1
|
Duan H, Xiong Y, Xiong S, Zhou Q. Guiding therapy by fractional exhaled nitric oxide & impulse oscillometry parameters in non-asthmatic individuals with chronic cough. Indian J Med Res 2025; 161:65-71. [PMID: 40036107 DOI: 10.25259/ijmr_307_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/20/2024] [Indexed: 03/06/2025] Open
Abstract
Background & objectives Chronic airway inflammation and airway hyperresponsiveness are typical pathophysiological features of cough variant asthma. However, the characteristics of airway inflammation and airflow restriction in individuals with non-asthmatic chronic cough and their guiding value of clinical treatment remain to be determined. This study explored the characteristics and correlations between fractional exhaled nitric oxide (FeNO) and impulse oscillometry (IOS) in non-asthmatic individuals with chronic cough. It also investigated the possibility of chronic cough developing into asthma. Methods In total, 65 study participants with negative bronchial provocation test (BPT) were included in this retrospective study. Data were extracted from chronic cough patients' electronic medical records, including the demographics, FeNO, IOS and spirometric parameters before and after BPT. Study participants were divided into high-FeNO group (FeNO≥25 ppb) and low-FeNO group (FeNO< 25 ppb) based on FeNO levels. The correlation between the markers was investigated using the Spearman rank correlation test. Results We observed that individuals with non-asthmatic chronic cough exhibited significant increases in Z5, Fres, R5 and R5-R20 after BPT compared to before BPT. In addition, the IOS values of Z5, Fres, R5, and Rc were higher in the low-FeNO group than in the high-FeNO group, but a decrease in FEV1. Correlation analysis: IOS parameters showed a negative correlation with FeNO. However, there were positive correlations of FeNO with FEV1 and PEF. Interpretation & conclusions Our findings showed that individuals with non-asthmatic chronic cough may have varying levels of small airway resistance and inflammation severity. A combined use of FeNO and IOS measurements is conducive to the early clinical treatment of individuals with non-asthmatic chronic cough.
Collapse
Affiliation(s)
- Hong Duan
- Department of Internal Medicine, Chengdu Medical College, Sichuan, China
| | - Yan Xiong
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Shuguang Xiong
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qing Zhou
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Solaesa ÁG, García-Barroso C, Romero C, González C, Jiménez P, Pastor R. Nutritional composition and technological properties determining the quality of different cuts of organic and conventional Turkey meat. Poult Sci 2024; 103:104331. [PMID: 39357238 PMCID: PMC11474191 DOI: 10.1016/j.psj.2024.104331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
The aim of this study was to evaluate the nutritional composition and technological properties of meat from turkeys produced under organic conditions and compare them with those of turkeys produced under conventional conditions. Twenty carcasses of female B.U.T. Premium turkeys (Aviagen Turkeys) were obtained directly from the abattoir ten h after slaughter time of animals. Ten carcasses originated from female turkeys reared under conventional intensive husbandry conditions for meat-type turkeys (on average, 5611.8 ± 196.2 g of carcass weight) and the other ten carcasses corresponded to female turkeys raised under certified organic free-range conditions (PavosBio, Ávila, Spain) (on average, 5528.5 ± 354.4 g of carcass weight). Breast, thigh and wing meat samples were analyzed from each turkey: Chemical composition, fatty acid profile, free amino acids, mineral and vitamins content, color, and texture. Meat from female turkeys reared under organic conditions presented higher fat content in breast (1.90 vs. 1.01%, P = 0.032), thigh (3.79 vs. 2.68%, P = 0.022) and wing (12.0 vs. 8.91%, P = 0.012) than meat of female turkeys reared under intensive conventional conditions. The proportion of saturated fatty acids was higher in the meat of intensively reared female turkeys than in those reared under organic conditions (42.8 vs. 38.1%, P = 0.017 in breast; 38.8 vs. 33.6%, P = 0.0053 in thigh and 40.2 vs. 33.9%, P < 0.001 in wing). On the contrary, the proportion of monounsaturated fatty acids was higher in meat of organic turkeys (41.4 vs. 35.6%, P = 0.012 in breast; 42.3 vs. 35.6%, P < 0.001 in thigh and 46.9 vs. 39.3%, P = 0.011 in wing). Concentration of riboflavin and pyridoxine was higher by 21.1% (P = 0.010) and by 154% (P = 0.006), respectively, in meat from organically raised female turkeys than in that of female turkeys reared under intensive conditions. The organic turkey meat analyzed contained a higher proportion B2 and B6, lipids and monounsaturated fatty acids, and a lower content of omega-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
| | | | - Carlos Romero
- Faculty of Sciences and Arts, Catholic University of Ávila, 05005 Ávila, Spain
| | | | - Paula Jiménez
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain
| | - Rosario Pastor
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain; Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
3
|
Barbut S, Mitchell R, Hall P, Bacon C, Bailey R, Owens CM, Petracci M. Review: Myopathies in broilers: supply chain approach to provide solutions to challenges related to raising fast growing birds. Poult Sci 2024; 103:103801. [PMID: 38925081 PMCID: PMC11259736 DOI: 10.1016/j.psj.2024.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 06/28/2024] Open
Abstract
This review is a summary of a Poultry Science Association symposium addressing myopathies in broilers' breast meat, focusing on the interactions between genetics, nutrition, husbandry, and meat processing. The Pectoralis major myopathies (woody breast [WB]; white striping [WS]; spaghetti meat [SM]) and Pectoralis minor ("feathering") are described, followed by discussing their prevalence, potential causes, current and future ways to mitigate, as well as detection methods (in live birds and meat) as well as ways to utilize affected meat. Overall, breast myopathies remain an important focus across the poultry industry and whilst a lot of data and knowledge has been gathered, it is clear that there is still a lot to understand. As there are multiple factors impacting the occurrence of breast myopathies, their reduction relies on a holistic approach. Ongoing balanced breeding strategies by poultry breeders is targeting the longer-term genetic component but comprehending the significant influence from nongenetic factors (short-term solutions such as nutrition) remains a key area of opportunity. Consequently, understanding the physiology and biological needs of the muscle through the life of the bird is critical to reduce the myopathies (e.g., minimizing oxidative stress) and gain more insight into their etiology.
Collapse
Affiliation(s)
- Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | - Craig Bacon
- Simmons Prepared Foods, Siloam Springs, AR 72761, USA
| | | | - Casey M Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | |
Collapse
|
4
|
Salgado Pardo JI, Navas González FJ, González Ariza A, León Jurado JM, Carolino N, Carolino I, Delgado Bermejo JV, Camacho Vallejo ME. Data-Mining Methodology to Improve the Scientific Production Quality in Turkey Meat and Carcass Characterization Studies. Animals (Basel) 2024; 14:2107. [PMID: 39061569 PMCID: PMC11273658 DOI: 10.3390/ani14142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The present research aims to describe how turkey meat and carcass quality traits define the interest of the scientific community through the quality standards of journals in which studies are published. To this end, an analysis of 92 research documents addressing the study of turkey carcass and meat quality over the last 57 years was performed. Meat and carcass quality attributes were dependent variables and included traits related to carcass dressing, muscle fiber, pH, colorimetry, water-holding capacity, texture, and chemical composition. The independent variables comprised publication quality traits, including journal indexation, database, journal impact factor (JIF), quartile, publication area, and JIF percentage. For each dependent variable, a data-mining chi-squared automatic interaction detection (CHAID) decision tree was developed. Carcass or piece yield was the only variable that did not show an impact on the publication quality. Moreover, color and pH measurements taken at 72 h postmortem showed a negative impact on publication interest. On the other hand, variables including water-retaining attributes, colorimetry, pH, chemical composition, and shear force traits stood out among the quality-enhancing variables due to their low inclusion in papers, while high standards improved power.
Collapse
Affiliation(s)
- José Ignacio Salgado Pardo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (J.V.D.B.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (J.V.D.B.)
| | | | | | - Nuno Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Inês Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (J.V.D.B.)
| | | |
Collapse
|
5
|
Yang W, Xue J, Zhang S, Yao C, Zhang N, Fang R. Enhancing skeletal muscle fiber characteristics, intramuscular fat deposition, and fatty acid composition in broilers under heat stress through combined selenomethionine and Bacillus subtilis supplementation in the diet. J Anim Sci 2024; 102:skae267. [PMID: 39301922 PMCID: PMC11484798 DOI: 10.1093/jas/skae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
Heat stress is the most common environmental stressor in poultry production, negatively affecting growth performance, meat quality, and welfare. Therefore, the aim of this study was to compare the nutritional effects of dietary supplementation with selenomethionine, Bacillus subtilis (BS), and a combination of selenomethionine and BS on broilers challenged with heat stress. A total of 300 21-day-old male broilers (Ross 308) were randomly assigned to 5 groups with 6 replicates of 10 broilers per each: control group (CON, broilers raised at 22 ± 2 °C), heat stress exposure group (HS, broilers raised at 32 ± 2 °C for 8 h/d), HSS group (HS group supplemented with 0.3 mg/kg selenomethionine), HSB group (HS group supplemented with 1 × 109 cfu/kg BS), and HSBS group (HS group supplemented with 0.3 mg/kg selenomethionine and × 109 cfu/kg BS). The experiment lasted for 21 d. The results indicated that, compared to the CON group, heat stress reduces (P < 0.05) broiler growth performance and damages the meat quality in breast and thigh muscles. Dietary supplementation with selenomethionine and BS did not improve the growth performance of broilers under heat stress. However, compared to the HS group, the HSS, HSB, and HSBS groups showed significantly increased (P < 0.05) pH45 min, redness (a*) and yellowness (b*), muscle fiber density, intramuscular fat, triglyceride content, and expression levels of Myf5, CAPN 2, FM, SLC27A1, A-FABP, H-FABP, APOB-100, and ACC in breast and thigh muscles. Meanwhile, these groups showed reduced (P < 0.05) lightness (L*), drip loss, shear force, muscle fiber cross-sectional area, and FM gene expression level. The HSBS group showed greater improvement in the physicochemical quality of muscle and volatile substances compared to the HSS and HSB groups. In conclusion, selenomethionine and BS improved meat quality and flavor in broilers under heat stress by modulating muscle fiber composition and characteristics, as well as increasing intramuscular fat deposition.
Collapse
Affiliation(s)
- Weiguang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Sha Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Chenge Yao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Na Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| |
Collapse
|
6
|
Salgado Pardo JI, Navas González FJ, González Ariza A, León Jurado JM, Galán Luque I, Delgado Bermejo JV, Camacho Vallejo ME. Study of Meat and Carcass Quality-Related Traits in Turkey Populations through Discriminant Canonical Analysis. Foods 2023; 12:3828. [PMID: 37893720 PMCID: PMC10606380 DOI: 10.3390/foods12203828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The present research aimed to determine the main differences in meat and carcass quality traits among turkey genotypes worldwide and describe the clustering patterns through the use of a discriminant canonical analysis (DCA). To achieve this goal, a comprehensive meta-analysis of 75 documents discussing carcass and meat characteristics in the turkey species was performed. Meat and carcass attributes of nine different turkey populations were collected and grouped in terms of the following clusters: carcass dressing traits, muscle fiber properties, pH, color-related traits, water-retaining characteristics, texture-related traits, and meat chemical composition. The Bayesian ANOVA analysis reported that the majority of variables statistically differed (p < 0.05), and the multicollinearity analysis revealed the absence of redundancy problems among variables (VIF < 5). The DCA reported that cold carcass weight, slaughter weight, sex-male, carcass/piece weight, and the protein and fat composition of meat were the traits explaining variability among different turkey genotypes (Wilks' lambda: 0.488, 0.590, 0.905, 0.906, 0.937, and 0.944, respectively). The combination of traits in the first three dimensions explained 94.93% variability among groups. Mahalanobis distances cladogram-grouped populations following a cluster pattern and suggest its applicability as indicative of a turkey genotype's traceability.
Collapse
Affiliation(s)
- José Ignacio Salgado Pardo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | - Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
- Agropecuary Provincial Centre, Diputación Provincial de Córdoba, 14071 Córdoba, Spain;
| | | | - Inés Galán Luque
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | | |
Collapse
|
7
|
Velleman SG. Broiler breast muscle myopathies: association with satellite cells. Poult Sci 2023; 102:102917. [PMID: 37478619 PMCID: PMC10387605 DOI: 10.1016/j.psj.2023.102917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
Heavy weight fast-growing meat-type broiler chickens have largely been selected for growth rate, muscle mass yield especially for the breast muscle, and feed conversion. Substantial improvements have been made, but in recent years breast meat quality issues resulting in product downgrades or condemnation have occurred especially from necrotic and fibrotic myopathies like Wooden Breast. In general, the morphological structure of the broiler breast muscle has changed in the modern commercial broiler with muscle fiber diameters increased, circulatory supply decreased, and connective spacing between individual fibers and fiber bundles decreased. Satellite cells are the primary cell type responsible for all posthatch muscle growth, and the repair and regeneration of muscle fibers. Recent evidence is suggestive of changes in the broiler satellite cell populations which will limit the ability of the satellite cells to regenerate damaged muscle fibers back to their original. These changes in the cellular biology of broiler satellite cells are likely associated with the necrosis and fibrosis observed in myopathies like Wooden Breast.
Collapse
Affiliation(s)
- Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
8
|
Cartoni Mancinelli A, Baldi G, Soglia F, Mattioli S, Sirri F, Petracci M, Castellini C, Zampiga M. Impact of chronic heat stress on behavior, oxidative status and meat quality traits of fast-growing broiler chickens. Front Physiol 2023; 14:1242094. [PMID: 37772060 PMCID: PMC10522860 DOI: 10.3389/fphys.2023.1242094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
This research aimed to investigate, through a multifactorial approach, the relationship among some in-vivo parameters (i.e., behavior and blood traits) in broilers exposed to chronic HS, and their implications on proximate composition, technological properties, and oxidative stability of breast meat. A total of 300 Ross 308 male chickens were exposed, from 35 to 41 days of age, to either thermoneutral conditions (TNT group: 20°C; six replicates of 25 birds/each) or elevated ambient temperature (HS group: 24 h/d at 30°C; six replicates of 25 birds/each). In order to deal with thermal stress, HS chickens firstly varied the frequency of some behaviors that are normally expressed also in physiological conditions (i.e., increasing "drinking" and decreasing "feeding") and then exhibited a behavioral pattern finalized at dissipating heat, primarily represented by "roosting," "panting" and "elevating wings." Such modifications become evident when the temperature reached 25°C, while the behavioral frequencies tended to stabilize at 27°C with no further substantial changes over the 6 days of thermal challenge. The multifactorial approach highlighted that these behavioral changes were associated with oxidative and inflammatory status as indicated by lower blood γ-tocopherol and higher carbonyls level (0.38 vs. 0.18 nmol/mL, and 2.39 vs. 7.19 nmol/mg proteins, respectively for TNT and HS; p < 0.001). HS affected breast meat quality by reducing the moisture:protein ratio (3.17 vs. 3.01, respectively for TNT and HS; p < 0.05) as well as the muscular acidification (ultimate pH = 5.81 vs. 6.00, respectively; p < 0.01), resulting in meat with higher holding capacity and tenderness. HS conditions reduced thiobarbituric acid reactive substances (TBARS) concentration in the breast meat while increased protein oxidation. Overall results evidenced a dynamic response of broiler chickens to HS exposure that induced behavioral and physiological modifications strictly linked to alterations of blood parameters and meat quality characteristics.
Collapse
Affiliation(s)
- Alice Cartoni Mancinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giulia Baldi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Simona Mattioli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Study of emerging chicken meat quality defects using OMICs: What do we know? J Proteomics 2023; 276:104837. [PMID: 36781045 DOI: 10.1016/j.jprot.2023.104837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/13/2023]
Abstract
Starting in approximately 2010, broiler breast meat myopathies, specifically woody breast meat, white striping, spaghetti meat, and gaping have increased in prevalence in the broiler meat industry. Omic methods have been used to elucidate compositional, genetic, and biochemical differences between myopathic and normal breast meat and have provided information on the factors that contribute to these myopathies. This review paper focuses on the genomic, transcriptomic, proteomic, metabolomic, and other omics research that has been conducted to unravel the molecular mechanisms involved in the development of these myopathies and their associated factors and potential causes. SIGNIFICANCE: This review manuscript summarizes poultry meat quality defects, also referred to as myopathies, that have been evaluated using omics methods. Genomics, transcriptomics, proteomics, metabolomics and other methodologies have been used to understand the genetic predisposition, the protein expression, and the biochemical pathways that are associated with the expression of woody breast meat, white striping, and other myopathies. This has allowed researchers and the industry to differentiate between chicken breast meat with and without myopathic muscle as well as the environmental and genetic conditions that contribute to differences in biochemical pathways and lead to the phenotypes associate with these different myopathies.
Collapse
|
10
|
Olaniyi EO, Lu Y, Cai J, Sukumaran AT, Jarvis T, Rowe C. Feasibility of imaging under structured illumination for evaluation of white striping in broiler breast fillets. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Hiscock HM, Leishman EM, Vanderhout RJ, Adams SM, Mohr J, Wood BJ, Baes CF, Barbut S. Describing the relationships among meat quality traits in domestic turkey (Meleagris gallopavo) populations. Poult Sci 2022; 101:102055. [PMID: 35973350 PMCID: PMC9396401 DOI: 10.1016/j.psj.2022.102055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/14/2022] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of meat quality defects is increasing in the turkey industry. While the main strategy for mitigating these issues is through improved housing, management, and slaughter conditions, it may be possible to incorporate meat quality into a turkey breeding strategy with the intent to improve meat quality. Before this can occur, it is important to describe the current state of turkey meat quality as well as the correlations among the different meat quality traits and important production traits. The main objective of the present study was to provide a descriptive analysis of 8 different meat quality traits for turkey breast meat from 3 different purebred lines (A, B, and C), and their correlation with a selection of production traits. Using a total of 7,781 images, the breast meat (N = 590–3,892 birds depending on trait) was evaluated at 24 h postmortem for color (L*, a*, b*), pH, and physiochemical characteristics (drip loss, cooking loss, shear force). Descriptive statistics (mean and standard deviation) and Pearson correlations were computed to describe the relationships among traits within each genetic line. A one-factor ANOVA and post hoc t-test were conducted for each trait and between each of the genetic lines. We found significant differences between genetic lines for some color traits (L* and a*), pHinitial, drip loss, and cooking loss. The lightest line in weight (line B) had meat that was the lightest (L*) in color. The heaviest line (line C) had meat that was less red (a*) with a higher pHinitial and greater cooking loss. Unfavorable correlations between production traits and meat quality were also found for each of the genetic lines where increases in production (e.g., body weight, growth rate) resulted in meat that was lighter and redder in color and in some cases (line B and C), with an increased moisture loss. The results of this study provide an important benchmark for turkey meat quality in purebred lines and provide an updated account of the relationships between key production traits and meat quality. Although the magnitude of these correlations is low, their cumulative effect on meat quality can be more significant especially with continued selection pressure on growth and yield.
Collapse
|
12
|
Vanderhout RJ, Leishman EM, Abdalla EA, Barbut S, Wood BJ, Baes CF. Genetic Parameters of White Striping and Meat Quality Traits Indicative of Pale, Soft, Exudative Meat in Turkeys (Meleagris gallopavo). Front Genet 2022; 13:842584. [PMID: 35309137 PMCID: PMC8927805 DOI: 10.3389/fgene.2022.842584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the increasing prevalence of growth-related myopathies and abnormalities in turkey meat, the ability to include meat quality traits in poultry breeding strategies is an issue of key importance. In the present study, genetic parameters for meat quality traits and their correlations with body weight and meat yield were estimated using a population of purebred male turkeys. Information on live body, breast, thigh, and drum weights, breast meat yield, feed conversion ratio, breast lightness (L*), redness (a*), and yellowness (b*), ultimate pH, and white striping (WS) severity score were collected on 11,986 toms from three purebred genetic lines. Heritability and genetic and partial phenotypic correlations were estimated for each trait using an animal model with genetic line, hatch week-year, and age at slaughter included as fixed effects. Heritability of ultimate pH was estimated to be 0.34 ± 0.05 and a range of 0.20 ± 0.02 to 0.23 ± 0.02 for breast meat colour (L*, a*, and b*). White striping was also estimated to be moderately heritable at 0.15 ± 0.02. Unfavorable genetic correlations were observed between body weight and meat quality traits as well as white striping, indicating that selection for increased body weight and meat yield may decrease pH and increase the incidence of pale meat with more severe white striping. The results of this analysis provide insight into the effect of current selection strategies on meat quality and emphasize the need to include meat quality traits into future selection indexes for turkeys.
Collapse
Affiliation(s)
- Ryley J. Vanderhout
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Emily M. Leishman
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Emhimad A. Abdalla
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Benjamin J. Wood
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
- Hybrid Turkeys, Kitchener, ON, Canada
- School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
| | - Christine F. Baes
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Christine F. Baes,
| |
Collapse
|
13
|
Leishman EM, Vanderhout RJ, van Staaveren N, Barbut S, Mohr J, Wood BJ, Baes CF. Influence of Post Mortem Muscle Activity on Turkey Meat Quality. Front Vet Sci 2022; 9:822447. [PMID: 35265694 PMCID: PMC8900945 DOI: 10.3389/fvets.2022.822447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
Wing flapping and body movement can occur during the slaughter of poultry. Wing movement and flapping are driven primarily by the breast muscles (Pectoralis major and minor), and this muscle activity may have implications for meat quality. The objective of this study was to evaluate turkey post mortem activity during slaughter at a commercial poultry processing plant. Post mortem activity (during bleeding) was scored on 5,441 male turkeys, from six different genetic lines, using a 1–4 scale from none to severe wing flapping. Meat quality was measured on these birds in terms of pH (initial, ultimate, delta or change), color (L*, a*, b*), and physiochemical traits (drip loss, cooking loss, shear force). Linear mixed models were used to analyze the effect of activity (score 1–4), genetic line (A–F), and season (summer vs. autumn) on the nine meat quality traits. Post mortem activity influenced a*, drip loss, and shear force although the magnitude of the effects was small. There was an effect (P < 0.05) of genetic line on all the meat quality traits except for L*, cooking loss, and shear force. In general, larger, faster-growing lines had higher pH, but the relationship between the lines for the other traits is not as clear. Season affected all the meat quality traits, except for pHdelta, with meat having a higher pH, L*, b*, drip loss, cooking loss, and shear force in the summer. This study provides an exploratory assessment of post mortem activity in turkeys and identifies meat quality traits which are most affected while also accounting for the effects of genetic line and season. Although identified effect sizes are small, the cumulative effect on turkey meat quality may be more substantial.
Collapse
Affiliation(s)
- Emily M. Leishman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | | | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Jeff Mohr
- Hybrid Turkeys, Suite C, Kitchener, ON, Canada
| | - Benjamin J. Wood
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Hybrid Turkeys, Suite C, Kitchener, ON, Canada
- School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
| | - Christine F. Baes
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland
- *Correspondence: Christine F. Baes
| |
Collapse
|
14
|
Breast muscle myopathies in broiler: mechanism, status and their impact on meat quality. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
Almost a decade ago, the sudden rise of breast muscle defects in fast-growing commercial broiler breeds challenged the broiler production industry and meat scientists to address the issue of these novel muscle abnormalities. After that, a widespread hypothesis showing a correlation between high muscle yield and incidence of these muscle myopathies got much acceptance from the research community. Increased muscle hypertrophy and unbalanced growth of connective tissues lead to an inadequate blood supply that ultimately causes hypoxia in muscle fibers. Reduced blood vascular density in muscle fibers induces oxidative stress and mitochondrial dysfunction, leading to muscle fibrosis, lipidosis and myodegeneration. Along with physical changes, the myopathic muscles exhibit poor sensory properties, abnormal texture properties and a low nutritional profile. As these myopathies alter meat’s physical appearance, they have a negative impact on customer’s behavior and preference. A better production environment with proper dietary supplementation with balanced breeding strategies can minimize the incidence of muscle myopathies in broiler chicken. This review aims to address the underlying mechanism behind these myopathies and their impact on poultry meat quality, including nutritional value and consumer behavior. It describes the link between genetic and non-genetic elements influencing myopathies, along with the strategies to minimize the occurrence of breast muscle myopathies.
Collapse
|
15
|
Siddique A, Shirzaei S, Smith AE, Valenta J, Garner LJ, Morey A. Acceptability of Artificial Intelligence in Poultry Processing and Classification Efficiencies of Different Classification Models in the Categorisation of Breast Fillet Myopathies. Front Physiol 2021; 12:712649. [PMID: 34630138 PMCID: PMC8493215 DOI: 10.3389/fphys.2021.712649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
Breast meat from modern fast-growing big birds is affected with myopathies such as woody breast (WB), white striping, and spaghetti meat (SM). The detection and separation of the myopathy-affected meat can be carried out at processing plants using technologies such as bioelectrical impedance analysis (BIA). However, BIA raw data from myopathy-affected breast meat are extremely complicated, especially because of the overlap of these myopathies in individual breast fillets and the human error associated with the assignment of fillet categories. Previous research has shown that traditional statistical techniques such as ANOVA and regression, among others, are insufficient in categorising fillets affected with myopathies by BIA. Therefore, more complex data analysis tools can be used, such as support vector machines (SVMs) and backpropagation neural networks (BPNNs), to classify raw poultry breast myopathies using their BIA patterns, such that the technology can be beneficial for the poultry industry in detecting myopathies. Freshly deboned (3–3.5 h post slaughter) breast fillets (n = 100 × 3 flocks) were analysed by hand palpation for WB (0-normal; 1-mild; 2-moderate; 3-Severe) and SM (presence and absence) categorisation. BIA data (resistance and reactance) were collected on each breast fillet; the algorithm of the equipment calculated protein and fat index. The data were analysed by linear discriminant analysis (LDA), and with SVM and BPNN with 70::30: training::test data set. Compared with the LDA analysis, SVM separated WB with a higher accuracy of 71.04% for normal (data for normal and mild merged), 59.99% for moderate, and 81.48% for severe WB. Compared with SVM, the BPNN training model accurately (100%) separated normal WB fillets with and without SM, demonstrating the ability of BIA to detect SM. Supervised learning algorithms, such as SVM and BPNN, can be combined with BIA and successfully implemented in poultry processing to detect breast fillet myopathies.
Collapse
Affiliation(s)
- Aftab Siddique
- Department of Poultry Science, Auburn University, Auburn, AL, United States
| | - Samira Shirzaei
- Department of Industrial and Systems Engineering and Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Alice E Smith
- Department of Industrial and Systems Engineering and Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Jaroslav Valenta
- Department of Animal Science, Czech University of Life Sciences, Prague, Czechia
| | - Laura J Garner
- Department of Poultry Science, Auburn University, Auburn, AL, United States
| | - Amit Morey
- Department of Poultry Science, Auburn University, Auburn, AL, United States
| |
Collapse
|
16
|
Piórkowska K, Żukowski K, Połtowicz K, Witarski W, Nowak J, Potocka P, Ropka-Molik K. Hypothalamus-pituitary axis transcriptomic modification dependent on growth rate in geese (Anser anser domesticus). Anim Genet 2021; 52:834-847. [PMID: 34595762 DOI: 10.1111/age.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
The hypothalamus-pituitary axis is involved in digest processing, stress response, energy storage and many other processes. In birds, this control differs from in mammals, such as regulation of appetite and satiety centre. The transcriptomics analyses of both brain structures can explain and identify the molecular processes related to body growth and development and nutritional status. Many reports describe chicken transcriptome in literature, but gene expression studies in the other poultry species are extremely rare. Therefore, the present research undertook the attempt to explain hypothalamus-pituitary processes in domestic geese-Polish White Kołuda®, main Polish line. After 16 weeks of fattening, significant differences in geese weight were observed. Therefore, transcriptome of pituitary and hypothalamus profiles could be compared between low and high growth rate geese groups. Due to the lack of domestic geese genome assembly in the public databases, we used three mapping approaches: de novo analysis, mapping to two other pink-footed and swan geese genomes. The functional examination showed that the most enriched biological process in the geese hypothalamus covered the immune response. Moreover, in the hypothalamus, proteins typical for the pituitary such as PRL and GH were differentially expressed (DE). Our study recommends one gene as a candidate for growth rate in geese-the FOS gene, which encodes Fos proto-oncogene-DE in both analysed tissues. The FOS gene is involved in regulating feeding behaviour, immune regulation, stimulating cellular proliferation and controlling growth hormone synthesis. Moreover, the present investigation indicates DE genes involved in gene expression regulation. The study delivers new information about the changes in the pituitary-hypothalamic axis in geese dependent on growth rate differences.
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Wojciech Witarski
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Joanna Nowak
- Department of Poultry Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Paulina Potocka
- National Research Institute of Animal Production, Experimental Station Kołuda Wielka, Janikowo, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
17
|
Reed KM, Mendoza KM, Abrahante JE, Velleman SG, Strasburg GM. Data Mining Identifies Differentially Expressed Circular RNAs in Skeletal Muscle of Thermally Challenged Turkey Poults. Front Physiol 2021; 12:732208. [PMID: 34512399 PMCID: PMC8424120 DOI: 10.3389/fphys.2021.732208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Precise regulation of gene expression is critical for normal muscle growth and development. Changes in gene expression patterns caused by external stressors such as temperature can have dramatic effects including altered cellular structure and function. Understanding the cellular mechanisms that underlie muscle growth and development and how these are altered by external stressors are crucial in maintaining and improving meat quality. This study investigated circular RNAs (circRNAs) as an emerging aspect of gene regulation. We used data mining to identify circRNAs and characterize their expression profiles within RNAseq data collected from thermally challenged turkey poults of the RBC2 and F-lines. From sequences of 28 paired-end libraries, 8924 unique circRNAs were predicted of which 1629 were common to all treatment groups. Expression analysis identified significant differentially expressed circRNAs (DECs) in comparisons between thermal treatments (41 DECs) and between genetic lines (117 DECs). No intersection was observed between the DECs and differentially expressed gene transcripts indicating that the DECs are not simply the result of expression changes in the parental genes. Comparative analyses based on the chicken microRNA (miRNA) database suggest potential interactions between turkey circRNAs and miRNAs. Additional studies are needed to reveal the functional significance of the predicted circRNAs and their role in muscle development in response to thermal challenge. The DECs identified in this study provide an important framework for future investigation.
Collapse
Affiliation(s)
- Kent M Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, United States
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, United States
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
18
|
Baldi G, Soglia F, Petracci M. Spaghetti Meat Abnormality in Broilers: Current Understanding and Future Research Directions. Front Physiol 2021; 12:684497. [PMID: 34135775 PMCID: PMC8202004 DOI: 10.3389/fphys.2021.684497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Spaghetti meat (SM) is a recent muscular abnormality that affects the Pectoralis major muscle of fast-growing broilers. As the appellative suggests, this condition phenotypically manifests as a loss of integrity of the breast muscle, which appears soft, mushy, and sparsely tight, resembling spaghetti pasta. The incidence of SM can reach up to 20% and its occurrence exerts detrimental effects on meat composition, nutritional value, and technological properties, accounting for an overall decreased meat value and important economic losses related to the necessity to downgrade affected meats. However, due to its recentness, the causative mechanisms are still partially unknown and less investigated compared to other muscular abnormalities (i.e., White Striping and Wooden Breast), for which cellular stress and hypoxia caused by muscle hypertrophy are believed to be the main triggering factors. Within this scenario, the present review aims at providing a clear and concise summary of the available knowledge concerning SM abnormality and concurrently presenting the existing research gaps, as well as the potential future developments in the field.
Collapse
|