1
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2025; 22:39-53. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Behrens M. International Union of Basic and Clinical Pharmacology. CXVII: Taste 2 receptors-Structures, functions, activators, and blockers. Pharmacol Rev 2025; 77:100001. [PMID: 39952694 DOI: 10.1124/pharmrev.123.001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
For most vertebrates, bitter perception plays a critical role in the detection of potentially harmful substances in food items. The detection of bitter compounds is facilitated by specialized receptors located in the taste buds of the oral cavity. This work focuses on these receptors, including their sensitivities, structure-function relationships, agonists, and antagonists. The existence of numerous bitter taste receptor variants in the human population and the fact that several of them profoundly affect individual perceptions of bitter tastes are discussed as well. Moreover, the identification of bitter taste receptors in numerous tissues outside the oral cavity and their multiple proposed roles in these tissues are described briefly. Although this work is mainly focused on human bitter taste receptors, it is imperative to compare human bitter taste with bitter taste of other animals to understand which forces might have shaped the evolution of bitter taste receptors and their functions and to distinguish apparently typical human features from rather general ones. For readers who are not very familiar with the gustatory system, short descriptions of taste anatomy, signal transduction, and oral bitter taste receptor expression are included in the beginning of this article. SIGNIFICANCE STATEMENT: Apart from their role as sensors for potentially harmful substances in the oral cavity, the numerous additional roles of bitter taste receptors in tissues outside the gustatory system have recently received much attention. For careful assessment of their functions inside and outside the taste system, a solid knowledge of the specific and general pharmacological features of these receptors and the growing toolbox available for studying them is imperative and provided in this work.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Hendel SK, Kellermann L, Hausmann A, Bindslev N, Jensen KB, Nielsen OH. Tuft Cells and Their Role in Intestinal Diseases. Front Immunol 2022; 13:822867. [PMID: 35237268 PMCID: PMC8884241 DOI: 10.3389/fimmu.2022.822867] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
The interests in intestinal epithelial tuft cells, their basic physiology, involvement in immune responses and relevance for gut diseases, have increased dramatically over the last fifteen years. A key discovery in 2016 of their close connection to helminthic and protozoan infection has further spurred the exploration of these rare chemosensory epithelial cells. Although very sparse in number, tuft cells are now known as important sentinels in the gastrointestinal tract as they monitor intestinal content using succinate as well as sweet and bitter taste receptors. Upon stimulation, tuft cells secrete a broad palette of effector molecules, including interleukin-25, prostaglandin E2 and D2, cysteinyl leukotriene C4, acetylcholine, thymic stromal lymphopoietin, and β-endorphins, some of which with immunomodulatory functions. Tuft cells have proven indispensable in anti-helminthic and anti-protozoan immunity. Most studies on tuft cells are based on murine experiments using double cortin-like kinase 1 (DCLK1) as a marker, while human intestinal tuft cells can be identified by their expression of the cyclooxygenase-1 enzyme. So far, only few studies have examined tuft cells in humans and their relation to gut disease. Here, we present an updated view on intestinal epithelial tuft cells, their physiology, immunological hub function, and their involvement in human disease. We close with a discussion on how tuft cells may have potential therapeutic value in a clinical context.
Collapse
Affiliation(s)
- Sebastian Kjærgaard Hendel
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
- *Correspondence: Sebastian Kjærgaard Hendel,
| | - Lauge Kellermann
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Annika Hausmann
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Bindslev
- Department of Biomedical Sciences , University of Copenhagen, Copenhagen, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
5
|
Hildersley KA, McNeilly TN, Gillan V, Otto TD, Löser S, Gerbe F, Jay P, Maizels RM, Devaney E, Britton C. Tuft Cells Increase Following Ovine Intestinal Parasite Infections and Define Evolutionarily Conserved and Divergent Responses. Front Immunol 2021; 12:781108. [PMID: 34880874 PMCID: PMC8646091 DOI: 10.3389/fimmu.2021.781108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023] Open
Abstract
Helminth parasite infections of humans and livestock are a global health and economic problem. Resistance of helminths to current drug treatment is an increasing problem and alternative control approaches, including vaccines, are needed. Effective vaccine design requires knowledge of host immune mechanisms and how these are stimulated. Mouse models of helminth infection indicate that tuft cells, an unusual type of epithelial cell, may 'sense' infection in the small intestine and trigger a type 2 immune response. Currently nothing is known of tuft cells in immunity in other host species and in other compartments of the gastrointestinal (GI) tract. Here we address this gap and use immunohistochemistry and single cell RNA-sequencing to detail the presence and gene expression profile of tuft cells in sheep following nematode infections. We identify and characterize tuft cells in the ovine abomasum (true stomach of ruminants) and show that they increase significantly in number following infection with the globally important nematodes Teladorsagia circumcincta and Haemonchus contortus. Ovine abomasal tuft cells show enriched expression of tuft cell markers POU2F3, GFI1B, TRPM5 and genes involved in signaling and inflammatory pathways. However succinate receptor SUCNR1 and free fatty acid receptor FFAR3, proposed as 'sensing' receptors in murine tuft cells, are not expressed, and instead ovine tuft cells are enriched for taste receptor TAS2R16 and mechanosensory receptor ADGRG6. We also identify tuft cell sub-clusters at potentially different stages of maturation, suggesting a dynamic process not apparent from mouse models of infection. Our findings reveal a tuft cell response to economically important parasite infections and show that while tuft cell effector functions have been retained during mammalian evolution, receptor specificity has diverged. Our data advance knowledge of host-parasite interactions in the GI mucosa and identify receptors that may potentiate type 2 immunity for optimized control of parasitic nematodes.
Collapse
Affiliation(s)
- Katie A. Hildersley
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Disease Control Department, Moredun Research Institute, Penicuik, United Kingdom
| | - Tom N. McNeilly
- Disease Control Department, Moredun Research Institute, Penicuik, United Kingdom
| | - Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Thomas D. Otto
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Stephan Löser
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - François Gerbe
- Institut de Genomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Jay
- Institut de Genomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Protective and Healing Effects of Ghrelin and Risk of Cancer in the Digestive System. Int J Mol Sci 2021; 22:ijms221910571. [PMID: 34638910 PMCID: PMC8509076 DOI: 10.3390/ijms221910571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
Ghrelin is an endogenous ligand for the ghrelin receptor, previously known as the growth hormone secretagogue receptor. This hormone is mainly produced by endocrine cells present in the gastric mucosa. The ghrelin-producing cells are also present in other organs of the body, mainly in the digestive system, but in much smaller amount. Ghrelin exhibits a broad spectrum of physiological effects, such as stimulation of growth hormone secretion, gastric secretion, gastrointestinal motility, and food intake, as well as regulation of glucose homeostasis and bone formation, and inhibition of inflammatory processes. This review summarizes the recent findings concerning animal and human data showing protective and therapeutic effects of ghrelin in the gut, and also presents the role of growth hormone and insulin-like growth factor-1 in these effects. In addition, the current data on the possible influence of ghrelin on the carcinogenesis, its importance in predicting the risk of developing gastrointestinal malignances, as well as the potential usefulness of ghrelin in the treatment of cancer, have been presented.
Collapse
|
7
|
Harmon CP, Deng D, Breslin PA. Bitter Taste Receptors (T2Rs) are Sentinels that Coordinate Metabolic and Immunological Defense Responses. CURRENT OPINION IN PHYSIOLOGY 2021; 20:70-76. [PMID: 33738371 PMCID: PMC7963268 DOI: 10.1016/j.cophys.2021.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In addition to being responsible for bitter taste, type 2 taste receptors (T2Rs) regulate endocrine, behavioral, and immunological responses. T2R agonists include indicators of incoming threats to metabolic homeostasis, pathogens, and irritants. This review will provide an overview of T2R-regulated processes throughout the body that function defensively. We propose a broader definition of T2Rs as chemosensory sentinels that monitor toxic, metabolic, and infectious threats and initiate defensive responses.
Collapse
Affiliation(s)
- Caroline P. Harmon
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Daiyong Deng
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Paul A.S. Breslin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Nunez‐Salces M, Li H, Feinle‐Bisset C, Young RL, Page AJ. The regulation of gastric ghrelin secretion. Acta Physiol (Oxf) 2021; 231:e13588. [PMID: 33249751 DOI: 10.1111/apha.13588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Ghrelin is a gastric hormone with multiple physiological functions, including the stimulation of food intake and adiposity. It is well established that circulating ghrelin levels are closely associated with feeding patterns, rising strongly before a meal and lowering upon food intake. However, the mechanisms underlying the modulation of ghrelin secretion are not fully understood. The purpose of this review is to discuss current knowledge on the circadian oscillation of circulating ghrelin levels, the neural mechanisms stimulating fasting ghrelin levels and peripheral mechanisms modulating postprandial ghrelin levels. Furthermore, the therapeutic potential of targeting the ghrelin pathway is discussed in the context of the treatment of various metabolic disorders, including obesity, type 2 diabetes, diabetic gastroparesis and Prader-Willi syndrome. Moreover, eating disorders including anorexia nervosa, bulimia nervosa and binge-eating disorder are also discussed.
Collapse
Affiliation(s)
- Maria Nunez‐Salces
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Hui Li
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Christine Feinle‐Bisset
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Richard L. Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
- Intestinal Nutrient Sensing Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Amanda J. Page
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| |
Collapse
|
9
|
Nunez-Salces M, Li H, Feinle-Bisset C, Young RL, Page AJ. Nutrient-sensing components of the mouse stomach and the gastric ghrelin cell. Neurogastroenterol Motil 2020; 32:e13944. [PMID: 32666613 DOI: 10.1111/nmo.13944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The ability of the gut to detect nutrients is critical to the regulation of gut hormone secretion, food intake, and postprandial blood glucose control. Ingested nutrients are detected by specific gut chemosensors. However, knowledge of these chemosensors has primarily been derived from the intestine, while available information on gastric chemosensors is limited. This study aimed to investigate the nutrient-sensing repertoire of the mouse stomach with particular emphasis on ghrelin cells. METHODS Quantitative RT-PCR was used to determine mRNA levels of nutrient chemosensors (protein: G protein-coupled receptor 93 [GPR93], calcium-sensing receptor [CaSR], metabotropic glutamate receptor type 4 [mGluR4]; fatty acids: CD36, FFAR2&4; sweet/umami taste: T1R3), taste transduction components (TRPM5, GNAT2&3), and ghrelin and ghrelin-processing enzymes (PC1/3, ghrelin O-acyltransferase [GOAT]) in the gastric corpus and antrum of adult male C57BL/6 mice. Immunohistochemistry was performed to assess protein expression of chemosensors (GPR93, T1R3, CD36, and FFAR4) and their co-localization with ghrelin. KEY RESULTS Most nutrient chemosensors had higher mRNA levels in the antrum compared to the corpus, except for CD36, GNAT2, ghrelin, and GOAT. Similar regional distribution was observed at the protein level. At least 60% of ghrelin-positive cells expressed T1R3 and FFAR4, and over 80% expressed GPR93 and CD36. CONCLUSIONS AND INFERENCES The cellular mechanisms for the detection of nutrients are expressed in a region-specific manner in the mouse stomach and gastric ghrelin cells. These gastric nutrient chemosensors may play a role modulating gastrointestinal responses, such as the inhibition of ghrelin secretion following food intake.
Collapse
Affiliation(s)
- Maria Nunez-Salces
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Christine Feinle-Bisset
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Richard L Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Intestinal Nutrient Sensing Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
10
|
The Effect of High-Fat Diet-Induced Obesity on the Expression of Nutrient Chemosensors in the Mouse Stomach and the Gastric Ghrelin Cell. Nutrients 2020; 12:nu12092493. [PMID: 32824949 PMCID: PMC7551456 DOI: 10.3390/nu12092493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022] Open
Abstract
The stomach is the primary source of the orexigenic and adiposity-promoting hormone, ghrelin. There is emerging evidence on the nutrient-mediated modulation of gastric ghrelin secretion. However, limited information is available on gastric nutrient-sensing mechanisms in high-fat diet (HFD)-induced obesity. This study investigated the impact of HFD-induced obesity on the expression of nutrient chemosensors in mouse stomach, particularly ghrelin cells. Male C57BL/6 mice were fed either a standard laboratory diet (SLD) or HFD for 12 weeks. The expression of ghrelin, enzymes involved in ghrelin production (PC1/3, GOAT) and nutrient chemosensors (CD36, FFAR2&4, GPR93, CaSR, mGluR4 and T1R3) was determined by quantitative RT-PCR in the mouse corpus and antrum. Immunohistochemistry assessed the protein expression of CaSR and ghrelin in the corpus and antrum. Antral mRNA levels of CaSR and PC1/3 were increased in HFD compared to SLD mice, while mRNA levels of all other nutrient chemosensors examined remained unchanged. CaSR immunolabelling was observed in the gastric antrum only. Nearly 80% of antral ghrelin cells expressed CaSR, with a similar cell density and co-expression in SLD and HFD mice. In conclusion, HFD-induced obesity increased CaSR mRNA expression in mouse antrum. However, the high antral co-expression of CaSR and ghrelin was unaltered in HFD compared to SLD mice.
Collapse
|