1/2-center adaptation in P. xylostella during long-term insect-plant interaction.
Collapse
Affiliation(s)
| | | | - Muhammad Bilal Amir
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuhong Dong
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Lianjie Xie
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Yuan Liao
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- Corresponding author, e-mail: (W.H.), (Z.L.), (W.C.)
| | - Zhanjun Lu
- Corresponding author, e-mail: (W.H.), (Z.L.), (W.C.)
| | - Wei Chen
- Corresponding author, e-mail: (W.H.), (Z.L.), (W.C.)
| |
Collapse
|
9
|
Vitelline Membrane Protein 26 Mutagenesis, Using CRISPR/Cas9, Results in Egg Collapse in Plutella xylostella. Int J Mol Sci 2022; 23:ijms23179538. [PMID: 36076934 PMCID: PMC9455775 DOI: 10.3390/ijms23179538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Vitelline membrane proteins (VMPs) are the main proteins that form the inner shell (vitelline membrane layer) of insect eggs and are an integral part of egg formation and embryo development. Here, we characterized the molecular structure and expression patterns of the VMP26 gene and analyzed its reproductive functions in diamondback moth, Plutella xylostella (L.), a worldwide migratory pest of cruciferous plants. The PxVMP26 gene was shown to be a single exon gene that contained an open reading frame of 852 base pairs (bp) encoding 283 amino acids. Both qPCR and western blot analyses showed that PxVMP26 was specifically expressed in female adults and was significantly highly expressed in the ovary. Further anatomical analysis indicated that the expression level of PxVMP26 in the ovarian tube with an incomplete yolk was significantly higher than that in the ovarian tube with a complete yolk. CRISPR/Cas9-induced PxVMP26 knockout successfully created two homozygous strains with 8- and 46-bp frameshift mutations. The expression deficiency of the PxVMP26 protein was detected in the mutant strains using immunofluorescence and western blot. No significant difference was found in the number of eggs laid within three days between wild and mutant individuals, but there was a lower egg hatchability. The loss of the PxVMP26 gene changed the mean egg size, damaged the structure of the vitelline membrane, and increased the proportion of abnormal eggs due to water loss, resulting in egg collapse. This first analysis of the roles of the VMP gene in the oocyte formation and embryonic development of P. xylostella, using CRISPR/Cas9 technology, provides a basis for screening new genetic control targets of P. xylostella.
Collapse
|
10
|
Li JJ, Shi Y, Wu JN, Li H, Smagghe G, Liu TX. CRISPR/Cas9 in lepidopteran insects: Progress, application and prospects. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104325. [PMID: 34743972 DOI: 10.1016/j.jinsphys.2021.104325] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Clustered regularly spaced short palindrome repeats (CRISPR) structure family forms the acquired immune system in bacteria and archaea. Recent advances in CRISPR/Cas genome editing as derived from prokaryotes, confirmed the characteristics of robustness, high target specificity and programmability, and also revolutionized the insect sciences field. The successful application of CRISPR in a wide variety of lepidopteran insects, with a high genetic diversity, provided opportunities to explore gene functions, insect modification and pest control. In this review, we present a detailed overview on the recent progress of CRISPR in lepidopteran insects, and described the basic principles of the system and its application. Major interest is on wing development, pigmentation, mating, reproduction, sex determination, metamorphosis, resistance and silkworm breeding innovation. Finally, we outlined the limitations of CRISPR/Cas system and discussed its application prospects in lepidopteran insects.
Collapse
Affiliation(s)
- Jiang-Jie Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Yan Shi
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Ji-Nan Wu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Hao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China.
| |
Collapse
|
11
|
Wang J, Li T, Deng S, Ma E, Zhang J, Xing S. The RNA helicase DDX3 is required for ovarian development and oocyte maturation in Locusta migratoria. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21775. [PMID: 33644918 DOI: 10.1002/arch.21775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
DDX3 represents a well-defined subfamily of DEAD-box RNA helicase and exerts multiple functions in RNA metabolism, cell cycle, tumorigenesis, signal pathway, and fertility. Our previous study has shown that LmDDX3, the ortholog of DDX3 in Locusta migratoria, is ubiquitously expressed, and with a high abundance in testis and ovary. Knockdown of LmDDX3 results in a lethal phenotype in nymph, but it still remains unclear for its role in reproductive process. In this study, we therefore characterized LmDDX3 expression in female adult locust and analyzed its function in oocyte development. LmDDX3 was expressed in all tissues examined with significant more transcripts in ovary and hindgut. In ovary, a strong expression level was detected at the day just after adult eclosion, and a dramatic reduction then occurred during the oocyte development. LmDDX3 RNAi led to a reduced vitellogenin (Vg) expression in fat body via partially at least, the JH signaling pathway, and caused an upregulation of vitellogenin receptor (VgR) in ovary, and thus blocked the ovarian development and oocyte maturation. Sequence and phylogenetic analysis indicated that LmDDX3 was closely related to termite DDX3. Taken together, these data reveal a critical role for LmDDX3 in regulating the transcription of Vg and VgR, two major factors in vitellogenesis that is a key process required for ovary development and oocyte maturation in locust, and contribute thereof a new putative target for locust biological control.
Collapse
Affiliation(s)
- Junxiu Wang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Tingting Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Sufang Deng
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan, Shanxi, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan, Shanxi, China
| | - Shuping Xing
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan, Shanxi, China
| |
Collapse
|
12
|
Li HL, Wang XY, Zheng XL, Lu W. Research Progress on Oviposition-Related Genes in Insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:6047614. [PMID: 33367730 PMCID: PMC7759734 DOI: 10.1093/jisesa/ieaa137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 05/05/2023]
Abstract
Oviposition-related genes have remained a consistent focus of insect molecular biology. Previous research has gradually clarified our mechanistic understanding of oviposition-related genes, including those related to oviposition-gland-related genes, oogenesis-related genes, oviposition-site-selection-related genes, and genes related to ovulation and hatching. Moreover, some of this research has revealed how the expression of single oviposition-related genes affects the expression of related genes, and more importantly, how individual node genes function to link the expression of upstream and downstream genes. However, the research to date is not sufficient to completely explain the overall interactions among the genes of the insect oviposition system. Through a literature review of a large number of studies, this review provides references for future research on oviposition-related genes in insects and the use of RNAi or CRISPR/Cas9 technology to verify the functions of oviposition-related genes and to prevent and control harmful insects.
Collapse
Affiliation(s)
- Hai-Lin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- Corresponding author, e-mail:
| |
Collapse
|
13
|
Zou MM, Wang Q, Chu LN, Vasseur L, Zhai YL, Qin YD, He WY, Yang G, Zhou YY, Peng L, You MS. CRISPR/Cas9-induced vitellogenin knockout lead to incomplete embryonic development in Plutella xylostella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103406. [PMID: 32485215 DOI: 10.1016/j.ibmb.2020.103406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Vitellogenin (Vg) is important for insect egg maturation and embryo development. In the present study, we characterized the molecular structure and expression profile of Vg gene, and analyzed its reproductive functions in diamondback moth, Plutella xylostella (L.), a destructive pest of cruciferous crops, using CRISPR/Cas9 system. The P. xylostella Vg (PxVg) included all conserved domains and motifs that were commonly found in most insect Vgs except for the polyserine tract. PxVg gene was highly expressed in female pupae and adults. PxVg protein was detected in eggs and female adults. PxVg was mainly expressed in the fat body and its protein was detected in most tissues, except in the midgut. CRISPR/Cas9-induced PxVg knockout successfully constructed a homozygous mutant strain with a 5-base pair nucleotide deletion. No PxVg protein was found in the mutant individuals and in their ovaries. There were no significant differences between wild (WT) and mutant (Mut-5) types of P. xylostella in terms of ovariole length and the number of fully developed oocytes in newly emerged females. No significant difference was observed in the number of eggs laid within two days, but there was a lower egg hatchability (84% for WT vs. 47% for Mut-5). This is the first study presenting the functions of Vg in ovary development, egg maturation, oviposition and embryonic development of P. xylostella. Our results suggest that the reproductive functions of Vg may be species-specific in insects. It is possible that Vg may not be the major egg yolk protein precursor in P. xylostella. Other "functional Vgs" closely involved in the yolk formation and oogenesis would need to be further explored in P. xylostella.
Collapse
Affiliation(s)
- Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Na Chu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Yi-Long Zhai
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu-Dong Qin
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei-Yi He
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan-Yuan Zhou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|