1
|
Youssry I, Mostafa AS, Hamed DH, Hafez YFA, Bishai IE, Selim YMM. Role of endothelial dysfunction in sleep-disordered breathing in egyptian children with sickle cell disease. BMC Pediatr 2024; 24:626. [PMID: 39354381 PMCID: PMC11443814 DOI: 10.1186/s12887-024-05066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Endothelial dysfunction is an integral pathophysiologic mechanism in sickle cell disease (SCD), and can lead to many complications. Sleep-disordered breathing (SDB) is a SCD complication with diverse incidence and pathophysiology. This study aimed to determine the prevalence of SDB in children with SCD and to assess its relation to endothelial dysfunction. METHODS Sixty children with SCD and 60 healthy controls were enrolled. The levels of TNF-α, IL-6, and IL-17A were evaluated in the entire cohort using enzyme-linked immunosorbent assay (ELISA) kits. Polysomnography (PSG) was performed for all SCD patients after completion of the Pediatric Sleep Questionnaire (PSQ). RESULTS TNF-α, IL-6, and IL-17A levels were significantly greater in children with SCD than in controls (p-values < 0.001, < 0.001, and 0.006, respectively). The PSQ revealed symptoms suggestive of SDB in 50 children with SCD (83.3%), and PSG revealed obstructive sleep apnea (OSA) in 44 children with SCD (73.3%); 22 patients had mild OSA, and 22 had moderate-to-severe OSA according to the apnea-hypopnea index (AHI). TNF-α was significantly greater in SCD children who reported heavy or loud breathing, trouble breathing or struggle to breathe, and difficulty waking up in the morning (p-values = 0.002, 0.002, and 0.031, respectively). The IL-6 levels were significantly greater in SCD children who stopped growing normally (p-value = 0.002). The levels of IL-6 and IL-17A were significantly greater in SCD children with morning headaches (p-values = 0.007 and 0.004, respectively). CONCLUSION Children with SCD showed a high prevalence of SDB with significantly elevated levels of markers of endothelial function, highlighting the interplay of SDB and endothelial dysfunction in SCD.
Collapse
Affiliation(s)
- Ilham Youssry
- Department of Pediatric Hematology, Faculty ofMedicine, Cairo University, Giza, Egypt
| | - Abla S Mostafa
- Department of Pediatric Pulmonology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Dina H Hamed
- Department of Pediatric Pulmonology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | - Irene E Bishai
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Yasmeen M M Selim
- Department of Pediatric Hematology, Faculty ofMedicine, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Wang X, He B. Insight into endothelial cell-derived extracellular vesicles in cardiovascular disease: Molecular mechanisms and clinical implications. Pharmacol Res 2024; 207:107309. [PMID: 39009292 DOI: 10.1016/j.phrs.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The endothelium is crucial in regulating vascular function. Extracellular vesicles (EVs) serve as membranous structures released by cells to facilitate intercellular communication through the delivery of nucleic acids, lipids, and proteins to recipient cells in an paracrine or endocrine manner. Endothelial cell-derived EVs (EndoEVs) have been identified as both biomarkers and significant contributors to the occurrence and progression of cardiovascular disease (CVD). The impact of EndoEVs on CVD is complex and contingent upon the condition of donor cells, the molecular cargo within EVs, and the characteristics of recipient cells. Consequently, elucidating the underlying molecular mechanisms of EndoEVs is crucial for comprehending their contributions to CVD. Moreover, a thorough understanding of the composition and function of EndoEVs is imperative for their potential clinical utility. This review aims provide an up-to-date overview of EndoEVs in the context of physiology and pathophysiology, as well as to discuss their prospective clinical applications.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China.
| |
Collapse
|
3
|
AbdelMassih A, Haroun M, AbdelAziz Afifi RA, Hussein G, AbdelHameed M, Asaad MG, Tarabeh H, El Din Taha NE, Diab N, Shebl N, Fouda R, Yassa ME, Ghobashy M, Agha H. Endothelial Dysfunction Linked to Ventricular Dysfunction in Children With Sickle Cell Disease, a 3D Speckle Tracking Study. J Saudi Heart Assoc 2024; 36:27-33. [PMID: 38873326 PMCID: PMC11172668 DOI: 10.37616/2212-5043.1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 06/15/2024] Open
Abstract
Background Sickle Cell Disease (SCD) is not a hematologic disease that occurs in isolation; it results in multi-organ complications. There is growing evidence of vascular stiffness as its underlying cause. This study aimed to investigate the relationship between endothelial stiffness and LV dysfunction in SCD patients and to explore its pathophysiology, particularly regarding the depletion of vasodilators such as Nitric Oxide (NO). Methodology 32 patients with established criteria for SCD and 40 healthy control subjects were selected for this case-control study. Comprehensive clinical assessment and assessment of endothelial function using Brachial Flow-mediated dilation (FMD) were performed, along with serum NO measurement, which was followed by diagnosis and echocardiographic assessment using 3D speckle tracking echocardiography (STE) and tissue Doppler imaging (TDI). Results Collected SCD cases showed echocardiographic features of Systo-diastolic dysfunction with reduced FMD compared to controls, denoting endothelial dysfunction in those patients. LDH showed a marked elevation, while serum NO showed a significant reduction in cases compared with controls. We also noted a positive correlation between FMD on the one hand and measures of ventricular dysfunction and level of serum NO on the other hand, the latter proving that reduction of NO is responsible for reduced endothelial function. Conclusion We present the first report to date to outline the role of vascular stiffness as measured by brachial FMD in the induction of left ventricular dysfunction in SCD. We recommend that more research be conducted regarding possible strategies to replenish serum NO stores to delay microvascular injury and, in turn, ventricular dysfunction in SCD.
Collapse
Affiliation(s)
- Antoine AbdelMassih
- Pediatric Cardiology Unit, Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Mervat Haroun
- Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | | | - Gehan Hussein
- Pediatric Cardiology Unit, Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Manal AbdelHameed
- Pediatric Cardiology Unit, Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Marina G. Asaad
- Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Heba Tarabeh
- Pediatric Cardiology Unit, Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Nourhan E. El Din Taha
- Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Nourine Diab
- Residency Program, Faculty of Medicine, New Giza University, New Giza,
Egypt
| | - Noura Shebl
- Residency Program, Faculty of Medicine, New Giza University, New Giza,
Egypt
| | - Raghda Fouda
- Department of Hematology, Faculty of Medicine, Cairo University, Cairo,
Egypt
| | - Marianne E. Yassa
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo,
Egypt
| | - Mohamed Ghobashy
- Radiology Department, Faculty of Medicine, Cairo University, Cairo,
Egypt
| | - Hala Agha
- Pediatric Cardiology Unit, Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| |
Collapse
|
4
|
Sangha GS, Weber CM, Sapp RM, Setua S, Thangaraju K, Pettebone M, Rogers SC, Doctor A, Buehler PW, Clyne AM. Mechanical stimuli such as shear stress and piezo1 stimulation generate red blood cell extracellular vesicles. Front Physiol 2023; 14:1246910. [PMID: 37719461 PMCID: PMC10502313 DOI: 10.3389/fphys.2023.1246910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Generating physiologically relevant red blood cell extracellular vesicles (RBC-EVs) for mechanistic studies is challenging. Herein, we investigated how to generate and isolate high concentrations of RBC-EVs in vitro via shear stress and mechanosensitive piezo1 ion channel stimulation. Methods: RBC-EVs were generated by applying shear stress or the piezo1-agonist yoda1 to RBCs. We then investigated how piezo1 RBC-EV generation parameters (hematocrit, treatment time, treatment dose), isolation methods (membrane-based affinity, ultrafiltration, ultracentrifugation with and without size exclusion chromatography), and storage conditions impacted RBC-EV yield and purity. Lastly, we used pressure myography to determine how RBC-EVs isolated using different methods affected mouse carotid artery vasodilation. Results: Our results showed that treating RBCs at 6% hematocrit with 10 µM yoda1 for 30 min and isolating RBC-EVs via ultracentrifugation minimized hemolysis, maximized yield and purity, and produced the most consistent RBC-EV preparations. Co-isolated contaminants in impure samples, but not piezo1 RBC-EVs, induced mouse carotid artery vasodilation. Conclusion: This work shows that RBC-EVs can be generated through piezo1 stimulation and may be generated in vivo under physiologic flow conditions. Our studies further emphasize the importance of characterizing EV generation and isolation parameters before using EVs for mechanistic analysis since RBC-EV purity can impact functional outcomes.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Ryan M Sapp
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Saini Setua
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kiruphagaran Thangaraju
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Morgan Pettebone
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Stephen C Rogers
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul W Buehler
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
5
|
Lamarre Y, Nader E, Connes P, Romana M, Garnier Y. Extracellular Vesicles in Sickle Cell Disease: A Promising Tool. Bioengineering (Basel) 2022; 9:bioengineering9090439. [PMID: 36134985 PMCID: PMC9495982 DOI: 10.3390/bioengineering9090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
Sickle cell disease (SCD) is the most common hemoglobinopathy worldwide. It is characterized by an impairment of shear stress-mediated vasodilation, a pro-coagulant, and a pro-adhesive state orchestrated among others by the depletion of the vasodilator nitric oxide, by the increased phosphatidylserine exposure and tissue factor expression, and by the increased interactions of erythrocytes with endothelial cells that mediate the overexpression of adhesion molecules such as VCAM-1, respectively. Extracellular vesicles (EVs) have been shown to be novel actors involved in SCD pathophysiological processes. Medium-sized EVs, also called microparticles, which exhibit increased plasma levels in this pathology, were shown to induce the activation of endothelial cells, thereby increasing neutrophil adhesion, a key process potentially leading to the main complication associated with SCD, vaso-occlusive crises (VOCs). Small-sized EVs, also named exosomes, which have also been reported to be overrepresented in SCD, were shown to potentiate interactions between erythrocytes and platelets, and to trigger endothelial monolayer disruption, two processes also known to favor the occurrence of VOCs. In this review we provide an overview of the current knowledge about EVs concentration and role in SCD.
Collapse
Affiliation(s)
- Yann Lamarre
- Université Paris Cité and Université des Antilles, Inserm, BIGR, F-75015 Paris, France
| | - Elie Nader
- Laboratoire Inter-Universitaire de Biologie de la Motricité EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Lyon, France
| | - Philippe Connes
- Laboratoire Inter-Universitaire de Biologie de la Motricité EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Lyon, France
| | - Marc Romana
- Université Paris Cité and Université des Antilles, Inserm, BIGR, F-75015 Paris, France
| | - Yohann Garnier
- Université Paris Cité and Université des Antilles, Inserm, BIGR, F-75015 Paris, France
- Correspondence: ; Tel.: +590-590-891530
| |
Collapse
|
6
|
Al-Koussa H, AlZaim I, El-Sabban ME. Pathophysiology of Coagulation and Emerging Roles for Extracellular Vesicles in Coagulation Cascades and Disorders. J Clin Med 2022; 11:jcm11164932. [PMID: 36013171 PMCID: PMC9410115 DOI: 10.3390/jcm11164932] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The notion of blood coagulation dates back to the ancient Greek civilization. However, the emergence of innovative scientific discoveries that started in the seventeenth century formulated the fundamentals of blood coagulation. Our understanding of key coagulation processes continues to evolve, as novel homeostatic and pathophysiological aspects of hemostasis are revealed. Hemostasis is a dynamic physiological process, which stops bleeding at the site of injury while maintaining normal blood flow within the body. Intrinsic and extrinsic coagulation pathways culminate in the homeostatic cessation of blood loss, through the sequential activation of the coagulation factors. Recently, the cell-based theory, which combines these two pathways, along with newly discovered mechanisms, emerged to holistically describe intricate in vivo coagulation mechanisms. The complexity of these mechanisms becomes evident in coagulation diseases such as hemophilia, Von Willebrand disease, thrombophilia, and vitamin K deficiency, in which excessive bleeding, thrombosis, or unnecessary clotting, drive the development and progression of diseases. Accumulating evidence implicates cell-derived and platelet-derived extracellular vesicles (EVs), which comprise microvesicles (MVs), exosomes, and apoptotic bodies, in the modulation of the coagulation cascade in hemostasis and thrombosis. As these EVs are associated with intercellular communication, molecular recycling, and metastatic niche creation, emerging evidence explores EVs as valuable diagnostic and therapeutic approaches in thrombotic and prothrombotic diseases.
Collapse
Affiliation(s)
- Houssam Al-Koussa
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Marwan E. El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Correspondence: ; Tel.: +961-01-350-000 (ext. 4765)
| |
Collapse
|
7
|
Mishra LC, Pandey U, Gupta A, Gupta J, Sharma M, Mishra G. Alternating exosomes and their mimetics as an emergent strategy for targeted cancer therapy. Front Mol Biosci 2022; 9:939050. [PMID: 36032679 PMCID: PMC9399404 DOI: 10.3389/fmolb.2022.939050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Exosomes, a subtype of the class of extracellular vesicles and nano-sized particles, have a specific membrane structure that makes them an alternative proposition to combat with cancer through slight modification. As constituents of all most all the primary body fluids, exosomes establish the status of intercellular communication. Exosomes have specific proteins/mRNAs and miRNAs which serve as biomarkers, imparting a prognostic tool in clinical and disease pathologies. They have efficient intrinsic targeting potential and efficacy. Engineered exosomes are employed to deliver therapeutic cargos to the targeted tumor cell or the recipient. Exosomes from cancer cells bring about changes in fibroblast via TGFβ/Smad pathway, augmenting the tumor growth. These extracellular vesicles are multidimensional in terms of the functions that they perform. We herein discuss the uptake and biogenesis of exosomes, their role in various facets of cancer studies, cell-to-cell communication and modification for therapeutic and diagnostic use.
Collapse
Affiliation(s)
| | - Utkarsh Pandey
- Department of Zoology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Abhikarsh Gupta
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Jyotsna Gupta
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Monal Sharma
- Betterhumans Inc., Gainesville, FL, United States
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhanand College, University of Delhi, New Delhi, India
- Division Radiopharmaceuticals and Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, New Delhi, India
| |
Collapse
|
8
|
Gemel J, Zhang J, Mao Y, Lapping-Carr G, Beyer EC. Circulating Small Extracellular Vesicles May Contribute to Vaso-Occlusive Crises in Sickle Cell Disease. J Clin Med 2022; 11:jcm11030816. [PMID: 35160266 PMCID: PMC8836895 DOI: 10.3390/jcm11030816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 02/05/2023] Open
Abstract
We previously found that the plasma of patients with sickle cell disease (SCD) contains large numbers of small extracellular vesicles (EVs) and that the EVs disrupt the integrity of endothelial cell monolayers (especially if obtained during episodes of acute chest syndrome, ACS). The present study was designed to test the generality of this finding to other complications of SCD, specifically to evaluate the possibility that circulating EVs isolated during a vaso-occlusive crises (VOC) also cause damage to the intercellular connections between endothelial cells. Plasma was obtained from nine pediatric subjects at baseline and during VOC episodes. EVs isolated from these samples were added to cultures of microvascular endothelial cells. Immunofluorescence microscopy was employed to assess monolayer integrity and to localize two intercellular junction proteins (VE-cadherin and connexin43). The EVs isolated during VOC caused significantly greater monolayer disruption than those isolated at baseline. The extent of disruption varied between different episodes of VOC or ACS in the same patient. The VOC EVs disrupted the integrity of both junction proteins at appositional membranes. These results suggest that circulating EVs may be involved in modulating endothelial integrity contributing to the pathogenesis of different complications of SCD.
Collapse
|
9
|
Delgadillo LF, Huang YS, Leon S, Palis J, Waugh RE. Development of Mechanical Stability in Late-Stage Embryonic Erythroid Cells: Insights From Fluorescence Imaged Micro-Deformation Studies. Front Physiol 2022; 12:761936. [PMID: 35082687 PMCID: PMC8784407 DOI: 10.3389/fphys.2021.761936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The combined use of fluorescence labeling and micro-manipulation of red blood cells has proven to be a powerful tool for understanding and characterizing fundamental mechanisms underlying the mechanical behavior of cells. Here we used this approach to study the development of the membrane-associated cytoskeleton (MAS) in primary embryonic erythroid cells. Erythropoiesis comes in two forms in the mammalian embryo, primitive and definitive, characterized by intra- and extra-vascular maturation, respectively. Primitive erythroid precursors in the murine embryo first begin to circulate at embryonic day (E) 8.25 and mature as a semi-synchronous cohort before enucleating between E12.5 and E16.5. Previously, we determined that the major components of the MAS become localized to the membrane between E10.5 and E12.5, and that this localization is associated with an increase in membrane mechanical stability over this same period. The change in mechanical stability was reflected in the creation of MAS-free regions of the membrane at the tips of the projections formed when cells were aspirated into micropipettes. The tendency to form MAS-free regions decreases as primitive erythroid cells continue to mature through E14.5, at least 2 days after all detectable cytoskeletal components are localized to the membrane, indicating continued strengthening of membrane cohesion after membrane localization of cytoskeletal components. Here we demonstrate that the formation of MAS-free regions is the result of a mechanical failure within the MAS, and not the detachment of membrane bilayer from the MAS. Once a "hole" is formed in the MAS, the skeletal network contracts laterally along the aspirated projection to form the MAS-free region. In protein 4.1-null primitive erythroid cells, the tendency to form MAS-free regions is markedly enhanced. Of note, similar MAS-free regions were observed in maturing erythroid cells from human marrow, indicating that similar processes occur in definitive erythroid cells. We conclude that localization of cytoskeletal components to the cell membrane of mammalian erythroid cells during maturation is insufficient by itself to produce a mature MAS, but that subsequent processes are additionally required to strengthen intraskeletal interactions.
Collapse
Affiliation(s)
- Luis F. Delgadillo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Yu Shan Huang
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Sami Leon
- Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - James Palis
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Richard E. Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States,*Correspondence: Richard E. Waugh,
| |
Collapse
|
10
|
Extracellular Vesicle MicroRNA That Are Involved in β-Thalassemia Complications. Int J Mol Sci 2021; 22:ijms22189760. [PMID: 34575936 PMCID: PMC8465435 DOI: 10.3390/ijms22189760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Beta thalassemia major (βT) is a hereditary anemia characterized by transfusion-dependency, lifelong requirement of chelation, and organ dysfunction. MicroRNA (miRNA) can be packed into extracellular vesicles (EVs) that carry them to target cells. We explored EV-miRNA in βT and their pathophysiologic role. Circulating EVs were isolated from 35 βT-patients and 15 controls. EV miRNA was evaluated by nano-string technology and real-time quantitative polymerase chain reaction (RT-qPCR). We explored effects of EVs on cell culture proliferation, apoptosis, and signal transduction. Higher amounts of small EV (exosomes) were found in patients than in controls. The expression of 21 miRNA was > two-fold higher, and of 17 miRNA < three-fold lower in βT-EVs than control-EVs. RT-qPCR confirmed differential expression of six miRNAs in βT, particularly miR-144-3p, a regulator of erythropoiesis. Exposure of endothelial, liver Huh7, and pancreatic 1.1B4 cells to βT-EVs significantly reduced cell viability and increased cell apoptosis. βT-EV-induced endothelial cell apoptosis involved the MAPK/JNK signal-transduction pathway. In contrast, splenectomized βT-EVs induced proliferation of bone marrow mesenchymal stem cells (BM-MSC). In summary, the miR-144-3p was strongly increased; βT-EVs induced apoptosis and decreased endothelial, pancreatic, and liver cell survival while supporting BM-MSC proliferation. These mechanisms may contribute to βT organ dysfunction and complications.
Collapse
|
11
|
Haghbin M, Hashemi Tayer A, Kamravan M, Sotoodeh Jahromi A. Platelet-Derived Procoagulant Microparticles as Blood-based Biomarker of Breast Cancer. Asian Pac J Cancer Prev 2021; 22:1573-1579. [PMID: 34048188 PMCID: PMC8408375 DOI: 10.31557/apjcp.2021.22.5.1573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Breast cancer is the main cause of cancer death in women worldwide. Elevated plasma levels of circulating cell-derived microparticles (MPs) have been reported in various types of cancer, including breast cancer, with the ability to mediate inflammation and thrombosis. Microparticles are bioactive agents, and it has been suggested that MPs can be used as a diagnostic, prognostic, or therapeutic biomarker in various diseases. The aim of this study was to investigate the levels of platelet-derived MPs (PMPs) in breast cancer patients. Materials and Methods: In this case-control study, 30 patients with breast cancer and 20 normal subjects were sampled after obtaining written consent. MPs were isolated from blood samples by centrifugation technique. CD42b and annexin V markers were used respectively for counting PMPs and procoagulant MPs with flow cytometry. Results: Flow cytometry results showed that the number of PMPs and procoagulant annexin V positive MPs was significantly higher in the breast cancer patients than normal subjects (p<0.001). The number of the annexin V MPs differed significantly in patients with high tumor size (T2) compared to the patients with low tumor size (T1) and controls (p<0.001). Significant and positive correlations were found between PMP levels and tissue-based biomarkers, tumor grading, and distant metastasis (P<0.05). Tumor histological type did not correlate with the numbers of PMPs (p=0.065). Conclusion: Increased levels of PMPs and activity in terms of hemostasis and having a positive and significant relationship with tumor grading and metastasis may indicate the effective role of PMPs in the pathogenesis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Marzieh Haghbin
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Akbar Hashemi Tayer
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Maryam Kamravan
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | | |
Collapse
|
12
|
Hendrickson JE. Red blood cell alloimmunization and sickle cell disease: a narrative review on antibody induction. ANNALS OF BLOOD 2020; 5:33. [PMID: 33554044 PMCID: PMC7861514 DOI: 10.21037/aob-2020-scd-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The high prevalence of red blood cell (RBC) alloantibodies in people with sickle cell disease (SCD) cannot be debated. Why people with SCD are so likely to form RBC alloantibodies, however, remains poorly understood. Over the past decade, a better understanding of non-ABO blood group antigen variants has emerged; RH genetic diversity and the role this diversity plays in RBC alloimmunization is discussed elsewhere. Outside of antigen variants, the immune systems of people with SCD are known to be different than those of people without SCD. Some of these differences are due to effects of free heme, whereas others are impacted by hyposplenism. Descriptive studies of differences in white blood cell (WBC) subsets, platelet counts and function, and complement activation between people with SCD and race-matched controls exist. Studies comparing the immune systems of alloimmunized people with SCD to non-alloimmunized people with SCD to race-matched controls without SCD have uncovered differences in T-cell subsets, monocytes, Fcγ receptor polymorphisms, and responses to free heme. Studies in murine models have documented the role that recipient inflammation plays in RBC alloantibody formation, with human studies reporting a similar association. Murine studies have also reported the importance of type 1 interferon (IFNα/β), known to play a pivotal role in autoimmunity, in RBC alloantibody formation. The goal of this manuscript is to review existing data on factors influencing RBC alloantibody induction in people with SCD with a focus on inflammation and other immune system considerations, from the bench to the bedside.
Collapse
Affiliation(s)
- Jeanne E. Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Gap Junctions between Endothelial Cells Are Disrupted by Circulating Extracellular Vesicles from Sickle Cell Patients with Acute Chest Syndrome. Int J Mol Sci 2020; 21:ijms21238884. [PMID: 33255173 PMCID: PMC7727676 DOI: 10.3390/ijms21238884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Intercellular junctions maintain the integrity of the endothelium. We previously found that the adherens and tight junctions between endothelial cells are disrupted by plasma extracellular vesicles from patients with sickle cell disease (especially those with Acute Chest Syndrome). In the current study, we evaluated the effects of these vesicles on endothelial gap junctions. The vesicles from sickle cell patients (isolated during episodes of Acute Chest Syndrome) disrupted gap junction structures earlier and more severely than the other classes of intercellular junctions (as detected by immunofluorescence). These vesicles were much more potent than those isolated at baseline from the same subject. The treatment of endothelial cells with these vesicles led to reduced levels of connexin43 mRNA and protein. These vesicles severely reduced intercellular communication (transfer of microinjected Neurobiotin). Our data suggest a hierarchy of progressive disruption of different intercellular connections between endothelial cells by circulating extracellular vesicles that may contribute to the pathophysiology of the endothelial disturbances in sickle cell disease.
Collapse
|