1
|
Lv H, Cao Y, Zhu J, Liang Q. Molecular Insights into the Effect of Cholesterol on the Binding of Bicarbonate Ions in Band 3 Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10908-10915. [PMID: 38739034 DOI: 10.1021/acs.langmuir.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Band 3, or anion exchanger 1 (AE1), is one of the indispensable transmembrane proteins involved in the effective respiratory process of the human body and is primarily responsible for the exchange of bicarbonate and chloride anions across the plasma membrane of erythrocyte. However, the molecular mechanism of ion transport of Band 3 is not completely understood, yet. In this work, we systematically investigate the key binding sites of bicarbonate ions in Band 3 and the impact of cholesterol (CHOL) in lipid bilayers on bicarbonate ion binding using all-atom molecular dynamics (MD) simulations. We examine the dynamics of interactions of bicarbonate ions with Band 3 in the microsecond time scale and calculate the binding free energy of the anion in Band 3. The results indicate that the residue R730 of Band 3 is the most probable binding site for bicarbonate ions. CHOL enhances the bicarbonate ion binding by influencing the conformational stability of Band 3 and compressing the volume of the Band 3 cavity. These findings provide some insights into the bicarbonate ion binding in Band 3 and are helpful for understanding the anion exchange of Band 3.
Collapse
Affiliation(s)
- Haiying Lv
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Yu Cao
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Jin Zhu
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Lichtman MA, Sham R. Acquired elliptocytosis in chronic myeloid neoplasms: An enigmatic relationship to acquired red cell membrane protein and genetic abnormalities. Blood Cells Mol Dis 2023; 103:102778. [PMID: 37379758 DOI: 10.1016/j.bcmd.2023.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Nineteen reports of 41 cases of acquired red cell elliptocytosis associated with a chronic myeloid neoplasm are described. Although the majority of cases have an abnormality of the long arm of chromosome 20, del(q20), several cases do not. Moreover, in one case a specific qualitative abnormality of red cell protein band 4.1(4.1R) was reported; however, several subsequent cases could find no abnormality of a red cell membrane protein or found a different abnormality, usually quantitative. Thus, this striking red cell phenotypic feature, acquired elliptocytosis, seen in myelodysplastic syndrome and other chronic myeloproliferative diseases, closely simulating the red cell phenotype of hereditary elliptocytosis, has an unexplained genetic basis, presumably as the result of an acquired mutation(s) in some chronic myeloid neoplasms.
Collapse
Affiliation(s)
- Marshall A Lichtman
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Ave, Box 706, Rochester, NY 14642-0001, USA.
| | - Ronald Sham
- Division of Hematology and Oncology, Rochester General Hospital, Rochester Regional Health, Rochester, NY 14621, USA
| |
Collapse
|
3
|
de Paula CP, de Oliveira da Silva JPM, Romanello KS, Bernardo VS, Torres FF, da Silva DGH, da Cunha AF. Peroxiredoxins in erythrocytes: far beyond the antioxidant role. J Mol Med (Berl) 2023; 101:1335-1353. [PMID: 37728644 DOI: 10.1007/s00109-023-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
The red blood cells (RBCs) are essential to transport oxygen (O2) and nutrients throughout the human body. Changes in the structure or functioning of the erythrocytes can lead to several deficiencies, such as hemolytic anemias, in which an increase in reactive oxidative species generation is involved in the pathophysiological process, playing a significant role in the severity of several clinical manifestations. There are important lines of defense against the damage caused by oxidizing molecules. Among the antioxidant molecules, the enzyme peroxiredoxin (Prx) has the higher decomposition power of hydrogen peroxide, especially in RBCs, standing out because of its abundance. This review aimed to present the recent findings that broke some paradigms regarding the three isoforms of Prxs found in RBC (Prx1, Prx2, and Prx6), showing that in addition to their antioxidant activity, these enzymes may have supplementary roles in transducing peroxide signals, as molecular chaperones, protecting from membrane damage, and maintenance of iron homeostasis, thus contributing to the overall survival of human RBCs, roles that seen to be disrupted in hemolytic anemia conditions.
Collapse
Affiliation(s)
- Carla Peres de Paula
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
- Biotechnology Graduate Program, Exact and Technology Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| | - João Pedro Maia de Oliveira da Silva
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | - Karen Simone Romanello
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Paulista State University, São Paulo, Brazil
- Federal University of Mato Grosso do Sul, Campus de Três Lagoas, Três Lagoas, Mato Grosso do Sul, Brazil
| | - Anderson Ferreira da Cunha
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| |
Collapse
|
4
|
Jajosky RP, Wu SC, Jajosky PG, Stowell SR. Plasmodium knowlesi ( Pk) Malaria: A Review & Proposal of Therapeutically Rational Exchange (T-REX) of Pk-Resistant Red Blood Cells. Trop Med Infect Dis 2023; 8:478. [PMID: 37888606 PMCID: PMC10610852 DOI: 10.3390/tropicalmed8100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Plasmodium knowlesi (Pk) causes zoonotic malaria and is known as the "fifth human malaria parasite". Pk malaria is an emerging threat because infections are increasing and can be fatal. While most infections are in Southeast Asia (SEA), especially Malaysia, travelers frequently visit this region and can present with Pk malaria around the world. So, clinicians need to know (1) patients who present with fever after recent travel to SEA might be infected with Pk and (2) Pk is often misdiagnosed as P. malariae (which typically causes less severe malaria). Here we review the history, pathophysiology, clinical features, diagnosis, and treatment of Pk malaria. Severe disease is most common in adults. Signs and symptoms can include fever, abdominal pain, jaundice, acute kidney injury, acute respiratory distress syndrome, hyponatremia, hyperparasitemia, and thrombocytopenia. Dengue is one of the diseases to be considered in the differential. Regarding pathophysiologic mechanisms, when Pk parasites invade mature red blood cells (RBCs, i.e., normocytes) and reticulocytes, changes in the red blood cell (RBC) surface can result in life-threatening cytoadherence, sequestration, and reduced RBC deformability. Since molecular mechanisms involving the erythrocytic stage are responsible for onset of severe disease and lethal outcomes, it is biologically plausible that manual exchange transfusion (ET) or automated RBC exchange (RBCX) could be highly beneficial by replacing "sticky" parasitized RBCs with uninfected, deformable, healthy donor RBCs. Here we suggest use of special Pk-resistant donor RBCs to optimize adjunctive manual ET/RBCX for malaria. "Therapeutically-rational exchange transfusion" (T-REX) is proposed in which Pk-resistant RBCs are transfused (instead of disease-promoting RBCs). Because expression of the Duffy antigen on the surface of human RBCs is essential for parasite invasion, T-REX of Duffy-negative RBCs-also known as Fy(a-b-) RBCs-could replace the majority of the patient's circulating normocytes with Pk invasion-resistant RBCs (in a single procedure lasting about 2 h). When sequestered or non-sequestered iRBCs rupture-in a 24 h Pk asexual life cycle-the released merozoites cannot invade Fy(a-b-) RBCs. When Fy(a-b-) RBC units are scarce (e.g., in Malaysia), clinicians can consider the risks and benefits of transfusing plausibly Pk-resistant RBCs, such as glucose-6-phosphate dehydrogenase deficient (G6PDd) RBCs and Southeast Asian ovalocytes (SAO). Patients typically require a very short recovery time (<1 h) after the procedure. Fy(a-b-) RBCs should have a normal lifespan, while SAO and G6PDd RBCs may have mildly reduced half-lives. Because SAO and G6PDd RBCs come from screened blood donors who are healthy and not anemic, these RBCs have a low-risk for hemolysis and do not need to be removed after the patient recovers from malaria. T-REX could be especially useful if (1) antimalarial medications are not readily available, (2) patients are likely to progress to severe disease, or (3) drug-resistant strains emerge. In conclusion, T-REX is a proposed optimization of manual ET/RBCX that has not yet been utilized but can be considered by physicians to treat Pk malaria patients.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
- Biconcavity Inc., Lilburn, GA 30047, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| | | | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| |
Collapse
|
5
|
Sadowska-Bartosz I, Bartosz G. Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte. Antioxidants (Basel) 2023; 12:antiox12051012. [PMID: 37237878 DOI: 10.3390/antiox12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M-1 s-1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| |
Collapse
|
6
|
Bludau I, Willems S, Zeng WF, Strauss MT, Hansen FM, Tanzer MC, Karayel O, Schulman BA, Mann M. The structural context of posttranslational modifications at a proteome-wide scale. PLoS Biol 2022; 20:e3001636. [PMID: 35576205 PMCID: PMC9135334 DOI: 10.1371/journal.pbio.3001636] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/26/2022] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
The recent revolution in computational protein structure prediction provides folding models for entire proteomes, which can now be integrated with large-scale experimental data. Mass spectrometry (MS)-based proteomics has identified and quantified tens of thousands of posttranslational modifications (PTMs), most of them of uncertain functional relevance. In this study, we determine the structural context of these PTMs and investigate how this information can be leveraged to pinpoint potential regulatory sites. Our analysis uncovers global patterns of PTM occurrence across folded and intrinsically disordered regions. We found that this information can help to distinguish regulatory PTMs from those marking improperly folded proteins. Interestingly, the human proteome contains thousands of proteins that have large folded domains linked by short, disordered regions that are strongly enriched in regulatory phosphosites. These include well-known kinase activation loops that induce protein conformational changes upon phosphorylation. This regulatory mechanism appears to be widespread in kinases but also occurs in other protein families such as solute carriers. It is not limited to phosphorylation but includes ubiquitination and acetylation sites as well. Furthermore, we performed three-dimensional proximity analysis, which revealed examples of spatial coregulation of different PTM types and potential PTM crosstalk. To enable the community to build upon these first analyses, we provide tools for 3D visualization of proteomics data and PTMs as well as python libraries for data accession and processing.
Collapse
Affiliation(s)
- Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sander Willems
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wen-Feng Zeng
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maximilian T. Strauss
- Proteomics Program, NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fynn M. Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria C. Tanzer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Proteomics Program, NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Stevens-Hernandez CJ, Flatt JF, Kupzig S, Bruce LJ. Reticulocyte Maturation and Variant Red Blood Cells. Front Physiol 2022; 13:834463. [PMID: 35356079 PMCID: PMC8959883 DOI: 10.3389/fphys.2022.834463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
The bone marrow produces billions of reticulocytes daily. These reticulocytes mature into red blood cells by reducing their plasma membrane by 20% and ejecting or degrading residual internal organelles, membranes and proteins not required by the mature cell. This process occurs by autophagy, protein degradation and vesiculation but is not well understood. We previously reported that Southeast Asian Ovalocytic RBCs demonstrate incomplete reticulocyte maturation and we have now extended this study to a number of other variant RBCs. By comparing the profile of a pure reticulocyte preparation of cultured red cells with these variant cells, we show that the largest of these cells, the overhydrated hereditary stomatocytosis cells, are the least mature, they barely reduced their plasma membrane and contain large amounts of proteins that should have been reduced or removed. Intermediate sized variant RBCs appear to be more mature but retain some endoplasmic reticulum and residual membrane proteins. We propose that the size and composition of these variant cell types correlate with the different stages of reticulocyte maturation and provide insight into the reticulocyte maturation process.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom.,Component Development Laboratory, NHS Blood and Transplant, Long Road, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Sabine Kupzig
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom.,Component Development Laboratory, NHS Blood and Transplant, Long Road, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
8
|
Stevens-Hernandez CJ, Bruce LJ. Reticulocyte Maturation. MEMBRANES 2022; 12:311. [PMID: 35323786 PMCID: PMC8953437 DOI: 10.3390/membranes12030311] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Changes to the membrane proteins and rearrangement of the cytoskeleton must occur for a reticulocyte to mature into a red blood cell (RBC). Different mechanisms of reticulocyte maturation have been proposed to reduce the size and volume of the reticulocyte plasma membrane and to eliminate residual organelles. Lysosomal protein degradation, exosome release, autophagy and the extrusion of large autophagic-endocytic hybrid vesicles have been shown to contribute to reticulocyte maturation. These processes may occur simultaneously or perhaps sequentially. Reticulocyte maturation is incompletely understood and requires further investigation. RBCs with membrane defects or cation leak disorders caused by genetic variants offer an insight into reticulocyte maturation as they present characteristics of incomplete maturation. In this review, we compare the structure of the mature RBC membrane with that of the reticulocyte. We discuss the mechanisms of reticulocyte maturation with a focus on incomplete reticulocyte maturation in red cell variants.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
- School of Biochemistry, University of Bristol, Bristol BS8 ITD, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
| |
Collapse
|
9
|
Han J, Zhang H, Li N, Aziz AUR, Zhang Z, Liu B. The raft cytoskeleton binding protein complexes personate functional regulators in cell behaviors. Acta Histochem 2022; 124:151859. [PMID: 35123353 DOI: 10.1016/j.acthis.2022.151859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/08/2022]
Abstract
Several cytoskeleton proteins interact with raft proteins to form raft-cytoskeleton binding protein complexes (RCPCs) that control cell migration and adhesion. The purpose of this paper is to review the latest research on the modes and mechanisms by which a RCPC controls different cellular functions. This paper discusses RCPC composition and its role in cytoskeleton reorganization, as well as the latest developments in molecular mechanisms that regulate cell adhesion and migration under normal conditions. In addition, the role of some external stimuli (such as stress and chemical signals) in this process is further debated, and meanwhile potential mechanisms for RCPC to regulate lipid raft fluidity is proposed. Thus, this review mainly contributes to the understanding of RCPC signal transduction in cells. Additionally, the targeted signal transduction of RCPC and its mechanism connection with cell behaviors will provide a logical basis for the development of unified interventions to combat metastasis related dysfunction and diseases.
Collapse
Affiliation(s)
- Jinxin Han
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China.
| |
Collapse
|
10
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
11
|
Lavinya AA, Razali RA, Razak MA, Mohamed R, Moses EJ, Soundararajan M, Bruce LJ, Eswaran J, Yusoff NM. Homozygous Southeast Asian Ovalocytosis in five live-born neonates. Haematologica 2021; 106:1758-1761. [PMID: 33179475 PMCID: PMC8168517 DOI: 10.3324/haematol.2020.268581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Indexed: 01/26/2023] Open
Affiliation(s)
| | - Ruzzieatul A Razali
- Clinical Genetics Section, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Penang
| | | | | | - Emmanuel J Moses
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Penang
| | | | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol
| | - Jeyanthy Eswaran
- Newcastle University Medicine Malaysia, Johor, Malaysia; Institute of Clinical and Translational Research, Faculty of Medicine, Newcastle University, Newcastle upon Tyne, U.K.
| | - Narazah Mohd Yusoff
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Penang.
| |
Collapse
|