1
|
Sang W, Yan X, Wang L, Sun H, Jian Y, Wang F, Tang B, Li Y. CALCOCO2 prevents AngII-induced atrial remodeling by regulating the interaction between mitophagy and mitochondrial stress. Int Immunopharmacol 2024; 140:112841. [PMID: 39094358 DOI: 10.1016/j.intimp.2024.112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The biological functions of mitochondrial complexes are closely related to the development of atrial fibrillation (AF). Calcium binding and coiled-coil domain 2 (CALCOCO2) is a novel and specific receptor for mitophagy; however, its function in AF remains unknown. Therefore, this study aimed to investigate the role and molecular mechanisms of CALCOCO2 in AF, especially its regulatory mechanism in mitophagy and mitochondrial stress. METHODS Mice and HL-1 cells were treated with AngII to establish in vitro and in vivo AF models. Additionally, we examined the effect of CALCOCO2 or DAP3 Binding Cell Death Enhancer 1 (DELE1) overexpression on mitophagy and mitochondrial stress in AF models. To investigate the role of mitophagy in the regulatory effects of CALCOCO2 in AF, HL-1 cells were treated with chloroquine, a mitophagy inhibitor. Moreover, mitochondrial parameters were examined using specific fluorescent probes, transmission electron microscopy, western blotting, immunohistochemistry, and confocal microscopy. RESULTS AngII severely impaired the normal morphology and function of mitochondria; inhibited mitophagy; promoted atrial mitochondrial stress, fibrosis, and oxidative stress; and accelerated the progression of atrial remodeling in atrial myocytes. However, CALCOCO2 overexpression reversed/ameliorated these AF-induced changes. Additionally, CALCOCO2 overexpression restored mitochondrial homeostasis in atrial muscle by activating mitophagy and ameliorating mitochondrial stress. Mechanistically, DELE1 overexpression increased mitochondrial reactive oxygen species level and the expression of mitochondrial stress proteins (HRI, eIF2α, and ATF4) even in CALCOCO2-expressing in vitro AF models.. CONCLUSIONS CALCOCO2 may serve as a potential target for AF therapy to prevent or reverse the progression of atrial remodeling by regulating mitophagy and DELE1-mediated mitochondrial stress.
Collapse
Affiliation(s)
- Wanyue Sang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoji Yan
- Department of Emergency, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huaxin Sun
- Department of Cardiology, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yi Jian
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Feifei Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Emergency Center, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Baopeng Tang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Yaodong Li
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
2
|
Xiang J, Cao J, Wang X, Shao S, Huang J, Zhang L, Tang B. Neutrophil extracellular traps and neutrophil extracellular traps-related genes are involved in new-onset atrial fibrillation in LPS-induced sepsis. Int Immunopharmacol 2024; 138:112550. [PMID: 38941671 DOI: 10.1016/j.intimp.2024.112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Sepsis is considered a high risk factor for new-onset atrial fibrillation (NOAF), with neutrophil extracellular traps (NETs) being implicated in the pathogenesis of numerous diseases. However, the precise role of NETs and NETs-related genes (NRGs) in the occurrence of NOAF in sepsis remains inadequately elucidated. The objective of this study was to identify hub NRGs connecting sepsis and AF, and to investigate the potential association between NETs and NOAF in sepsis. METHODS The AF and sepsis microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database for analysis of shared pathophysiological mechanisms and NRGs implicated in both sepsis and AF using bioinformatics techniques. The CIBERSORT algorithm was employed to assess immune cell infiltration and identify common immune characteristics in these diseases. Additionally, a rat model of lipopolysaccharide (LPS)-induced sepsis was utilized to investigate the association between NETs, NRGs, and sepsis-induced AF. Western blotting, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, immunohistochemistry, and immunofluorescence were employed to assess the expression of NRGs, the formation of NETs, and the infiltration of neutrophils. Electrophysiological analysis and multi-electrode array techniques were utilized to examine the vulnerability and conduction heterogeneity of AF in septic rats. Furthermore, intervention was conducted in LPS-induced sepsis rats using DNase I, a pharmacological agent that specifically targets NETs, in order to assess its impact on neutrophil infiltration, NETs formation, hub NRGs protein expression, and AF vulnerability. RESULTS A total of 61 commonly differentially expressed genes (DEGs) and four hub DE-NRGs were identified in the context of sepsis and AF. Functional enrichment analysis revealed that these DEGs were predominantly associated with processes related to inflammation and immunity. Immune infiltration analysis further demonstrated the presence of immune infiltrating cells, specifically neutrophil infiltration, in both sepsis and AF. Additionally, a positive correlation was observed between the relative expression of the four hub DE-NRGs and neutrophil infiltration. In rats with LPS-induced sepsis, we observed a notable upregulation in the expression of four DE-NRGs, the formation of NETs, and infiltration of neutrophils in atrial tissue. Through electrophysiological assessments, we identified heightened vulnerability to AF, reduced atrial surface conduction velocity, and increased conduction heterogeneity in LPS-induced sepsis rats. Notably, these detrimental effects can be partially ameliorated by treatment with DNase I. CONCLUSIONS Through bioinformatics analysis and experimental validation, we identified four hub NRGs in sepsis and AF. Subsequent experiments indicated that the formation of NETs in the atria may contribute to the pathogenesis of NOAF in sepsis. These discoveries offer potential novel targets and insights for the prevention and treatment of NOAF in sepsis.
Collapse
Affiliation(s)
- Jie Xiang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jiaru Cao
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Xiaoyan Wang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Shijie Shao
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jie Huang
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China; Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.
| |
Collapse
|
3
|
Xiang J, Cao J, Shen J, Wang X, Liang J, Li X, Zhang L, Tang B. Bioinformatics analysis reveals the potential common genes and immune characteristics between atrial fibrillation and periodontitis. J Periodontal Res 2024; 59:104-118. [PMID: 37971162 DOI: 10.1111/jre.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND OBJECTIVE Atrial fibrillation (AF) and periodontitis, both classified under chronic inflammatory diseases, share common etiologies, including genetic factors and immune pathways. However, the exact mechanisms are still poorly understood. This study aimed to explore the potential common genes and immune characteristics between AF and periodontitis. METHODS Gene expression datasets for AF and periodontitis were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis was used to identify common genes in the training set. Functional analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, were conducted to elucidate the underlying mechanisms. Hub genes were further screened based on expression levels, receiver operating characteristic (ROC) curves, and least absolute shrinkage and selection operator (LASSO) regression. Then, based on the expression levels and ROC values of the hub genes in the validation set, the target genes were identified. Finally, immune cell infiltration analysis was performed on the AF and periodontitis datasets in the training set using the "CIBERSORT" R package. The relationships between target genes, infiltrating immune cells, and inflammatory factors were also investigated. In addition, AF susceptibility, atrial fibrosis, inflammatory infiltration, and RGS1 protein expression in rat models of periodontitis were assessed through in vivo electrophysiology experiments, Masson's trichrome staining, hematoxylin-eosin staining, immunohistochemistry, and western blotting, respectively. RESULTS A total of 21 common genes were identified between AF and periodontitis among the differentially expressed genes. After evaluating gene expression levels, ROC curves, and LASSO analysis, four significant genes between AF and periodontitis were identified, namely regulator of G-protein signaling 1 (RGS1), annexin A6 (ANXA6), solute carrier family 27 member 6 (SLC27A6), and ficolin 1 (FCN1). Further validation confirmed that RGS1 was the optimal shared target gene for AF and periodontitis. Immune cell infiltration analysis revealed that neutrophils and T cells play an important role in the pathogenesis of both diseases. RGS1 showed a significant positive correlation with activated memory CD4 T cells and gamma-delta T cells and a negative correlation with CD8 T cells and regulatory T cells in both training sets. Moreover, RGS1 was positively correlated with classical pro-inflammatory cytokines IL1β and IL6. In periodontitis rat models, AF susceptibility, atrial fibrosis, and inflammatory infiltration were significantly increased, and RGS1 expression in the atrial tissue was upregulated. CONCLUSION A common gene between AF and periodontitis, RGS1 appears central in linking the two conditions. Immune and inflammatory responses may underlie the interaction between AF and periodontitis.
Collapse
Affiliation(s)
- Jie Xiang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Jiaru Cao
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Jun Shen
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Xiaoyan Wang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Junqing Liang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Xinshang Li
- Department of General and Emergency Dentistry, The First Affiliated Hospital (The Affiliated S Tomato Logical Hospital) of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| |
Collapse
|
4
|
Zhao B, Wang H, Cheng L, Wang M, Li J, Gu T, Shangguan W, Miao S, Wang W, Liu X, Guan S, Liu T, Liang X. Proteomic sequencing analysis in a rat model of atrial fibrosis caused by chronic intermittent hypoxia. J Thorac Dis 2023; 15:5414-5427. [PMID: 37969261 PMCID: PMC10636428 DOI: 10.21037/jtd-23-704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/01/2023] [Indexed: 11/17/2023]
Abstract
Background Atrial fibrosis caused by long-term atrial fibrillation influences the outcomes of clinical treatment. An improved understanding of the mechanisms underlying atrial fibrillation may reveal new therapeutic targets. This study was conducted to analyze the changes in protein levels in the atrial tissue of a rat model of atrial fibrillation based on proteome sequencing. Methods Sprague-Dawley rats were used to develop a model of atrial fibrillation induced by chronic intermittent hypoxia (CIH). Histopathological changes were detected using hematoxylin and eosin staining and Masson's staining, and immunohistochemistry and western blotting for the levels of fibrosis biomarkers. Atrial fibrosis tissue samples were also evaluated by proteome sequencing. Differentially expressed proteins (DEPs) between the CIH and control groups were evaluated in functional assay. The expression levels of several key proteins were validated using western blotting. Results CIH resulted in atrial fibrosis and induced atrial fibrillation. We identified 145 DEPs between the CIH and control groups. These included Myh7, Myl2, Myl3, and Atpla3, which are involved in signaling pathways related to hypertrophic cardiomyopathy, glycerolipid metabolism, and cardiac muscle contraction. Western blotting revealed the upregulation of Myh7, Myl2, and Myl3 and the downregulation of Atpla3 in the CIH group compared with the control group. These results were consistent with the sequencing results. Conclusions Myh7, Myl2, Myl3, and Atpla3 may play key roles in the progression of atrial fibrillation through their involvement in cardiovascular-disease-related signaling pathways.
Collapse
Affiliation(s)
- Bo Zhao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hualing Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lijun Cheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Manman Wang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jiao Li
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Tianshu Gu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wenfeng Shangguan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shuai Miao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Weiding Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Siyu Guan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Ke F, Kuang W, Hu X, Li C, Ma W, Shi D, Li X, Wu Z, Zhou Y, Liao Y, Qiu Z, Zhou Z. A novel vaccine targeting β1-adrenergic receptor. Hypertens Res 2023:10.1038/s41440-023-01265-3. [PMID: 36997634 DOI: 10.1038/s41440-023-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023]
Abstract
Beta-blockers are widely used in the treatment of hypertension, heart failure and ischemic heart disease. However, unstandardized medication results in diverse clinical outcomes in patients. The main causes are unattained optimal doses, insufficient follow-up and patients' poor adherence. To improve the medication inadequacy, our team developed a novel therapeutic vaccine targeting β1-adrenergic receptor (β1-AR). The β1-AR vaccine named ABRQβ-006 was prepared by chemical conjugation of a screened β1-AR peptide with Qβ virus like particle (VLP). The antihypertensive, anti-remodeling and cardio-protective effects of β1-AR vaccine were evaluated in different animal models. The ABRQβ-006 vaccine was immunogenic that induced high titers of antibodies against β1-AR epitope peptide. In the NG-nitro-L-arginine methyl ester (L-NAME) + Sprague Dawley (SD) hypertension model, ABRQβ-006 lowered systolic blood pressure about 10 mmHg and attenuated vascular remodeling, myocardial hypertrophy and perivascular fibrosis. In the pressure-overload transverse aortic constriction (TAC) model, ABRQβ-006 significantly improved cardiac function, decreased myocardial hypertrophy, perivascular fibrosis and vascular remodeling. In the myocardial infarction (MI) model, ABRQβ-006 effectively improved cardiac remodeling, reduced cardiac fibrosis and inflammatory infiltration, which was superior to metoprolol. Moreover, no significant immune-mediated damage was observed in immunized animals. The ABRQβ-006 vaccine targeting β1-AR showed the effects on hypertension and heart rate control, myocardial remodeling inhibition and cardiac function protection. These effects could be differentiated in different types of diseases with diverse pathogenesis. ABRQβ-006 could be a novel and promising method for the treatment of hypertension and heart failure with different etiologies.
Collapse
|
6
|
Sun H, Song J, Li K, Li Y, Shang L, Zhou Q, Lu Y, Zong Y, He X, Kari M, Yang H, Zhou X, Zhang L, Tang B. Increased β1-adrenergic receptor antibody confers a vulnerable substrate for atrial fibrillation via mediating Ca2+ mishandling and atrial fibrosis in active immunization rabbit models. Clin Sci (Lond) 2023; 137:195-217. [PMID: 36597894 PMCID: PMC9885845 DOI: 10.1042/cs20220654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND Autoimmune disorder is the emerging mechanism of atrial fibrillation (AF). The β1-adrenergic receptor antibody (β1-AAb) is associated with AF progress. Our study aims to investigate whether β1-AAbs involves in atrial vulnerable substrate by mediating Ca2+ mishandling and atrial fibrosis in autoimmune associated AF. METHODS Active immunization models were established via subcutaneous injection of the second extracellular loop (ECL2) peptide for β1 adrenergic receptor (β1AR). Invasive electrophysiologic study and ex vivo optical mapping were used to evaluate the changed electrophysiology parameters and calcium handling properties. Phospho-proteomics combined with molecular biology assay were performed to identify the potential mechanisms of remodeled atrial substrate elicited by β1-AAbs. Exogenous β1-AAbs were used to induce the cellular phenotypes of HL-1 cells and atrial fibroblasts to AF propensity. RESULTS β1-AAbs aggravated the atrial electrical instability and atrial fibrosis. Bisoprolol alleviated the alterations of action potential duration (APD), Ca2+ transient duration (CaD), and conduction heterogeneity challenged by β1-AAbs. β1-AAbs prolonged calcium transient refractoriness and promoted arrhythmogenic atrial alternans and spatially discordant alternans, which were partly counteracted through blocking β1AR. Its underlying mechanisms are related to β1AR-drived CaMKII/RyR2 activation of atrial cardiomyocytes and the myofibroblasts phenotype formation of fibroblasts. CONCLUSION Suppressing β1-AAbs effectively protects the atrial vulnerable substrate by ameliorating intracellular Ca2+ mishandling and atrial fibrosis, preventing the process of the autoimmune associated AF.
Collapse
Affiliation(s)
- Huaxin Sun
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jie Song
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Kai Li
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yao Li
- Psychosomatic Medical Center, The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Luxiang Shang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Qina Zhou
- School of Nursing, Midwifery and Social Work, University of Queensland, Brisbane, Queensland, Australia
| | - Yanmei Lu
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yazhen Zong
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Xiuyuan He
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Muzappar Kari
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Hang Yang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Xianhui Zhou
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Correspondence: Baopeng Tang () or Ling Zhang () or Xianhui Zhou ()
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Correspondence: Baopeng Tang () or Ling Zhang () or Xianhui Zhou ()
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- Correspondence: Baopeng Tang () or Ling Zhang () or Xianhui Zhou ()
| |
Collapse
|
7
|
Autoantibodies in Atrial Fibrillation-State of the Art. Int J Mol Sci 2023; 24:ijms24031852. [PMID: 36768174 PMCID: PMC9916061 DOI: 10.3390/ijms24031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. To date, a lot of research has been conducted to investigate the underlying mechanisms of this disease at both molecular and cellular levels. There is increasing evidence suggesting that autoimmunity is an important factor in the initiation and perpetuation of AF. Autoantibodies are thought to play a pivotal role in the regulation of heart rhythm and the conduction system and, therefore, are associated with AF development. In this review, we have summarized current knowledge concerning the role of autoantibodies in AF development as well as their prognostic and predictive value in this disease. The establishment of the autoantibody profile of separate AF patient groups may appear to be crucial in terms of developing novel treatment approaches for those patients; however, the exact role of various autoantibodies in AF is still a matter of ongoing debate.
Collapse
|
8
|
Yao Y, Yang M, Liu D, Zhao Q. Immune remodeling and atrial fibrillation. Front Physiol 2022; 13:927221. [PMID: 35936905 PMCID: PMC9355726 DOI: 10.3389/fphys.2022.927221] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) is a highly prevalent arrhythmia that causes high morbidity and mortality. However, the underlying mechanism of AF has not been fully elucidated. Recent research has suggested that, during AF, the immune system changes considerably and interacts with the environment and cells involved in the initiation and maintenance of AF. This may provide a new direction for research and therapeutic strategies for AF. In this review, we elaborate the concept of immune remodeling based on available data in AF. Then, we highlight the complex relationships between immune remodeling and atrial electrical, structural and neural remodeling while also pointing out some research gaps in these field. Finally, we discuss several potential immunomodulatory treatments for AF. Although the heterogeneity of existing evidence makes it ambiguous to extrapolate immunomodulatory treatments for AF into the clinical practice, immune remodeling is still an evolving concept in AF pathophysiology and further studies within this field are likely to provide effective therapies for AF.
Collapse
Affiliation(s)
- Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Qingyan Zhao,
| |
Collapse
|
9
|
Cholinergic Elicitation Prevents Ventricular Remodeling via Alleviations of Myocardial Mitochondrial Injury Linked to Inflammation in Ischemia-Induced Chronic Heart Failure Rats. Mediators Inflamm 2021; 2021:4504431. [PMID: 34849103 PMCID: PMC8627564 DOI: 10.1155/2021/4504431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023] Open
Abstract
Background Cholinergic anti-inflammatory pathway (CAP) is implicated in cardioprotection in chronic heart failure (CHF) by downregulating inflammation response. Mitochondrial injuries play an important role in ventricular remodeling of the CHF process. Herein, we aim to investigate whether CAP elicitation prevents ventricular remodeling in CHF by protecting myocardial mitochondrial injuries and its underlying mechanisms. Methods and Results CHF models were established by ligation of anterior descending artery for 5 weeks. Postoperative survival rats were assigned into 5 groups: the sham group (sham, n = 10), CHF group (CHF, n = 11), Vag group (CHF+vagotomy, n = 10), PNU group (CHF+PNU-282987 for 4 weeks, n = 11), and Vag+PNU group (CHF+vagotomy+PNU-282987 for 4 weeks, n = 10). The antiventricular remodeling effect of cholinergic elicitation was evaluated in vivo, and H9C2 cells were selected for the TNF-α gradient stimulation experiment in vitro. In vivo, CAP agitated by PNU-282987 alleviated the left ventricular dysfunction and inhibited the energy metabolism remodeling. Further, cholinergic elicitation increased myocardium ATP levels and reduced systemic inflammation. CAP induction alleviates macrophage infiltration and cardiac fibrosis, of which the effect is counteracted by vagotomy. Myocardial mitochondrial injuries were ameliorated by CAP activation, including the reserved ultrastructural integrity, declining ROS overload, reduced myocardial apoptosis, and enhanced mitochondrial fusion. In vitro, TNF-α intervention significantly exacerbated the mitochondrial damage in H9C2 cells. Conclusion CAP elicitation effectively improves ischemic ventricular remodeling by suppressing systemic and cardiac inflammatory response, attenuating cardiac fibrosis and potentially alleviating the mitochondrial dysfunction linked to hyperinflammation reaction.
Collapse
|
10
|
Biased activation of β 2-AR/Gi/GRK2 signal pathway attenuated β 1-AR sustained activation induced by β 1-adrenergic receptor autoantibody. Cell Death Dis 2021; 7:340. [PMID: 34750352 PMCID: PMC8576015 DOI: 10.1038/s41420-021-00735-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023]
Abstract
Heart failure is the terminal stage of many cardiac diseases, in which β1-adrenoceptor (β1-AR) autoantibody (β1-AA) has a causative role. By continuously activating β1-AR, β1-AA can induce cytotoxicity, leading to cardiomyocyte apoptosis and heart dysfunction. However, the mechanism underlying the persistent activation of β1-AR by β1-AA is not fully understood. Receptor endocytosis has a critical role in terminating signals over time. β2-adrenoceptor (β2-AR) is involved in the regulation of β1-AR signaling. This research aimed to clarify the mechanism of the β1-AA-induced sustained activation of β1-AR and explore the role of the β2-AR/Gi-signaling pathway in this process. The beating frequency of neonatal rat cardiomyocytes, cyclic adenosine monophosphate content, and intracellular Ca2+ levels were examined to detect the activation of β1-AA. Total internal reflection fluorescence microscopy was used to detect the endocytosis of β1-AR. ICI118551 was used to assess β2-AR/Gi function in β1-AR sustained activation induced by β1-AA in vitro and in vivo. Monoclonal β1-AA derived from a mouse hybridoma could continuously activate β1-AR. β1-AA-restricted β1-AR endocytosis, which was reversed by overexpressing the endocytosis scaffold protein β-arrestin1/2, resulting in the cessation of β1-AR signaling. β2-AR could promote β1-AR endocytosis, as demonstrated by overexpressing/interfering with β2-AR in HL-1 cells, whereas β1-AA inhibited the binding of β2-AR to β1-AR, as determined by surface plasmon resonance. ICI118551 biasedly activated the β2-AR/Gi/G protein-coupled receptor kinase 2 (GRK2) pathway, leading to the arrest of limited endocytosis and continuous activation of β1-AR by β1-AA in vitro. In vivo, ICI118551 treatment attenuated myocardial fiber rupture and left ventricular dysfunction in β1-AA-positive mice. This study showed that β1-AA continuously activated β1-AR by inhibiting receptor endocytosis. Biased activation of the β2-AR/Gi/GRK2 signaling pathway could promote β1-AR endocytosis restricted by β1-AA, terminate signal transduction, and alleviate heart damage.
Collapse
|