1
|
Yun S, Kiffer FC, Bancroft GL, Guzman CS, Soler I, Haas HA, Shi R, Patel R, Lara-Jiménez J, Kumar PL, Tran FH, Ahn KJ, Rong Y, Luitel K, Shay JW, Eisch AJ. The longitudinal behavioral effects of acute exposure to galactic cosmic radiation in female C57BL/6J mice: Implications for deep space missions, female crews, and potential antioxidant countermeasures. J Neurochem 2025; 169:e16225. [PMID: 39318241 DOI: 10.1111/jnc.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Galactic cosmic radiation (GCR) is an unavoidable risk to astronauts that may affect mission success. Male rodents exposed to 33-beam-GCR (33-GCR) show short-term cognitive deficits but reports on female rodents and long-term assessment are lacking. We asked: What are the longitudinal behavioral effects of 33-GCR on female mice? Also, can an antioxidant/anti-inflammatory compound (CDDO-EA) mitigate the impact of 33-GCR? Mature (6-month-old) C57BL/6J female mice received CDDO-EA (400 μg/g of food) or a control diet (vehicle, Veh) for 5 days and Sham-irradiation (IRR) or whole-body 33-GCR (0.75Gy) on the 4th day. Three-months post-IRR, mice underwent two touchscreen-platform tests: (1) location discrimination reversal (tests behavior pattern separation and cognitive flexibility, abilities reliant on the dentate gyrus) and (2) stimulus-response learning/extinction. Mice then underwent arena-based behavior tests (e.g. open field, 3-chamber social interaction). At the experiment's end (14.25-month post-IRR), an index relevant to neurogenesis was quantified (doublecortin-immunoreactive [DCX+] dentate gyrus immature neurons). Female mice exposed to Veh/Sham vs. Veh/33-GCR had similar pattern separation (% correct to 1st reversal). There were two effects of diet: CDDO-EA/Sham and CDDO-EA/33-GCR mice had better pattern separation vs. their respective control groups (Veh/Sham, Veh/33-GCR), and CDDO-EA/33-GCR mice had better cognitive flexibility (reversal number) vs. Veh/33-GCR mice. One radiation effect/CDDO-EA countereffect also emerged: Veh/33-GCR mice had slower stimulus-response learning (days to completion) vs. all other groups, including CDDO-EA/33-GCR mice. In general, all mice showed normal anxiety-like behavior, exploration, and habituation to novel environments. There was also a change relevant to neurogenesis: Veh/33-GCR mice had fewer DCX+ dentate gyrus immature neurons vs. Veh/Sham mice. Our study implies space radiation is a risk to a female crew's longitudinal mission-relevant cognitive processes and CDDO-EA is a potential dietary countermeasure for space-radiation CNS risks.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederico C Kiffer
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grace L Bancroft
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Caterina S Guzman
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Harley A Haas
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymon Shi
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Riya Patel
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Jaysen Lara-Jiménez
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Priya L Kumar
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Kyung Jin Ahn
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Yuying Rong
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Krishna Luitel
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Varma C, Schroeder MK, Price BR, Khan KA, Curty da Costa E, Hochman-Mendez C, Caldarone BJ, Lemere CA. Long-Term, Sex-Specific Effects of GCRsim and Gamma Irradiation on the Brains, Hearts, and Kidneys of Mice with Alzheimer's Disease Mutations. Int J Mol Sci 2024; 25:8948. [PMID: 39201636 PMCID: PMC11355020 DOI: 10.3390/ijms25168948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Understanding the hazards of space radiation is imperative as astronauts begin voyaging on missions with increasing distances from Earth's protective shield. Previous studies investigating the acute or long-term effects of specific ions comprising space radiation have revealed threats to organs generally considered radioresistant, like the brain, and have shown males to be more vulnerable than their female counterparts. However, astronauts will be exposed to a combination of ions that may result in additive effects differing from those of any one particle species. To better understand this nuance, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like mice with 0, 0.5, or 0.75 Gy galactic cosmic ray simulation (GCRsim) or 0, 0.75, or 2 Gy gamma radiation (wild-type only). At 11 months, mice underwent brain and heart MRIs or behavioral tests, after which they were euthanized to assess amyloid-beta pathology, heart and kidney gene expression and fibrosis, and plasma cytokines. Although there were no changes in amyloid-beta pathology, we observed many differences in brain MRIs and behavior, including opposite effects of GCRsim on motor coordination in male and female transgenic mice. Additionally, several genes demonstrated persistent changes in the heart and kidney. Overall, we found sex- and genotype-specific, long-term effects of GCRsim and gamma radiation on the brain, heart, and kidney.
Collapse
Affiliation(s)
- Curran Varma
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Maren K. Schroeder
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Brittani R. Price
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Khyrul A. Khan
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Ernesto Curty da Costa
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA; (E.C.d.C.); (C.H.-M.)
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA; (E.C.d.C.); (C.H.-M.)
| | | | - Cynthia A. Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Impey S, Raber J. Irradiation and Alterations in Hippocampal DNA Methylation. EPIGENOMES 2024; 8:27. [PMID: 39051185 PMCID: PMC11270359 DOI: 10.3390/epigenomes8030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The response of the brain to radiation is important for cancer patients receiving whole or partial brain irradiation or total body irradiation, those exposed to irradiation as part of a nuclear accident or a nuclear war or terrorism event, and for astronauts during and following space missions. The mechanisms mediating the effects of irradiation on the hippocampus might be associated with alterations in hippocampal DNA methylation. Changes in cytosine methylation involving the addition of a methyl group to cytosine (5 mC) and especially those involving the addition of a hydroxy group to 5 mC (hydroxymethylcytosine or 5 hmC) play a key role in regulating the expression of genes required for hippocampal function. In this review article, we will discuss the effects of radiation on hippocampal DNA methylation and whether these effects are associated with hippocampus-dependent cognitive measures and molecular measures in the hippocampus involved in cognitive measures. We will also discuss whether the radiation-induced changes in hippocampal DNA methylation show an overlap across different doses of heavy ion irradiation and across irradiation with different ions. We will also discuss whether the DNA methylation changes show a tissue-dependent response.
Collapse
Affiliation(s)
- Soren Impey
- Dow Neurobiology Laboratories, Legacy Research Institute Legacy Health Systems, 1225 NE 2nd Ave, Portland, OR 97232, USA
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
4
|
Kokhan VS, Pikalov VA, Chaprov K, Gulyaev MV. Combined Ionizing Radiation Exposure by Gamma Rays and Carbon-12 Nuclei Increases Neurotrophic Factor Content and Prevents Age-Associated Decreases in the Volume of the Sensorimotor Cortex in Rats. Int J Mol Sci 2024; 25:6725. [PMID: 38928431 PMCID: PMC11203503 DOI: 10.3390/ijms25126725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
In orbital and ground-based experiments, it has been demonstrated that ionizing radiation (IR) can stimulate the locomotor and exploratory activity of rodents, but the underlying mechanism of this phenomenon remains undisclosed. Here, we studied the effect of combined IR (0.4 Gy γ-rays and 0.14 Gy carbon-12 nuclei) on the locomotor and exploratory activity of rats, and assessed the sensorimotor cortex volume by magnetic resonance imaging-based morphometry at 1 week and 7 months post-irradiation. The sensorimotor cortex tissues were processed to determine whether the behavioral and morphologic effects were associated with changes in neurotrophin content. The irradiated rats were characterized by increased locomotor and exploratory activity, as well as novelty-seeking behavior, at 3 days post-irradiation. At the same time, only unirradiated rats experienced a significant decrease in the sensorimotor cortex volume at 7 months. While there were no significant differences at 1 week, at 7 months, the irradiated rats were characterized by higher neurotrophin-3 and neurotrophin-4 content in the sensorimotor cortex. Thus, IR prevents the age-associated decrease in the sensorimotor cortex volume, which is associated with neurotrophic and neurogenic changes. Meanwhile, IR-induced increases in locomotor activity may be the cause of the observed changes.
Collapse
Affiliation(s)
- Viktor S. Kokhan
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, 119034 Moscow, Russia
| | - Vladimir A. Pikalov
- Institute for High Energy Physics Named by A.A. Logunov of NRC “Kurchatov Institute”, 142281 Protvino, Russia;
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Mikhail V. Gulyaev
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
5
|
Cahoon DS, Fisher DR, Rabin BM, Lamon-Fava S, Wu D, Zheng T, Shukitt-Hale B. Galactic Cosmic Ray Particle Exposure Does Not Increase Protein Levels of Inflammation or Oxidative Stress Markers in Rat Microglial Cells In Vitro. Int J Mol Sci 2024; 25:5923. [PMID: 38892109 PMCID: PMC11172496 DOI: 10.3390/ijms25115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Astronauts on exploratory missions will be exposed to galactic cosmic rays (GCR), which can induce neuroinflammation and oxidative stress (OS) and may increase the risk of neurodegenerative disease. As key regulators of inflammation and OS in the CNS, microglial cells may be involved in GCR-induced deficits, and therefore could be a target for neuroprotection. This study assessed the effects of exposure to helium (4He) and iron (56Fe) particles on inflammation and OS in microglia in vitro, to establish a model for testing countermeasure efficacy. Rat microglia were exposed to a single dose of 20 cGy (300 MeV/n) 4He or 2 Gy 56Fe (600 MeV/n), while the control cells were not exposed (0 cGy). Immediately following irradiation, fresh media was applied to the cells, and biomarkers of inflammation (cyclooxygenase-2 [COX-2], nitric oxide synthase [iNOS], phosphorylated IκB-α [pIκB-α], tumor necrosis factor-α [TNFα], and nitrite [NO2-]) and OS (NADPH oxidase [NOX2]) were assessed 24 h later using standard immunochemical techniques. Results showed that radiation did not increase levels of NO2- or protein levels of COX-2, iNOS, pIκB-α, TNFα, or NOX2 compared to non-irradiated control conditions in microglial cells (p > 0.05). Therefore, microglia in isolation may not be the primary cause of neuroinflammation and OS following exposures to helium or iron GCR particles.
Collapse
Affiliation(s)
- Danielle S. Cahoon
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA; (D.S.C.); (D.R.F.); (S.L.-F.); (D.W.); (T.Z.)
| | - Derek R. Fisher
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA; (D.S.C.); (D.R.F.); (S.L.-F.); (D.W.); (T.Z.)
| | - Bernard M. Rabin
- Department of Psychology, University of Maryland, Baltimore County (UMBC), Baltimore, MD 21250, USA;
| | - Stefania Lamon-Fava
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA; (D.S.C.); (D.R.F.); (S.L.-F.); (D.W.); (T.Z.)
| | - Dayong Wu
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA; (D.S.C.); (D.R.F.); (S.L.-F.); (D.W.); (T.Z.)
| | - Tong Zheng
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA; (D.S.C.); (D.R.F.); (S.L.-F.); (D.W.); (T.Z.)
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA; (D.S.C.); (D.R.F.); (S.L.-F.); (D.W.); (T.Z.)
| |
Collapse
|
6
|
Bafor EE, Erwin-Cohen RA, Martin T, Baker C, Kimmel AE, Duverger O, Fenimore JM, Ramba M, Spindel T, Hess MM, Sanford M, Lazarevic V, Benayoun BA, Young HA, Valencia JC. Aberrant CD8 +T cells drive reproductive dysfunction in female mice with elevated IFN-γ levels. Front Immunol 2024; 15:1368572. [PMID: 38698852 PMCID: PMC11064017 DOI: 10.3389/fimmu.2024.1368572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Interferon-gamma (IFN-γ) is pivotal in orchestrating immune responses during healthy pregnancy. However, its dysregulation, often due to autoimmunity, infections, or chronic inflammatory conditions, is implicated in adverse reproductive outcomes such as pregnancy failure or infertility. Additionally, the underlying immunological mechanisms remain elusive. Methods Here, we explore the impact of systemic IFN-γ elevation on cytotoxic T cell responses in female reproduction utilizing a systemic lupus-prone mouse model with impaired IFN-γ degradation. Results Our findings reveal that heightened IFN-γ levels triggered the infiltration of CD8+T cells in the pituitary gland and female reproductive tract (FRT), resulting in prolactin deficiency and subsequent infertility. Furthermore, we demonstrate that chronic IFN-γ elevation increases effector memory CD8+T cells in the murine ovary and uterus. Discussion These insights broaden our understanding of the role of elevated IFN-γ in female reproductive dysfunction and suggest CD8+T cells as potential immunotherapeutic targets in female reproductive disorders associated with chronic systemic IFN-γ elevation.
Collapse
Affiliation(s)
- Enitome E. Bafor
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Rebecca A. Erwin-Cohen
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Toni Martin
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Clayton Baker
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Molecular and Computational Biology Department, University of Southern California, Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, United States
| | - Adrienne E. Kimmel
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - John M. Fenimore
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Meredith Ramba
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Thea Spindel
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Megan M. Hess
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Michael Sanford
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Molecular and Computational Biology Department, University of Southern California, Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, United States
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Julio C. Valencia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
7
|
Yun S, Kiffer FC, Bancroft GL, Guzman CS, Soler I, Haas HA, Shi R, Patel R, Lara-Jiménez J, Kumar PL, Tran FH, Ahn KJ, Rong Y, Luitel K, Shay JW, Eisch AJ. The longitudinal behavioral effects of acute exposure to galactic cosmic radiation in female C57BL/6J mice: implications for deep space missions, female crews, and potential antioxidant countermeasures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588768. [PMID: 38659963 PMCID: PMC11042186 DOI: 10.1101/2024.04.12.588768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Galactic cosmic radiation (GCR) is an unavoidable risk to astronauts that may affect mission success. Male rodents exposed to 33-beam-GCR (33-GCR) show short-term cognitive deficits but reports on female rodents and long-term assessment is lacking. Here we asked: What are the longitudinal behavioral effects of 33-GCR on female mice? Also, can an antioxidant/anti-inflammatory compound mitigate the impact of 33-GCR? Mature (6-month-old) C57BL/6J female mice received the antioxidant CDDO-EA (400 µg/g of food) or a control diet (vehicle, Veh) for 5 days and either Sham-irradiation (IRR) or whole-body 33-GCR (0.75Gy) on the 4th day. Three-months post-IRR, mice underwent two touchscreen-platform tests: 1) location discrimination reversal (which tests behavior pattern separation and cognitive flexibility, two abilities reliant on the dentate gyrus) and 2) stimulus-response learning/extinction. Mice then underwent arena-based behavior tests (e.g. open field, 3-chamber social interaction). At the experiment end (14.25-month post-IRR), neurogenesis was assessed (doublecortin-immunoreactive [DCX+] dentate gyrus neurons). Female mice exposed to Veh/Sham vs. Veh/33-GCR had similar pattern separation (% correct to 1st reversal). There were two effects of diet: CDDO-EA/Sham and CDDO-EA/33-GCR mice had better pattern separation vs. their respective control groups (Veh/Sham, Veh/33-GCR), and CDDO-EA/33-GCR mice had better cognitive flexibility (reversal number) vs. Veh/33-GCR mice. Notably, one radiation effect/CDDO-EA countereffect also emerged: Veh/33-GCR mice had worse stimulus-response learning (days to completion) vs. all other groups, including CDDO-EA/33-GCR mice. In general, all mice show normal anxiety-like behavior, exploration, and habituation to novel environments. There was also a change in neurogenesis: Veh/33-GCR mice had fewer DCX+ dentate gyrus immature neurons vs. Veh/Sham mice. Our study implies space radiation is a risk to a female crew's longitudinal mission-relevant cognitive processes and CDDO-EA is a potential dietary countermeasure for space-radiation CNS risks.
Collapse
|
8
|
Chaklai A, O’Neil A, Goel S, Margolies N, Krenik D, Perez R, Kessler K, Staltontall E, Yoon HK(E, Pantoja M, Stagaman K, Kasschau K, Unni V, Duvoisin R, Sharpton T, Raber J. Effects of Paraquat, Dextran Sulfate Sodium, and Irradiation on Behavioral and Cognitive Performance and the Gut Microbiome in A53T and A53T-L444P Mice. Genes (Basel) 2024; 15:282. [PMID: 38540341 PMCID: PMC11154584 DOI: 10.3390/genes15030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024] Open
Abstract
Heterozygous carriers of the glucocerebrosidase 1 (GBA) L444P Gaucher mutation have an increased risk of developing Parkinson's disease (PD). The GBA mutations result in elevated alpha synuclein (aSyn) levels. Heterozygous mice carrying one allele with the L444P mutation knocked-into the mouse gene show increased aSyn levels and are more sensitive to motor deficits following exposure to the neurotoxin (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP than wild-type mice. Paraquat (PQ), a herbicide, increases PD risk in most studies. Its effects on the brain involve alterations in the gut microbiome. Exposure to dextran sulfate sodium (DSS), a mouse model of colitis, can be used to determine whether gut microbiome alterations are sufficient to induce PD-relevant phenotypes. We rederived the A53T-L444P and A53T mouse lines to assess whether PQ, PQ in combination with radiation exposure (IR), and DSS have differential effects in A53T and A53T-L444P mice and whether these effects are associated with alterations in the gut microbiome. PQ and PQ + IR have differential effects in A53T and A53T-L444P mice. In contrast, effects of DSS are only seen in A53T-L444P mice. Exposure and genotype modulate the relationship between the gut microbiome and behavioral performance. The gut microbiome may be an important mediator of how environmental exposures or genetic mutations yield behavioral and cognitive impacts.
Collapse
Affiliation(s)
- Ariel Chaklai
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Abigail O’Neil
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Shrey Goel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Nick Margolies
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Destine Krenik
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Elizabeth Staltontall
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Hong Ki (Eric) Yoon
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Montzerrat Pantoja
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.K.); (T.S.)
| | - Kristin Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.K.); (T.S.)
| | - Vivek Unni
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
- Jungers Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Robert Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Thomas Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.K.); (T.S.)
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
9
|
Britten RA, Fesshaye A, Tidmore A, Liu A, Blackwell AA. Loss of Cognitive Flexibility Practice Effects in Female Rats Exposed to Simulated Space Radiation. Radiat Res 2023; 200:256-265. [PMID: 37527363 DOI: 10.1667/rade-22-00196.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023]
Abstract
During the planned missions to Mars, astronauts will be faced with many potential health hazards including prolonged exposure to space radiation. Ground-based studies have shown that exposure to space radiation impairs the performance of male rats in cognitive flexibility tasks which involve processes that are essential to rapidly and efficiently adapting to different situations. However, there is presently a paucity of information on the effects of space radiation on cognitive flexibility in female rodents. This study has determined the impact that exposure to a low (10 cGy) dose of ions from the simplified 5-ion galactic cosmic ray simulation [https://www.bnl.gov/nsrl/userguide/SimGCRSim.php (07/2023)] (GCRSim) beam or 250 MeV/n 4He ions has on the ability of female Wistar rats to perform in constrained [attentional set shifting (ATSET)] and unconstrained cognitive flexibility (UCFlex) tasks. Female rats exposed to GCRSim exhibited multiple decrements in ATSET performance. Firstly, GCRSim exposure impaired performance in the compound discrimination (CD) stage of the ATSET task. While the ability of rats to identify the rewarded cue was not compromised, the time the rats required to do so significantly increased. Secondly, both 4He and GCRSim exposure reduced the ability of rats to reach criterion in the compound discrimination reversal (CDR) stage. Approximately 20% of the irradiated rats were unable to complete the CDR task; furthermore, the irradiated rats that did reach criterion took more attempts to do so than did the sham-treated animals. Radiation exposure also altered the magnitude and/or nature of practice effects. A comparison of performance metrics from the pre-screen and post-exposure ATSET task revealed that while the sham-treated rats completed the post-exposure CD stage of the ATSET task in 30% less time than for completion of the pre-screen ATSET task, the irradiated rats took 30-50% longer to do so. Similarly, while sham-treated rats completed the CDR stage in ∼10% fewer attempts in the post-exposure task compared to the pre-screen task, in contrast, the 4He- and GCRSim-exposed cohorts took more (∼2-fold) attempts to reach criterion in the post-exposure task than in the pre-screen task. In conclusion, this study demonstrates that female rats are susceptible to radiation-induced loss of performance in the constrained ATSET cognitive flexibility task. Moreover, exposure to radiation leads to multiple performance decrements, including loss of practice effects, an increase in anterograde interference and reduced ability or unwillingness to switch attention. Should similar effects occur in humans, astronauts may have a compromised ability to perform complex tasks.
Collapse
Affiliation(s)
- Richard A Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- EVMS Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Center for Integrative Neuroscience and Inflammatory diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Arriyam Fesshaye
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Alyssa Tidmore
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Aiyi Liu
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Ashley A Blackwell
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Center for Integrative Neuroscience and Inflammatory diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
10
|
Raber J, Stagaman K, Kasschau KD, Davenport C, Lopes L, Nguyen D, Torres ER, Sharpton TJ, Kisby G. Behavioral and Cognitive Performance Following Exposure to Second-Hand Smoke (SHS) from Tobacco Products Associated with Oxidative-Stress-Induced DNA Damage and Repair and Disruption of the Gut Microbiome. Genes (Basel) 2023; 14:1702. [PMID: 37761842 PMCID: PMC10531154 DOI: 10.3390/genes14091702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Exposure to second-hand Smoke (SHS) remains prevalent. The underlying mechanisms of how SHS affects the brain require elucidation. We tested the hypothesis that SHS inhalation drives changes in the gut microbiome, impacting behavioral and cognitive performance as well as neuropathology in two-month-old wild-type (WT) mice and mice expressing wild-type human tau, a genetic model pertinent to Alzheimer's disease mice, following chronic SHS exposure (10 months to ~30 mg/m3). SHS exposure impacted the composition of the gut microbiome as well as the biodiversity and evenness of the gut microbiome in a sex-dependent fashion. This variation in the composition and biodiversity of the gut microbiome is also associated with several measures of cognitive performance. These results support the hypothesis that the gut microbiome contributes to the effect of SHS exposure on cognition. The percentage of 8-OHdG-labeled cells in the CA1 region of the hippocampus was also associated with performance in the novel object recognition test, consistent with urine and serum levels of 8-OHdG serving as a biomarker of cognitive performance in humans. We also assessed the effects of SHS on the percentage of p21-labeled cells, an early cellular marker of senescence that is upregulated in bronchial cells after exposure to cigarette smoke. Nuclear staining of p21-labeled cells was more prominent in larger cells of the prefrontal cortex and CA1 hippocampal neurons of SHS-exposed mice than in sham-exposed mice, and there was a significantly greater percentage of labelled cells in the prefrontal cortex and CA1 region of the hippocampus of SHS than air-exposed mice, suggesting that exposure to SHS may result in accelerated brain aging through oxidative-stress-induced injury.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA;
- Departments of Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.D.K.); (T.J.S.)
| | - Kristin D. Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.D.K.); (T.J.S.)
| | - Conor Davenport
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| | - Leilani Lopes
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| | - Dennis Nguyen
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| | - Eileen Ruth Torres
- Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA;
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.D.K.); (T.J.S.)
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Glen Kisby
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| |
Collapse
|
11
|
Puukila S, Siu O, Rubinstein L, Tahimic CGT, Lowe M, Tabares Ruiz S, Korostenskij I, Semel M, Iyer J, Mhatre SD, Shirazi-Fard Y, Alwood JS, Paul AM, Ronca AE. Galactic Cosmic Irradiation Alters Acute and Delayed Species-Typical Behavior in Male and Female Mice. Life (Basel) 2023; 13:life13051214. [PMID: 37240858 DOI: 10.3390/life13051214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Exposure to space galactic cosmic radiation is a principal consideration for deep space missions. While the effects of space irradiation on the nervous system are not fully known, studies in animal models have shown that exposure to ionizing radiation can cause neuronal damage and lead to downstream cognitive and behavioral deficits. Cognitive health implications put humans and missions at risk, and with the upcoming Artemis missions in which female crew will play a major role, advance critical analysis of the neurological and performance responses of male and female rodents to space radiation is vital. Here, we tested the hypothesis that simulated Galactic Cosmic Radiation (GCRSim) exposure disrupts species-typical behavior in mice, including burrowing, rearing, grooming, and nest-building that depend upon hippocampal and medial prefrontal cortex circuitry. Behavior comprises a remarkably well-integrated representation of the biology of the whole animal that informs overall neural and physiological status, revealing functional impairment. We conducted a systematic dose-response analysis of mature (6-month-old) male and female mice exposed to either 5, 15, or 50 cGy 5-ion GCRSim (H, Si, He, O, Fe) at the NASA Space Radiation Laboratory (NSRL). Behavioral performance was evaluated at 72 h (acute) and 91-days (delayed) postradiation exposure. Specifically, species-typical behavior patterns comprising burrowing, rearing, and grooming as well as nest building were analyzed. A Neuroscore test battery (spontaneous activity, proprioception, vibrissae touch, limb symmetry, lateral turning, forelimb outstretching, and climbing) was performed at the acute timepoint to investigate early sensorimotor deficits postirradiation exposure. Nest construction, a measure of neurological and organizational function in rodents, was evaluated using a five-stage Likert scale 'Deacon' score that ranged from 1 (a low score where the Nestlet is untouched) to 5 (a high score where the Nestlet is completely shredded and shaped into a nest). Differential acute responses were observed in females relative to males with respect to species-typical behavior following 15 cGy exposure while delayed responses were observed in female grooming following 50 cGy exposure. Significant sex differences were observed at both timepoints in nest building. No deficits in sensorimotor behavior were observed via the Neuroscore. This study revealed subtle, sexually dimorphic GCRSim exposure effects on mouse behavior. Our analysis provides a clearer understanding of GCR dose effects on species typical, sensorimotor and organizational behaviors at acute and delayed timeframes postirradiation, thereby setting the stage for the identification of underlying cellular and molecular events.
Collapse
Affiliation(s)
- Stephanie Puukila
- Oak Ridge Associated Universities, Oak Ridge, TN 37831, USA
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Olivia Siu
- Space Life Sciences Training Program (SLSTP), NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Linda Rubinstein
- Universities Space Research Association, Columbia, MD 21046, USA
- The Joseph Sagol Neuroscience Center, Sheba Hospital, Ramat Gan 52621, Israel
| | - Candice G T Tahimic
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Moniece Lowe
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Steffy Tabares Ruiz
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Ivan Korostenskij
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Maya Semel
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Janani Iyer
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, Columbia, MD 21046, USA
- KBR, Houston, TX 77002, USA
| | - Siddhita D Mhatre
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- KBR, Houston, TX 77002, USA
| | - Yasaman Shirazi-Fard
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Joshua S Alwood
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Amber M Paul
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - April E Ronca
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Wake Forest Medical School, Winston-Salem, NC 27101, USA
| |
Collapse
|
12
|
Fernandes A, Oliveira A, Soares R, Barata P. The Effects of Ionizing Radiation on Gut Microbiota: What Can Animal Models Tell Us?-A Systematic Review. Curr Issues Mol Biol 2023; 45:3877-3910. [PMID: 37232718 DOI: 10.3390/cimb45050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The gut microbiota is relatively stable; however, various factors can precipitate an imbalance that is known to be associated with various diseases. We aimed to conduct a systematic literature review of studies reporting the effects of ionizing radiation on the composition, richness, and diversity of the gut microbiota of animals. METHODS A systematic literature search was performed in PubMed, EMBASE, and Cochrane library databases. The standard methodologies expected by Cochrane were utilized. RESULTS We identified 3531 non-duplicated records and selected twenty-nine studies after considering the defined inclusion criteria. The studies were found to be heterogeneous, with significant differences in the chosen populations, methodologies, and outcomes. Overall, we found evidence of an association between ionizing radiation exposure and dysbiosis, with a reduction of microbiota diversity and richness and alterations in the taxonomic composition. Although differences in taxonomic composition varied across studies, Proteobacteria, Verrucomicrobia, Alistipes, and Akkermancia most consistently reported to be relatively more abundant after ionizing radiation exposure, whereas Bacteroidetes, Firmicutes, and Lactobacillus were relatively reduced. CONCLUSIONS This review highlights the effect of ionizing exposure on gut microbiota diversity, richness, and composition. It paves the way for further studies on human subjects regarding gastrointestinal side effects in patients submitted to treatments with ionizing radiation and the development of potential preventive, therapeutic approaches.
Collapse
Affiliation(s)
- Ana Fernandes
- Department Nuclear Medicine, Centro Hospitalar e Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Ana Oliveira
- Department Nuclear Medicine, Centro Hospitalar e Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Raquel Soares
- i3S-Institute for Research and Innovation in Health, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Pedro Barata
- i3S-Institute for Research and Innovation in Health, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| |
Collapse
|
13
|
The Effects of Galactic Cosmic Rays on the Central Nervous System: From Negative to Unexpectedly Positive Effects That Astronauts May Encounter. BIOLOGY 2023; 12:biology12030400. [PMID: 36979092 PMCID: PMC10044754 DOI: 10.3390/biology12030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Galactic cosmic rays (GCR) pose a serious threat to astronauts’ health during deep space missions. The possible functional alterations of the central nervous system (CNS) under GCR exposure can be critical for mission success. Despite the obvious negative effects of ionizing radiation, a number of neutral or even positive effects of GCR irradiation on CNS functions were revealed in ground-based experiments with rodents and primates. This review is focused on the GCR exposure effects on emotional state and cognition, emphasizing positive effects and their potential mechanisms. We integrate these data with GCR effects on adult neurogenesis and pathological protein aggregation, forming a complete picture. We conclude that GCR exposure causes multidirectional effects on cognition, which may be associated with emotional state alterations. However, the irradiation in space-related doses either has no effect or has performance enhancing effects in solving high-level cognition tasks and tasks with a high level of motivation. We suppose the model of neurotransmission changes after irradiation, although the molecular mechanisms of this phenomenon are not fully understood.
Collapse
|
14
|
Huff JL, Poignant F, Rahmanian S, Khan N, Blakely EA, Britten RA, Chang P, Fornace AJ, Hada M, Kronenberg A, Norman RB, Patel ZS, Shay JW, Weil MM, Simonsen LC, Slaba TC. Galactic cosmic ray simulation at the NASA space radiation laboratory - Progress, challenges and recommendations on mixed-field effects. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:90-104. [PMID: 36682835 DOI: 10.1016/j.lssr.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
For missions beyond low Earth orbit to the moon or Mars, space explorers will encounter a complex radiation field composed of various ion species with a broad range of energies. Such missions pose significant radiation protection challenges that need to be solved in order to minimize exposures and associated health risks. An innovative galactic cosmic ray simulator (GCRsim) was recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The GCRsim technology is intended to represent major components of the space radiation environment in a ground analog laboratory setting where it can be used to improve understanding of biological risks and serve as a testbed for countermeasure development and validation. The current GCRsim consists of 33 energetic ion beams that collectively simulate the primary and secondary GCR field encountered by humans in space over the broad range of particle types, energies, and linear energy transfer (LET) of interest to health effects. A virtual workshop was held in December 2020 to assess the status of the NASA baseline GCRsim. Workshop attendees examined various aspects of simulator design, with a particular emphasis on beam selection strategies. Experimental results, modeling approaches, areas of consensus, and questions of concern were also discussed in detail. This report includes a summary of the GCRsim workshop and a description of the current status of the GCRsim. This information is important for future advancements and applications in space radiobiology.
Collapse
Affiliation(s)
- Janice L Huff
- NASA Langley Research Center, Hampton, VA, 23681, United States of America.
| | - Floriane Poignant
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Shirin Rahmanian
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Nafisah Khan
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Eleanor A Blakely
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Richard A Britten
- Department of Radiation Oncology, Department of Microbiology and Molecular Cell Biology, Leroy T Canoles Jr. Cancer Center, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, United States of America
| | - Polly Chang
- SRI International, Menlo Park, CA, 94025, United States of America
| | - Albert J Fornace
- Georgetown University, Washington, DC, 20057, United States of America
| | - Megumi Hada
- Prairie View A&M University, Prairie View, TX, 77446, United States of America
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Ryan B Norman
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| | - Zarana S Patel
- KBR Inc., Houston, TX, 77058, United States of America; NASA Johnson Space Center, Houston, TX, 77058, United States of America
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Michael M Weil
- Colorado State University, Fort Collins, CO, 80523, United States of America
| | - Lisa C Simonsen
- NASA Headquarters, Washington, DC, 20546, United States of America
| | - Tony C Slaba
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| |
Collapse
|
15
|
Combined space stressors induce independent behavioral deficits predicted by early peripheral blood monocytes. Sci Rep 2023; 13:1749. [PMID: 36720960 PMCID: PMC9889764 DOI: 10.1038/s41598-023-28508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023] Open
Abstract
Interplanetary space travel poses many hazards to the human body. To protect astronaut health and performance on critical missions, there is first a need to understand the effects of deep space hazards, including ionizing radiation, confinement, and altered gravity. Previous studies of rodents exposed to a single such stressor document significant deficits, but our study is the first to investigate possible cumulative and synergistic impacts of simultaneous ionizing radiation, confinement, and altered gravity on behavior and cognition. Our cohort was divided between 6-month-old female and male mice in group, social isolation, or hindlimb unloading housing, exposed to 0 or 50 cGy of 5 ion simplified simulated galactic cosmic radiation (GCRsim). We report interactions and independent effects of GCRsim exposure and housing conditions on behavioral and cognitive performance. Exposure to GCRsim drove changes in immune cell populations in peripheral blood collected early after irradiation, while housing conditions drove changes in blood collected at a later point. Female mice were largely resilient to deficits observed in male mice. Finally, we used principal component analysis to represent total deficits as principal component scores, which were predicted by general linear models using GCR exposure, housing condition, and early blood biomarkers.
Collapse
|
16
|
Alaghband Y, Klein PM, Kramár EA, Cranston MN, Perry BC, Shelerud LM, Kane AE, Doan NL, Ru N, Acharya MM, Wood MA, Sinclair DA, Dickstein DL, Soltesz I, Limoli CL, Baulch JE. Galactic cosmic radiation exposure causes multifaceted neurocognitive impairments. Cell Mol Life Sci 2023; 80:29. [PMID: 36607431 PMCID: PMC9823026 DOI: 10.1007/s00018-022-04666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/01/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023]
Abstract
Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.
Collapse
Affiliation(s)
- Yasaman Alaghband
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
| | - Eniko A Kramár
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, 92697-2695, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, 92697-2695, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 92697-2695, USA
| | - Michael N Cranston
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Bayley C Perry
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Lukas M Shelerud
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Alice E Kane
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Ning Ru
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Munjal M Acharya
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, 92697-2695, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, 92697-2695, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 0211, USA
| | - Dara L Dickstein
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, 20817, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Charles L Limoli
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA
| | - Janet E Baulch
- Department of Radiation Oncology, Medical Sciences I, University of California Irvine, Room B-146D, Irvine, CA, 92697-2695, USA.
| |
Collapse
|
17
|
Simmons P, Trujillo M, McElroy T, Binz R, Pathak R, Allen AR. Evaluating the effects of low-dose simulated galactic cosmic rays on murine hippocampal-dependent cognitive performance. Front Neurosci 2022; 16:908632. [PMID: 36561122 PMCID: PMC9765097 DOI: 10.3389/fnins.2022.908632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
Space exploration has advanced substantially over recent decades and plans to increase the duration of deep space missions are in preparation. One of the primary health concerns is potential damage to the central nervous system (CNS), resulting in loss of cognitive abilities and function. The majority of ground-based research on space radiation-induced health risks has been conducted using single particle simulations, which do not effectively model real-world scenarios. Thus, to improve the safety of space missions, we must expand our understanding of the effects of simulated galactic cosmic rays (GCRs) on the CNS. To assess the effects of low-dose GCR, we subjected 6-month-old male BALB/c mice to 50 cGy 5-beam simplified GCR spectrum (1H, 28Si, 4He, 16O, and 56Fe) whole-body irradiation at the NASA Space Radiation Laboratory. Animals were tested for cognitive performance with Y-maze and Morris water maze tests 3 months after irradiation. Irradiated animals had impaired short-term memory and lacked spatial memory retention on day 5 of the probe trial. Glial cell analysis by flow cytometry showed no significant changes in oligodendrocytes, astrocytes, microglia or neural precursor cells (NPC's) between the sham group and GCR group. Bone marrow cytogenetic data showed a significant increase in the frequency of chromosomal aberrations after GCR exposure. Finally, tandem mass tag proteomics identified 3,639 proteins, 113 of which were differentially expressed when comparing sham versus GCR exposure (fold change > 1.5; p < 0.05). Our data suggest exposure to low-dose GCR induces cognitive deficits by impairing short-term memory and spatial memory retention.
Collapse
Affiliation(s)
- Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Taylor McElroy
- Department of Aging, University of Florida, Gainesville, FL, United States
| | - Regina Binz
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rupak Pathak
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States,*Correspondence: Antiño R. Allen,
| |
Collapse
|
18
|
Peter JS, Schuemann J, Held KD, McNamara AL. Nano-scale simulation of neuronal damage by galactic cosmic rays. Phys Med Biol 2022; 67:10.1088/1361-6560/ac95f4. [PMID: 36172820 PMCID: PMC9951267 DOI: 10.1088/1361-6560/ac95f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
The effects of realistic, deep space radiation environments on neuronal function remain largely unexplored.In silicomodeling studies of radiation-induced neuronal damage provide important quantitative information about physico-chemical processes that are not directly accessible through radiobiological experiments. Here, we present the first nano-scale computational analysis of broad-spectrum galactic cosmic ray irradiation in a realistic neuron geometry. We constructed thousands ofin silicorealizations of a CA1 pyramidal neuron, each with over 3500 stochastically generated dendritic spines. We simulated the entire 33 ion-energy beam spectrum currently in use at the NASA Space Radiation Laboratory galactic cosmic ray simulator (GCRSim) using the TOol for PArticle Simulation (TOPAS) and TOPAS-nBio Monte Carlo-based track structure simulation toolkits. We then assessed the resulting nano-scale dosimetry, physics processes, and fluence patterns. Additional comparisons were made to a simplified 6 ion-energy spectrum (SimGCRSim) also used in NASA experiments. For a neuronal absorbed dose of 0.5 Gy GCRSim, we report an average of 250 ± 10 ionizations per micrometer of dendritic length, and an additional 50 ± 10, 7 ± 2, and 4 ± 2 ionizations per mushroom, thin, and stubby spine, respectively. We show that neuronal energy deposition by proton andα-particle tracks declines approximately hyperbolically with increasing primary particle energy at mission-relevant energies. We demonstrate an inverted exponential relationship between dendritic segment irradiation probability and neuronal absorbed dose for each ion-energy beam. We also find that there are no significant differences in the average physical responses between the GCRSim and SimGCRSim spectra. To our knowledge, this is the first nano-scale simulation study of a realistic neuron geometry using the GCRSim and SimGCRSim spectra. These results may be used as inputs to theoretical models, aid in the interpretation of experimental results, and help guide future study designs.
Collapse
Affiliation(s)
- Jonah S Peter
- Biophysics Program, Harvard University, Boston, MA 02115, United States of America
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
19
|
Kokhan VS, Ustyugov AA, Pikalov VA. Dynamics of Dopamine and Other Monoamines Content in Rat Brain after Single Low-Dose Carbon Nuclei Irradiation. Life (Basel) 2022; 12:life12091306. [PMID: 36143343 PMCID: PMC9502711 DOI: 10.3390/life12091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Space radiation, presented primarily by high-charge and -energy particles (HZEs), has a substantial impact on the central nervous system (CNS) of astronauts. This impact, surprisingly, has not only negative but also positive effects on CNS functions. Despite the fact that the mechanisms of this effect have not yet been elucidated, several studies indicate a key role for monoaminergic networks underlying these effects. Here, we investigated the effects of acute irradiation with 450 MeV/n carbon (12C) nuclei at a dose of 0.14 Gy on Wistar rats; a state of anxiety was accessed using a light–dark box, spatial memory in a Morris water maze, and the dynamics of monoamine metabolism in several brain morphological structures using HPLC. No behavioral changes were observed. Irradiation led to the immediate suppression of dopamine turnover in the prefrontal cortex, hypothalamus, and striatum, while a decrease in the level of norepinephrine was detected in the amygdala. However, these effects were transient. The deferred effect of dopamine turnover increase was found in the hippocampus. These data underscore the ability of even low-dose 12C irradiation to affect monoaminergic networks. However, this impact is transient and is not accompanied by behavioral alterations.
Collapse
Affiliation(s)
- Viktor S. Kokhan
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology, 119034 Moscow, Russia
- Correspondence: ; Tel.: +7-92-5462-9948
| | - Alexey A. Ustyugov
- Institute of Physiologically Active Compounds RAS, 142432 Chernogolovka, Russia
| | - Vladimir A. Pikalov
- Institute for High Energy Physics Named by A.A. Logunov of National Research Centre “Kurchatov Institute”, 142281 Protvino, Russia
| |
Collapse
|
20
|
Britten RA, Fesshaye A, Tidmore A, Blackwell AA. Similar Loss of Executive Function Performance after Exposure to Low (10 cGy) Doses of Single (4He) Ions and the Multi-Ion GCRSim Beam. Radiat Res 2022; 198:375-383. [DOI: 10.1667/rade-22-00022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
|
21
|
Ton ST, Laghi JR, Tsai SY, Blackwell AA, Adamczyk NS, Oltmanns JRO, Britten RA, Wallace DG, Kartje GL. Exposure to 5 cGy 28Si Particles Induces Long-Term Microglial Activation in the Striatum and Subventricular Zone and Concomitant Neurogenic Suppression. Radiat Res 2022; 198:28-39. [DOI: 10.1667/rade-21-00021.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
The proposed mission to Mars will expose astronauts to space radiation that is known to adversely affect cognition and tasks that rely on fine sensorimotor function. Space radiation has also been shown to affect the microglial and neurogenic responses in the center nervous system (CNS). We recently reported that a low dose of 5 cGy 600 MeV/n 28Si results in impaired cognition and skilled motor behavior in adult rats. Since these tasks rely at least in part on the proper functioning of the striatum, we examined striatal microglial cells in these same subjects. Using morphometric analysis, we found that 28Si exposure increased activated microglial cells in the striatum. The majority of these striatal Iba1+ microglia were ED1–, indicating that they were in an alternatively activated state, where microglia do not have phagocytic activity but may be releasing cytokines that could negatively impact neuronal function. In the other areas studied, Iba1+ microglial cells were increased in the subventricular zone (SVZ), but not in the dentate gyrus (DG). Additionally, we examined the relationship between the microglial response and neurogenesis. An analysis of new neurons in the DG revealed an increase in doublecortin-positive (DCX+) hilar ectopic granule cells (hEGC) which correlated with Iba1+ cells, suggesting that microglial cells contributed to this aberrant distribution which may adversely affect hippocampal function. Taken together, these results indicate that a single dose of 28Si radiation results in persistent cellular effects in the CNS that may impact astronauts both in the short and long-term following deep space missions.
Collapse
Affiliation(s)
- Son T. Ton
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Julia R. Laghi
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Shih-Yen Tsai
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | | | | | | | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Douglas G. Wallace
- Department of Psychology, Northern Illinois University, DeKalb, Illinois
| | - Gwendolyn L. Kartje
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, Illinois
| |
Collapse
|
22
|
Kiffer FC, Luitel K, Tran FH, Patel RA, Guzman CS, Soler I, Xiao R, Shay JW, Yun S, Eisch AJ. Effects of a 33-ion sequential beam galactic cosmic ray analog on male mouse behavior and evaluation of CDDO-EA as a radiation countermeasure. Behav Brain Res 2022; 419:113677. [PMID: 34818568 PMCID: PMC9755463 DOI: 10.1016/j.bbr.2021.113677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
In long-term spaceflight, astronauts will face unique cognitive loads and social challenges which will be complicated by communication delays with Earth. It is important to understand the central nervous system (CNS) effects of deep spaceflight and the associated unavoidable exposure to galactic cosmic radiation (GCR). Rodent studies show single- or simple-particle combination exposure alters CNS endpoints, including hippocampal-dependent behavior. An even better Earth-based simulation of GCR is now available, consisting of a 33-beam (33-GCR) exposure. However, the effect of whole-body 33-GCR exposure on rodent behavior is unknown, and no 33-GCR CNS countermeasures have been tested. Here astronaut-age-equivalent (6mo-old) C57BL/6J male mice were exposed to 33-GCR (75cGy, a Mars mission dose). Pre-/during/post-Sham or 33-GCR exposure, mice received a diet containing a 'vehicle' formulation alone or with the antioxidant/anti-inflammatory compound CDDO-EA as a potential countermeasure. Behavioral testing beginning 4mo post-irradiation suggested radiation and diet did not affect measures of exploration/anxiety-like behaviors (open field, elevated plus maze) or recognition of a novel object. However, in 3-Chamber Social Interaction (3-CSI), CDDO-EA/33-GCR mice failed to spend more time exploring a holder containing a novel mouse vs. a novel object (empty holder), suggesting sociability deficits. Also, Vehicle/33-GCR and CDDO-EA/Sham mice failed to discriminate between a novel stranger vs. familiarized stranger mouse, suggesting blunted preference for social novelty. CDDO-EA given pre-/during/post-irradiation did not attenuate the 33-GCR-induced blunting of preference for social novelty. Future elucidation of the mechanisms underlying 33-GCR-induced blunting of preference for social novelty will improve risk analysis for astronauts which may in-turn improve countermeasures.
Collapse
Affiliation(s)
- Frederico C Kiffer
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104
| | - Krishna Luitel
- Department of Cell Biology, University of Texas Southwestern (UTSW) Medical Center, Dallas, TX, USA, 75390
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104
| | - Riya A Patel
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104
| | - Catalina S Guzman
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104
| | - Rui Xiao
- Department of Pediatrics Division of Biostatistics, CHOP Research Institute, Philadelphia, PA, USA, 19104,Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern (UTSW) Medical Center, Dallas, TX, USA, 75390
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104,Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA, 19104
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Boutros SW, Zimmerman B, Nagy SC, Lee JS, Perez R, Raber J. Amifostine (WR-2721) Mitigates Cognitive Injury Induced by Heavy Ion Radiation in Male Mice and Alters Behavior and Brain Connectivity. Front Physiol 2021; 12:770502. [PMID: 34867479 PMCID: PMC8637850 DOI: 10.3389/fphys.2021.770502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
The deep space environment contains many risks to astronauts during space missions, such as galactic cosmic rays (GCRs) comprised of naturally occurring heavy ions. Heavy ion radiation is increasingly being used in cancer therapy, including novel regimens involving carbon therapy. Previous investigations involving simulated space radiation have indicated a host of detrimental cognitive and behavioral effects. Therefore, there is an increasing need to counteract these deleterious effects of heavy ion radiation. Here, we assessed the ability of amifostine to mitigate cognitive injury induced by simulated GCRs in C57Bl/6J male and female mice. Six-month-old mice received an intraperitoneal injection of saline, 107 mg/kg, or 214 mg/kg of amifostine 1 h prior to exposure to a simplified five-ion radiation (protons, 28Si, 4He, 16O, and 56Fe) at 500 mGy or sham radiation. Mice were behaviorally tested 2-3 months later. Male mice that received saline and radiation exposure failed to show novel object recognition, which was reversed by both doses of amifostine. Conversely, female mice that received saline and radiation exposure displayed intact object recognition, but those that received amifostine prior to radiation did not. Amifostine and radiation also had distinct effects on males and females in the open field, with amifostine affecting distance moved over time in both sexes, and radiation affecting time spent in the center in females only. Whole-brain analysis of cFos immunoreactivity in male mice indicated that amifostine and radiation altered regional connectivity in areas involved in novel object recognition. These data support that amifostine has potential as a countermeasure against cognitive injury following proton and heavy ion irradiation in males.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sydney C. Nagy
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Joanne S. Lee
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology and Radiation Medicine, Oregon Health & Science University, Portland, OR, United States
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, United States
| |
Collapse
|
24
|
Raber J, Holden S, Sudhakar R, Hall R, Glaeser B, Lenarczyk M, Rockwell K, Nawarawong N, Sterrett J, Perez R, Leonard SW, Morré J, Choi J, Kronenberg A, Borg A, Kwok A, Stevens JF, Olsen CM, Willey JS, Bobe G, Baker J. Effects of 5-Ion Beam Irradiation and Hindlimb Unloading on Metabolic Pathways in Plasma and Brain of Behaviorally Tested WAG/Rij Rats. Front Physiol 2021; 12:746509. [PMID: 34646164 PMCID: PMC8503608 DOI: 10.3389/fphys.2021.746509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 01/13/2023] Open
Abstract
A limitation of simulated space radiation studies is that radiation exposure is not the only environmental challenge astronauts face during missions. Therefore, we characterized behavioral and cognitive performance of male WAG/Rij rats 3 months after sham-irradiation or total body irradiation with a simplified 5-ion mixed beam exposure in the absence or presence of simulated weightlessness using hindlimb unloading (HU) alone. Six months following behavioral and cognitive testing or 9 months following sham-irradiation or total body irradiation, plasma and brain tissues (hippocampus and cortex) were processed to determine whether the behavioral and cognitive effects were associated with long-term alterations in metabolic pathways in plasma and brain. Sham HU, but not irradiated HU, rats were impaired in spatial habituation learning. Rats irradiated with 1.5 Gy showed increased depressive-like behaviors. This was seen in the absence but not presence of HU. Thus, HU has differential effects in sham-irradiated and irradiated animals and specific behavioral measures are associated with plasma levels of distinct metabolites 6 months later. The combined effects of HU and radiation on metabolic pathways in plasma and brain illustrate the complex interaction of environmental stressors and highlights the importance of assessing these interactions.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Department of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, United States.,College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Reetesh Sudhakar
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Reed Hall
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Breanna Glaeser
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marek Lenarczyk
- Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kristen Rockwell
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Natalie Nawarawong
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer Sterrett
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Scott William Leonard
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey Morré
- Mass Spectrometry Core, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alexander Borg
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, United States.,Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Christopher M Olsen
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Animal Sciences, Oregon State University, Corvallis, OR, United States
| | - John Baker
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
25
|
Rienecker KDA, Paladini MS, Grue K, Krukowski K, Rosi S. Microglia: Ally and Enemy in Deep Space. Neurosci Biobehav Rev 2021; 126:509-514. [PMID: 33862064 DOI: 10.1016/j.neubiorev.2021.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022]
Abstract
In 2024 the first female astronaut will land on the moon, advancing our preparations for human missions to Mars. While on Earth we are protected from space radiation by our planet's magnetic field, on such deep space voyages astronauts will be exposed to high energy particles from solar flares and galactic cosmic rays (GCR). This exposure carries risks to the central nervous system (CNS) that could jeopardize the mission and astronaut health. Earth-bound studies have employed a variety of single-beam and sequential radiation exposures to simulate the effects of GCR exposure in rodents. Multiple studies have shown that GCR simulation induces a maladaptive activation of microglia - the brain-resident immune cells. GCR simulation also induced synaptic changes resulting in lasting cognitive and behavioral defects. Female and male mice show different susceptibilities to GCR exposure, and evidence suggests this sexually dimorphic response is linked to microglia. Manipulating microglia can prevent the development of cognitive deficits in male mice exposed to components of GCR. This discovery may provide clues towards how to protect astronauts' cognitive and behavioral health both during deep space missions and upon return to Earth.
Collapse
Affiliation(s)
- Kira D A Rienecker
- Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA, USA
| | - Maria Serena Paladini
- Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA, USA
| | - Katherine Grue
- Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA, USA
| | - Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA, USA; Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA; Weill Institute for Neuroscience, University of California at San Francisco, San Francisco, CA, USA; Kavli Institute of Fundamental Neuroscience, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Kundu P, Torres ERS, Stagaman K, Kasschau K, Okhovat M, Holden S, Ward S, Nevonen KA, Davis BA, Saito T, Saido TC, Carbone L, Sharpton TJ, Raber J. Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in App NL-G-F, App NL-F, and wild type mice. Sci Rep 2021; 11:4678. [PMID: 33633159 PMCID: PMC7907263 DOI: 10.1038/s41598-021-83851-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetic mechanisms occurring in the brain as well as alterations in the gut microbiome composition might contribute to Alzheimer’s disease (AD). Human amyloid precursor protein knock-in (KI) mice contain the Swedish and Iberian mutations (AppNL-F) or those two and also the Arctic mutation (AppNL-G-F). In this study, we assessed whether behavioral and cognitive performance in 6-month-old AppNL-F, AppNL-G-F, and C57BL/6J wild-type (WT) mice was associated with the gut microbiome, and whether the genotype modulates this association. The genotype effects observed in behavioral tests were test-dependent. The biodiversity and composition of the gut microbiome linked to various aspects of mouse behavioral and cognitive performance but differences in genotype modulated these relationships. These genotype-dependent associations include members of the Lachnospiraceae and Ruminococcaceae families. In a subset of female mice, we assessed DNA methylation in the hippocampus and investigated whether alterations in hippocampal DNA methylation were associated with the gut microbiome. Among other differentially methylated regions, we identified a 1 Kb region that overlapped ing 3′UTR of the Tomm40 gene and the promoter region of the Apoe gene that and was significantly more methylated in the hippocampus of AppNL-G-F than WT mice. The integrated gut microbiome hippocampal DNA methylation analysis revealed a positive relationship between amplicon sequence variants (ASVs) within the Lachnospiraceae family and methylation at the Apoe gene. Hence, these microbes may elicit an impact on AD-relevant behavioral and cognitive performance via epigenetic changes in AD-susceptibility genes in neural tissue or that such changes in the epigenome can elicit alterations in intestinal physiology that affect the growth of these taxa in the gut microbiome.
Collapse
Affiliation(s)
- Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Kristin Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Samantha Ward
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Brett A Davis
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA.,Departments of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA.,Departments of Medical Informatics and Clinical Epidemiology, Portland, OR, 97239, USA.,Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA.,Department of Statistics, Oregon State University, Corvallis, OR, 97331, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA. .,Departments of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, 97239, USA. .,College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA. .,Department of Behavioral Neuroscience, L470, Oregon Health & Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|