1
|
Fernandes MGF, Pernin F, Antel JP, Kennedy TE. From BBB to PPP: Bioenergetic requirements and challenges for oligodendrocytes in health and disease. J Neurochem 2025; 169:e16219. [PMID: 39253904 DOI: 10.1111/jnc.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Mature myelinating oligodendrocytes, the cells that produce the myelin sheath that insulates axons in the central nervous system, have distinct energetic and metabolic requirements compared to neurons. Neurons require substantial energy to execute action potentials, while the energy needs of oligodendrocytes are directed toward building the lipid-rich components of myelin and supporting neuronal metabolism by transferring glycolytic products to axons as additional fuel. The utilization of energy metabolites in the brain parenchyma is tightly regulated to meet the needs of different cell types. Disruption of the supply of metabolites can lead to stress and oligodendrocyte injury, contributing to various neurological disorders, including some demyelinating diseases. Understanding the physiological properties, structures, and mechanisms involved in oligodendrocyte energy metabolism, as well as the relationship between oligodendrocytes and neighboring cells, is crucial to investigate the underlying pathophysiology caused by metabolic impairment in these disorders. In this review, we describe the particular physiological properties of oligodendrocyte energy metabolism and the response of oligodendrocytes to metabolic stress. We delineate the relationship between oligodendrocytes and other cells in the context of the neurovascular unit, and the regulation of metabolite supply according to energetic needs. We focus on the specific bioenergetic requirements of oligodendrocytes and address the disruption of metabolic energy in demyelinating diseases. We encourage further studies to increase understanding of the significance of metabolic stress on oligodendrocyte injury, to support the development of novel therapeutic approaches for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Milton Guilherme Forestieri Fernandes
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Florian Pernin
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Muccio M, Sun Z, Chu D, Damadian BE, Minkoff L, Bonanni L, Ge Y. The impact of body position on neurofluid dynamics: present insights and advancements in imaging. Front Aging Neurosci 2024; 16:1454282. [PMID: 39582951 PMCID: PMC11582045 DOI: 10.3389/fnagi.2024.1454282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
The intricate neurofluid dynamics and balance is essential in preserving the structural and functional integrity of the brain. Key among these forces are: hemodynamics, such as heartbeat-driven arterial and venous blood flow, and hydrodynamics, such as cerebrospinal fluid (CSF) circulation. The delicate interplay between these dynamics is crucial for maintaining optimal homeostasis within the brain. Currently, the widely accepted framework for understanding brain functions is the Monro-Kellie's doctrine, which posits a constant sum of intracranial CSF, blood flow and brain tissue volumes. However, in recent decades, there has been a growing interest in exploring the dynamic interplay between these elements and the impact of external factors, such as daily changes in body position. CSF circulation in particular plays a crucial role in the context of neurodegeneration and dementia, since its dysfunction has been associated with impaired clearance mechanisms and accumulation of toxic substances. Despite the implementation of various invasive and non-invasive imaging techniques to investigate the intracranial hemodynamic or hydrodynamic properties, a comprehensive understanding of how all these elements interact and are influenced by body position remains wanted. Establishing a comprehensive overview of this topic is therefore crucial and could pave the way for alternative care approaches. In this review, we aim to summarize the existing understanding of intracranial hemodynamic and hydrodynamic properties, fundamental for brain homeostasis, along with factors known to influence their equilibrium. Special attention will be devoted to elucidating the effects of body position shifts, given their significance and remaining ambiguities. Furthermore, we will explore recent advancements in imaging techniques utilized for real time and non-invasive measurements of dynamic body fluid properties in-vivo.
Collapse
Affiliation(s)
- Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - David Chu
- FONAR Corporation, Melville, NY, United States
| | - Brianna E. Damadian
- Department of Radiology, Northwell Health-Lenox Hill Hospital, New York, NY, United States
| | | | | | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Curry-Koski T, Curtin L, Esfandiarei M, Currier TT. Cerebral Microvascular Density, Permeability of the Blood-Brain Barrier, and Neuroinflammatory Responses Indicate Early Aging Characteristics in a Marfan Syndrome Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601409. [PMID: 39005441 PMCID: PMC11244932 DOI: 10.1101/2024.06.30.601409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Marfan Syndrome (MFS) is a connective tissue disorder due to mutations in fibrillin-1 ( Fbn1 ), where a Fbn1 missense mutation ( Fbn1 C1039G/+ ) can result in systemic increases in the bioavailability and signaling of transforming growth factor-β (TGF-β). In a well-established mouse model of MFS ( Fbn1 C1041G/+ ), pre-mature aging of the aortic wall and the progression of aortic root aneurysm are observed by 6-months-of-age. TGF-β signaling has been implicated in cerebrovascular dysfunction, loss of blood-brain barrier (BBB) integrity, and age-related neuroinflammation. We have reported that pre-mature vascular aging in MFS mice could extend to cerebrovasculature, where peak blood flow velocity in the posterior cerebral artery (PCA) of 6-month-old (6M) MFS mice was reduced, similarly to 12-month-old (12M) control mice. Case studies of MFS patients have documented neurovascular manifestations, including intracranial aneurysms, stroke, arterial tortuosity, as well as headaches and migraines, with reported incidence of pain and chronic fatigue. Despite these significant clinical observations, investigation into cerebrovascular dysfunction and neuropathology in MFS remains limited. Using 6M-control ( C57BL/6 ) and 6M-MFS ( Fbn1 C1041G/+ ) and healthy 12M-control male and female mice, we test the hypothesis that abnormal Fbn1 protein expression is associated with altered cerebral microvascular density, BBB permeability, and neuroinflammation in the PCA-perfused hippocampus, all indicative of a pre-mature aging brain phenotype. Using Glut1 staining, 6M-MFS mice and 12M-CTRL similarly present decreased microvascular density in the dentate gyrus (DG), cornu ammonis 1 (CA1), and cornu ammonis 3 (CA3) regions of the hippocampus. 6M-MFS mice exhibit increased BBB permeability in the DG, CA1, and CA3 as evident by Immunoglobulin G (IgG) staining, which was more comparable to 12M-CTRL mice. 6M-MFS mice show a higher number of microglia in the hippocampus compared to age-matched control mice, a pattern resembling that of 12M-CTRL mice. This study represents the first known investigation into neuropathology in a mouse model of MFS and indicates that the pathophysiology underlying MFS leads to a systemic pre-mature aging phenotype. This study is crucial for identifying and understanding MFS-associated neurovascular and neurological abnormalities, underscoring the need for research aimed at improving the quality of life and managing pre-mature aging symptoms in MFS and related connective tissue disorders.
Collapse
|
4
|
Li Q, Su S, Feng Y, Jia M, Zhan J, Liao Z, Li J, Li X. Potential role of blood pressure variability and plasma neurofilament light in the mechanism of comorbidity between Alzheimer's disease and cerebral small vessel disease. Alzheimers Dement 2024; 20:4891-4902. [PMID: 38895921 PMCID: PMC11247680 DOI: 10.1002/alz.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Long-term blood pressure variability (BPV) and plasma neurofilament light (pNfL) have been identified as potential biomarkers for Alzheimer's disease (AD) and cerebral small vessel disease (CSVD). However, the relationship between BPV, pNfL, and their association with the comorbidity of AD and CSVD remains unknown. METHODS Participants with normal cognition and mild cognitive impairment from the Alzheimer's Disease Neuroimaging Initiative study were included in the data analysis. Linear mixed-effects regression models and causal mediation analyses were conducted to investigate the relationship among BPV, pNfL, comorbidity-related brain structural changes (hippocampal atrophy and white matter hyperintensities [WMH]), and cognitive function. RESULTS BPV was associated with pNfL, volumes of hippocampus and WMH, and cognition. pNfL mediated the effects of BPV on brain structural changes and cognition. DISCUSSION Our findings suggest a potential role of BPV and pNfL in the mechanism of comorbidity between AD and CSVD, underscoring the importance of BPV intervention in the general population. HIGHLIGHTS Individuals with both Alzheimer's disease (AD) and cerebral small vessel disease (CSVD) pathologies had elevated blood pressure variability (BPV) and plasma neurofilament light (pNfL). The association between different components of BPV and brain structural changes may vary. BPV was associated with pNfL levels independent of average blood pressure. pNfL mediated the effects of BPV on comorbidity-related brain structural changes and cognitive performance.
Collapse
Grants
- cstc2019jcyj-zdxmX0029 Chongqing Natural Science Fund Key Project
- GE Healthcare
- Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University
- AbbVie
- Transition Therapeutics
- Cogstate
- Eisai Inc.
- W81XWH-12-2-0012 Department of Defense
- EuroImmun
- Biogen
- CSTB2023NSCQ-MSX0198 Chongqing Natural Science Fund General Program
- Alzheimer's Disease Neuroimaging Initiative
- Alzheimer's Drug Discovery Foundation
- Servier
- Lumosity
- Bristol-Myers Squibb Company
- U01 AG024904 NIA NIH HHS
- Piramal Imaging
- Takeda Pharmaceutical Company
- Alzheimer's Association
- Genentech, Inc.
- Araclon Biotech
- U01 AG024904 NIH HHS
- Meso Scale Diagnostics, LLC
- Novartis Pharmaceuticals Corporation
- CereSpir, Inc.
- BioClinica, Inc.
- NIBIB NIH HHS
- Johnson & Johnson Pharmaceutical Research & Development LLC
- Pfizer Inc.
- Elan Pharmaceuticals, Inc.
- F. Hoffmann-La Roche Ltd.
- Eli Lilly and Company
- IXICO Ltd.
- NeuroRx Research
- Merck & Co., Inc.
- Janssen Alzheimer Immunotherapy Research & Development, LLC
- Neurotrack Technologies
- Fujirebio
- Lundbeck
- Alzheimer's Disease Neuroimaging Initiative
- National Institutes of Health
- Department of Defense
- National Institute on Aging
- National Institute of Biomedical Imaging and Bioengineering
- AbbVie
- Alzheimer's Association
- Alzheimer's Drug Discovery Foundation
- BioClinica, Inc.
- Biogen
- Bristol‐Myers Squibb Company
- Eli Lilly and Company
- F. Hoffmann‐La Roche Ltd.
- Genentech, Inc.
- Fujirebio
- GE Healthcare
- Lundbeck
- Merck & Co., Inc.
- Novartis Pharmaceuticals Corporation
- Pfizer Inc.
- Servier
- Takeda Pharmaceutical Company
Collapse
Affiliation(s)
- Qin Li
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shu Su
- Department of Epidemiology and BiostatisticsThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yuxue Feng
- Department of NeurologyUniversity of the Chinese Academy of Sciences Chongqing Renji HospitalChongqingChina
| | - Meng Jia
- Department of Epidemiology and BiostatisticsThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiehong Zhan
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zixuan Liao
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiayu Li
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaofeng Li
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education)Chongqing Medical UniversityChongqingChina
| | | |
Collapse
|
5
|
Harmon JN, Chandran P, Chandrasekaran A, Hyde JE, Hernandez GJ, Reed MJ, Bruce MF, Khaing ZZ. Contrast-enhanced ultrasound imaging detects anatomical and functional changes in rat cervical spine microvasculature with normal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584672. [PMID: 38559128 PMCID: PMC10980054 DOI: 10.1101/2024.03.12.584672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Normal aging is associated with significant deleterious cerebrovascular changes; these have been implicated in disease pathogenesis and increased susceptibility to ischemic injury. While these changes are well documented in the brain, few studies have been conducted in the spinal cord. Here, we utilize specialized contrast-enhanced ultrasound (CEUS) imaging to investigate age-related changes in cervical spinal vascular anatomy and hemodynamics in male Fisher 344 rats, a common strain in aging research. Aged rats (24-26 mo., N=6) exhibited significant tortuosity in the anterior spinal artery and elevated vascular resistance compared to adults (4-6 mo., N=6; tortuosity index 2.20±0.15 vs 4.74±0.45, p<0.05). Baseline blood volume was lower in both larger vessels and the microcirculation in the aged cohort, specifically in white matter (4.44e14±1.37e13 vs 3.66e14±2.64e13 CEUS bolus AUC, p<0.05). To elucidate functional differences, animals were exposed to a hypoxia challenge; whereas adult rats exhibited significant functional hyperemia in both gray and white matter (GM: 1.13±0.10-fold change from normoxia, p<0.05; WM: 1.16±0.13, p<0.05), aged rats showed no response. Immunohistochemistry revealed reduced pericyte coverage and activated microglia behavior in aged rats, which may partially explain the lack of vascular response. This study provides the first in vivo description of age-related hemodynamic differences in the cervical spinal cord.
Collapse
Affiliation(s)
- Jennifer N. Harmon
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | - Preeja Chandran
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | | | - Jeffrey E. Hyde
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | - Gustavo J. Hernandez
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | - May J. Reed
- Department of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Matthew F. Bruce
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| |
Collapse
|
6
|
Xie C, Hu J, Cheng Y, Yao Z. Researches on cognitive sequelae of burn injury: Current status and advances. Front Neurosci 2022; 16:1026152. [PMID: 36408414 PMCID: PMC9672468 DOI: 10.3389/fnins.2022.1026152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/20/2022] [Indexed: 09/29/2023] Open
Abstract
Burn injury is a devastating disease with high incidence of disability and mortality. The cognitive dysfunctions, such as memory defect, are the main neurological sequelae influencing the life quality of burn-injured patients. The post-burn cognitive dysfunctions are related to the primary peripheral factors and the secondary cerebral inflammation, resulting in the destruction of blood-brain barrier (BBB), as is shown on Computed Tomography (CT) and magnetic resonance imaging examinations. As part of the neurovascular unit, BBB is vital to the nutrition and homeostasis of the central nervous system (CNS) and undergoes myriad alterations after burn injury, causing post-burn cognitive defects. The diagnosis and treatment of cognitive dysfunctions as burn injury sequelae are of great importance. In this review, we address the major manifestations and interventions of post-burn cognitive defects, as well as the mechanisms involved in memory defect, including neuroinflammation, destruction of BBB, and hormone imbalance.
Collapse
Affiliation(s)
- Chenchen Xie
- Department of Neurology, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Hu
- Department of Neurology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yong Cheng
- Department of Neurology, General Hospital of Central Theater Command of PLA, Wuhan, China
| | - Zhongxiang Yao
- Department of Physiology, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Chong SH, Ong YH, El Khatib M, Allu SR, Parthasarathy AB, Greenberg JH, Yodh AG, Vinogradov SA. Real-time tracking of brain oxygen gradients and blood flow during functional activation. NEUROPHOTONICS 2022; 9:045006. [PMID: 36457848 PMCID: PMC9704417 DOI: 10.1117/1.nph.9.4.045006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/01/2022] [Indexed: 06/11/2023]
Abstract
Significance Cerebral metabolic rate of oxygen ( CMRO 2 ) consumption is a key physiological variable that characterizes brain metabolism in a steady state and during functional activation. Aim We aim to develop a minimally invasive optical technique for real-time measurement of CMRO 2 concurrently with cerebral blood flow (CBF). Approach We used a pair of macromolecular phosphorescent probes with nonoverlapping optical spectra, which were localized in the intra- and extravascular compartments of the brain tissue, thus providing a readout of oxygen gradients between these two compartments. In parallel, we measured CBF using laser speckle contrast imaging. Results The method enables computation and tracking of CMRO 2 during functional activation with high temporal resolution ( ∼ 7 Hz ). In contrast to other approaches, our assessment of CMRO 2 does not require measurements of CBF or hemoglobin oxygen saturation. Conclusions The independent records of intravascular and extravascular partial pressures of oxygen, CBF, and CMRO 2 provide information about the physiological events that accompany neuronal activation, creating opportunities for dynamic quantification of brain metabolism.
Collapse
Affiliation(s)
- Sang Hoon Chong
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Yi Hong Ong
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Ashwin B. Parthasarathy
- University of South Florida, Department of Electrical Engineering, Tampa, Florida, United States
| | - Joel H. Greenberg
- University of Pennsylvania, Department of Neurology, Philadelphia, Pennsylvania, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| |
Collapse
|
8
|
Zhang Y, Song S, Li H, Wang X, Song L, Xue J. Polysaccharide from Ganoderma lucidum alleviates cognitive impairment in a mouse model of chronic cerebral hypoperfusion by regulating CD4 +CD25 +Foxp3 + regulatory T cells. Food Funct 2022; 13:1941-1952. [PMID: 35088782 DOI: 10.1039/d1fo03698j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ganoderma lucidum (G. lucidum) is a kind of edible and medicinal mushroom. G. lucidum polysaccharide-1 (GLP-1) is one of the polysaccharides purified from crude GLP. Chronic cerebral hypoperfusion (CCH) as the common pathological basis of various forms of dementia is an important cause of cognitive impairment. In this study, a step-down test was used to evaluate the cognitive ability of CCH mice. Flow cytometry was used to detect the proportion of CD4+CD25+Foxp3+ regulatory T (Foxp3+Treg) cells. ELISA analysis and western blot analysis were used to detect the transforming growth factor-β1 (TGF-β1) and Interleukin-10 (IL-10) levels that Foxp3+Treg cells secreted. Metabolomic analysis based on gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of GLP-1 on dysfunctional metabolism caused by inflammation. Results indicate that GLP-1 exhibited an alleviating cognitive impairment effect on CCH mice. The mechanism was related to GLP-1 by increasing Foxp3+Treg cell levels to increase levels of IL-10 and TGF-β1 and regulate abnormal energy metabolism. These findings could provide preliminary results to exploit G. lucidum as a health care product or functional food for the adjuvant therapy of cognitive impairment of CCH.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| | - Shuang Song
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Haitao Li
- Department of Pathology, Traditional Chinese Medicine Academy of Sciences of Jilin Province, Changchun 130021, PR China
| | - Xinyan Wang
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Lianlian Song
- Department of Pathology, Traditional Chinese Medicine Academy of Sciences of Jilin Province, Changchun 130021, PR China
| | - Jianfei Xue
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| |
Collapse
|
9
|
Duquette A, Pernègre C, Veilleux Carpentier A, Leclerc N. Similarities and Differences in the Pattern of Tau Hyperphosphorylation in Physiological and Pathological Conditions: Impacts on the Elaboration of Therapies to Prevent Tau Pathology. Front Neurol 2021; 11:607680. [PMID: 33488502 PMCID: PMC7817657 DOI: 10.3389/fneur.2020.607680] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Tau protein, a neuronal microtubule-associated protein, becomes hyperphosphorylated in several neurodegenerative diseases called tauopathies. Hyperphosphorylation of tau is correlated to its redistribution from the axon to the somato-dendritic compartment at early stages of tauopathies. Interestingly, tau hyperphosphorylation begins in different regions of the brain in each tauopathy. In some regions, both neurons and glial cells develop tau hyperphosphorylation. Tau hyperphosphorylation is also observed in physiological conditions such as hibernation and brain development. In the first section of present article, we will review the spatiotemporal and cellular distribution of hyperphosphorylated tau in the most frequent tauopathies. In the second section, we will compare the pattern of tau hyperphosphorylation in physiological and pathological conditions and discuss the sites that could play a pivotal role in the conversion of non-toxic to toxic forms of hyperphosphorylated tau. Furthermore, we will discuss the role of hyperphosphorylated tau in physiological and pathological conditions and the fact that tau hyperphosphorylation is reversible in physiological conditions but not in a pathological ones. In the third section, we will speculate how the differences and similarities between hyperphosphorylated tau in physiological and pathological conditions could impact the elaboration of therapies to prevent tau pathology. In the fourth section, the different therapeutic approaches using tau as a direct or indirect therapeutic target will be presented.
Collapse
Affiliation(s)
- Antoine Duquette
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Camille Pernègre
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ariane Veilleux Carpentier
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|