1
|
Li J, Zhang X, Ren P, Wu Y, Wang Y, Zhou W, Wang Z, Chao P. Landscape of RNA-binding proteins in diagnostic utility, immune cell infiltration and PANoptosis features of heart failure. Front Genet 2022; 13:1004163. [PMID: 36313471 PMCID: PMC9614340 DOI: 10.3389/fgene.2022.1004163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Heart failure remains a global public health problem linked to rising morbidity and mortality. RNA-binding proteins (RBPs) are crucial regulators in post-transcriptionally determining gene expression. Our study aimed to comprehensively elucidate the diagnostic utility and biological roles of RBPs in heart failure. Methods: Genomic data of human failing and nonfailing left ventricular myocardium specimens were retrieved from the GEO datasets. Heart failure-specific RBPs were screened with differential expression analyses, and RBP-based subtypes were clustered with consensus clustering approach. GSEA was implemented for comparing KEGG pathways across subtypes. RBP-based subtype-related genes were screened with WGCNA. Afterwards, characteristic genes were selected through integrating LASSO and SVM-RFE approaches. A nomogram based on characteristic genes was established and verified through calibration curve, decision curve and clinical impact curve analyses. The abundance of immune cell types was estimated with CIBERSORT approach. Results: Heart failure-specific RBPs were determined, which were remarkably linked to RNA metabolism process. Three RBP-based subtypes (namely C1, C2, C3) were established, characterized by distinct pathway activities and PANoptosis gene levels. C2 subtype presented the highest abundance of immune cells, followed by C1 and C3. Afterwards, ten characteristic genes were selected, which enabled to reliably diagnose heart failure risk. The characteristic gene-based nomogram enabled to accurately predict risk of heart failure, with the excellent clinical utility. Additionally, characteristic genes correlated to immune cell infiltration and PANoptosis genes. Conclusion: Our findings comprehensively described the roles of RBPs in heart failure. Further research is required for verifying the effectiveness of RBP-based subtypes and characteristic genes in heart failure.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xueqin Zhang
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Peng Ren
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yu Wu
- Department of Medical Administration, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yaoguo Wang
- Department of Information Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Wenzheng Zhou
- Department of Orthopaedics, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- *Correspondence: Wenzheng Zhou, ; Zhao Wang, ; Peng Chao,
| | - Zhao Wang
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- *Correspondence: Wenzheng Zhou, ; Zhao Wang, ; Peng Chao,
| | - Peng Chao
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- *Correspondence: Wenzheng Zhou, ; Zhao Wang, ; Peng Chao,
| |
Collapse
|
2
|
Genome-Wide DNA Methylation Signatures Predict the Early Asymptomatic Doxorubicin-Induced Cardiotoxicity in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246291. [PMID: 34944912 PMCID: PMC8699582 DOI: 10.3390/cancers13246291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy with doxorubicin (DOX) may cause unpredictable cardiotoxicity. This study aimed to determine whether the methylation signature of peripheral blood mononuclear cells (PBMCs) prior to and after the first cycle of DOX-based chemotherapy could predict the risk of cardiotoxicity in breast cancer patients. Cardiotoxicity was defined as a decrease in left ventricular ejection fraction (LVEF) by >10%. DNA methylation of PBMCs from 9 patients with abnormal LVEF and 10 patients with normal LVEF were examined using Infinium HumanMethylation450 BeadChip. We have identified 14,883 differentially methylated CpGs at baseline and 18,718 CpGs after the first cycle of chemotherapy, which significantly correlated with LVEF status. Significant differentially methylated regions (DMRs) were found in the promoter and the gene body of SLFN12, IRF6 and RNF39 in patients with abnormal LVEF. The pathway analysis found enrichment for regulation of transcription, mRNA splicing, pathways in cancer and ErbB2/4 signaling. The preliminary results from this study showed that the DNA methylation profile of PBMCs may predict the risk of DOX-induced cardiotoxicity prior to chemotherapy. Further studies with larger cohorts of patients are needed to confirm these findings.
Collapse
|
3
|
Exercise Intervention Mitigates Pathological Liver Changes in NAFLD Zebrafish by Activating SIRT1/AMPK/NRF2 Signaling. Int J Mol Sci 2021; 22:ijms222010940. [PMID: 34681600 PMCID: PMC8536011 DOI: 10.3390/ijms222010940] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common disease that causes serious liver damage. Exercise is recognized as a non-pharmacological tool to improve the pathology of NAFLD. However, the antioxidative effects and mechanisms by which exercise ameliorates NAFLD remain unclear. The present study conducted exercise training on zebrafish during a 12-week high-fat feeding period to study the antioxidant effect of exercise on the liver. We found that swimming exercise decreased lipid accumulation and improved pathological changes in the liver of high-fat diet-fed zebrafish. Moreover, swimming alleviated NOX4-derived reactive oxygen species (ROS) overproduction and reduced methanedicarboxylic aldehyde (MDA) levels. We also examined the anti-apoptotic effects of swimming and found that it increased the expression of antiapoptotic factor bcl2 and decreased the expression of genes associated with apoptosis (caspase3, bax). Mechanistically, swimming intervention activated SIRT1/AMPK signaling-mediated lipid metabolism and inflammation as well as enhanced AKT and NRF2 activation and upregulated downstream antioxidant genes. In summary, exercise attenuates pathological changes in the liver induced by high-fat diets. The underlying mechanisms might be related to NRF2 and mediated by SIRT1/AMPK signaling.
Collapse
|
4
|
Todorova VK, Wei JY, Makhoul I. Subclinical doxorubicin-induced cardiotoxicity update: role of neutrophils and endothelium. Am J Cancer Res 2021; 11:4070-4091. [PMID: 34659877 PMCID: PMC8493405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapy agent that often causes cardiotoxicity. Despite a number of extensive studies, the risk for DOX cardiotoxicity remains unpredictable. The majority of the studies on DOX-induced cardiotoxicity have been focused on the effects on cardiomyocytes that lead to contractile dysfunction. The roles of systemic inflammation, endothelial injury and neutrophil recruitment, all induced by the DOX, are increasingly recognized as the mechanisms that trigger the development and progression of DOX-induced cardiomyopathy. This review explores recent data regarding the possible mechanisms and biomarkers of early subclinical DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Valentina K Todorova
- Division of Medical Oncology/Department of Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
- Department of Geriatrics, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| | - Issam Makhoul
- Division of Medical Oncology/Department of Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| |
Collapse
|
5
|
Sun CC, Zhou ZQ, Chen ZL, Zhu RK, Yang D, Peng XY, Zheng L, Tang CF. Identification of Potentially Related Genes and Mechanisms Involved in Skeletal Muscle Atrophy Induced by Excessive Exercise in Zebrafish. BIOLOGY 2021; 10:biology10080761. [PMID: 34439993 PMCID: PMC8389602 DOI: 10.3390/biology10080761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023]
Abstract
Long-term imbalance between fatigue and recovery may eventually lead to muscle weakness or even atrophy. We previously reported that excessive exercise induces pathological cardiac hypertrophy. However, the effect of excessive exercise on the skeletal muscles remains unclear. In the present study, we successfully established an excessive-exercise-induced skeletal muscle atrophy zebrafish model, with decreased muscle fiber size, critical swimming speed, and maximal oxygen consumption. High-throughput RNA-seq analysis identified differentially expressed genes in the model system compared with control zebrafish. Gene ontology and KEGG enrichment analysis revealed that the upregulated genes were enriched in autophagy, homeostasis, circadian rhythm, response to oxidative stress, apoptosis, the p53 signaling pathway, and the FoxO signaling pathway. Protein-protein interaction network analysis identified several hub genes, including keap1b, per3, ulk1b, socs2, esrp1, bcl2l1, hsp70, igf2r, mdm2, rab18a, col1a1a, fn1a, ppih, tpx2, uba5, nhlrc2, mcm4, tac1, b3gat3, and ddost, that correlate with the pathogenesis of skeletal muscle atrophy induced by excessive exercise. The underlying regulatory pathways and muscle-pressure-response-related genes identified in the present study will provide valuable insights for prescribing safe and accurate exercise programs for athletes and the supervision and clinical treatment of muscle atrophy induced by excessive exercise.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lan Zheng
- Correspondence: (X.-Y.P.); (L.Z.); (C.-F.T.)
| | | |
Collapse
|
6
|
Murphy LB, Santos-Ledo A, Dhanaseelan T, Eley L, Burns D, Henderson DJ, Chaudhry B. Exercise, programmed cell death and exhaustion of cardiomyocyte proliferation in aging zebrafish. Dis Model Mech 2021; 14:dmm049013. [PMID: 34296752 PMCID: PMC8319546 DOI: 10.1242/dmm.049013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Exercise may ameliorate the eventual heart failure inherent in human aging. In this study, we use zebrafish to understand how aging and exercise affect cardiomyocyte turnover and myocardial remodelling. We show that cardiomyocyte proliferation remains constant throughout life but that onset of fibrosis is associated with a late increase in apoptosis. These findings correlate with decreases in voluntary swimming activity, critical swimming speed (Ucrit), and increases in biomarkers of cardiac insufficiency. The ability to respond to severe physiological stress is also impaired with age. Although young adult fish respond with robust cardiomyocyte proliferation in response to enforced swimming, this is dramatically impaired in older fish and served by a smaller proliferation-competent cardiomyocyte population. Finally, we show that these aging responses can be improved through increased activity throughout adulthood. However, despite improvement in Ucrit and the proliferative response to stress, the size of the proliferating cardiomyocyte population remained unchanged. The zebrafish heart models human aging and reveals the important trade-off between preserving cardiovascular fitness through exercise at the expense of accelerated fibrotic change.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bill Chaudhry
- Biosciences Institute, Faculty of Biomedical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
7
|
Narumanchi S, Wang H, Perttunen S, Tikkanen I, Lakkisto P, Paavola J. Zebrafish Heart Failure Models. Front Cell Dev Biol 2021; 9:662583. [PMID: 34095129 PMCID: PMC8173159 DOI: 10.3389/fcell.2021.662583] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Heart failure causes significant morbidity and mortality worldwide. The understanding of heart failure pathomechanisms and options for treatment remain incomplete. Zebrafish has proven useful for modeling human heart diseases due to similarity of zebrafish and mammalian hearts, fast easily tractable development, and readily available genetic methods. Embryonic cardiac development is rapid and cardiac function is easy to observe and quantify. Reverse genetics, by using morpholinos and CRISPR-Cas9 to modulate gene function, make zebrafish a primary animal model for in vivo studies of candidate genes. Zebrafish are able to effectively regenerate their hearts following injury. However, less attention has been given to using zebrafish models to increase understanding of heart failure and cardiac remodeling, including cardiac hypertrophy and hyperplasia. Here we discuss using zebrafish to study heart failure and cardiac remodeling, and review zebrafish genetic, drug-induced and other heart failure models, discussing the advantages and weaknesses of using zebrafish to model human heart disease. Using zebrafish models will lead to insights on the pathomechanisms of heart failure, with the aim to ultimately provide novel therapies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Suneeta Narumanchi
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Hong Wang
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Sanni Perttunen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Ilkka Tikkanen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Jere Paavola
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|