1
|
Zhou Y, Mabrouk I, Ma J, Liu Q, Song Y, Xue G, Li X, Wang S, Liu C, Hu J, Sun Y. Chromosome-level genome sequencing and multi-omics of the Hungarian White Goose (Anser anser domesticus) reveals novel miRNA-mRNA regulation mechanism of waterfowl feather follicle development. Poult Sci 2024; 103:103933. [PMID: 38943801 PMCID: PMC11261457 DOI: 10.1016/j.psj.2024.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024] Open
Abstract
The Hungarian White Goose (Anser anser domesticus) is an excellent European goose breed, with high feather and meat production. Despite its importance in the poultry industry, no available genome assembly information has been published. This study aimed to present Chromosome-level and functional genome sequencing of the Hungarian White Goose. The results showed that the genome assembly has a total length of 1115.82 Mb, 39 pairs of chromosomes, 92.98% of the BUSCO index, and contig N50 and scaffold N50 were up to 2.32 Mb and 60.69 Mb, respectively. Annotation of the genome assembly revealed 19550 genes, 286 miRNAs, etc. We identified 235 expanded and 1,167 contracted gene families in this breed compared with the other 16 species. We performed a positive selection analysis between this breed and four species of Anatidae to uncover the genetic information underlying feather follicle development. Further, we detected the function of miR-199-x, miR-143-y, and miR-23-z on goose embryonic skin fibroblast. In summary, we have successfully generated a highly complete genome sequence of the Hungarian white goose, which will provide a great resource to improve our understanding of gene functions and enhance the studies on feather follicle development at the genomic level.
Collapse
Affiliation(s)
- Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guizhen Xue
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyue Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Sihui Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chang Liu
- Changchun Municipal People's Government, Changchun Animal Husbandry Service, Changchun, 130062, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China..
| |
Collapse
|
2
|
Zhang L, Cai C, Liu X, Zhang X, An Z, Zhou E, Li J, Li Z, Li W, Sun G, Li G, Kang X, Han R, Jiang R. Multi-Stage Transcriptome Analysis Revealed the Growth Mechanism of Feathers and Hair Follicles during Induction Molting by Fasting in the Late Stage of Egg Laying. BIOLOGY 2023; 12:1345. [PMID: 37887055 PMCID: PMC10603888 DOI: 10.3390/biology12101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Induced molting is a common method to obtain a new life in laying hens, in which periodic changes in feathers are the prominent feature. Nevertheless, its precise molecular mechanism remains unclear. In this study, feather and hair follicle samples were collected during fasting-induced physiological remodeling for hematoxylin-eosin staining, hormone changes and follicle traits, and transcriptome sequencing. Feather shedding was observed in F13 to R25, while newborns were observed in R3 to R32. Triiodothyronine and tetraiodothyronine were significantly elevated during feather shedding. The calcium content was significantly higher, and the ash content was significantly lower after the changeover. The determination of hair follicle traits revealed an increasing trend in pore density and a decrease in pore diameter after the resumption of feeding. According to RNA-seq results, several core genes were identified, including DSP, CDH1, PKP1, and PPCKB, which may have an impact on hair follicle growth. The focus was to discover that starvation may trigger changes in thyroid hormones, which in turn regulate feather molting through thyroid hormone synthesis, calcium signaling, and thyroid hormone signaling pathways. These data provide a valuable resource for the analysis of the molecular mechanisms underlying the cyclical growth of hair follicles in the skin during induced molting.
Collapse
Affiliation(s)
- Lujie Zhang
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Chunxia Cai
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Xinxin Liu
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Xiaoran Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Zhiyuan An
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Enyou Zhou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Jianzeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Wenting Li
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Guirong Sun
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Guoxi Li
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Xiangtao Kang
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Ruili Han
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| |
Collapse
|
3
|
Feng Z, Gong H, Fu J, Xu X, Song Y, Yan X, Mabrouk I, Zhou Y, Wang Y, Fu X, Sui Y, Liu T, Li C, Liu Z, Tian X, Sun L, Guo K, Sun Y, Hu J. In Ovo Injection of CHIR-99021 Promotes Feather Follicle Development via Modulating the Wnt Signaling Pathway and Transcriptome in Goose Embryos ( Anser cygnoides). Front Physiol 2022; 13:858274. [PMID: 35669574 PMCID: PMC9164139 DOI: 10.3389/fphys.2022.858274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Feather performs important physiological functions in birds, and it is also one of the economic productions in goose farming. Understanding and modulating feather follicle development during embryogenesis are essential for bird biology and the poultry industry. CHIR-99021 is a potent Wnt/β-catenin signaling pathway activator associated with feather follicle development. In this study, goose embryos (Anser cygnoides) received an in ovo injection of CHIR-9902, which was conducted at the beginning of feather follicle development (E9). The results showed that feather growth and feather follicle development were promoted. The Wnt signaling pathway was activated by the inhibition of GSK-3β. Transcriptomic analyses showed that the transcription changes were related to translation, metabolism, energy transport, and stress in dorsal tissue of embryos that received CHIR-99021, which might be to adapt and coordinate the promoting effects of CHIR-99021 on feather follicle development. This study suggests that in ovo injection of CHIR-99021 is a potential strategy to improve feather follicle development and feather-related traits for goose farming and provides profiling of the Wnt signaling pathway and transcriptome in dorsal tissue of goose embryos for further understanding of feather follicle development.
Collapse
Affiliation(s)
- Ziqiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haizhou Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinhong Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaohui Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaomin Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yudong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xianou Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yujian Sui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tuoya Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chuanghang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zebei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xu Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Le Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keying Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China,Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| |
Collapse
|
4
|
Mróz E, Jankowski J, Skowroński M, Mikulski D. Plumage Response of Young Turkeys to Diets with Increased Methionine to Lysine Ratios at Three Dietary Arginine Levels. Animals (Basel) 2022; 12:ani12020172. [PMID: 35049795 PMCID: PMC8772563 DOI: 10.3390/ani12020172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary An adequate supply of essential amino acids through the diet is critical for maintaining a fast growth rate, good health, and proper immune function as well as feather-cover development in poultry species. Feathers contain about 90% of protein, therefore the optimal ratios of limiting amino acids, in particular the sulfur-containing amino acids are indicated as necessary for the synthesis of feather keratin. This study evaluated the effects of different dietary methionine (Met) and arginine (Arg) levels on plumage development in young turkeys. An increased supply of sulfur-containing amino acids via supplemental Met promoted feather growth in turkeys at 16 weeks of age. Different concentrations of Arg (90%, 100%, and 110% of lysine content) had no influence on plumage development. The data on feather growth can contribute to a better understanding of the amino acid requirements in modern commercial turkey-farming systems. Abstract A 2 × 3 factorial experiment was conducted to evaluate the effects of two dietary methionine levels (Met; 30% and 45% of Lys content) and three arginine levels (Arg; 90%, 100%, and 110% of Lys content) on plumage development in 4- and 16-week-old female turkeys. One-day-old turkey poults were assigned to six groups (eight replicate pens per group and 18 birds per pen) and fed experimental diets containing 1.6%, 1.5%, 1.3%, and 1.0% of Lys in four successive four-week periods. After weeks 4 and 16 of feeding, eight turkeys per group were selected for plumage evaluation. Feathers were collected from the outer side of one thigh and from an area of 4 cm2 in the interscapular region. Plumage was evaluated based on an established pattern of five feather development stages in turkeys, from stage I (pinfeathers covered in sheaths) to stage V (mature feathers). An increase in the Met inclusion rate to 45% of Lys content had no significant effect on feather growth in 4-week-old turkeys, but it accelerated the development of feathers in 16-week-old birds. A lower percentage of stage II (p = 0.035), stage III (p = 0.019), and stage IV (p = 0.003) immature feathers, and a higher percentage of stage V (mature) feathers (p = 0.001) were observed. Methionine exerted a greater effect on the development of thigh feathers (p = 0.001) than interscapular feathers (p = 0.074). Unlike Met, different Arg concentrations had no influence on plumage development in turkeys. Overall, the present results indicate that supplemental Met has a potential for accelerating feather development in 16-week-old turkeys via an increased supply of total sulfur amino acids.
Collapse
|