1
|
Chan RW, Hamilton-Fletcher G, Edelman BJ, Faiq MA, Sajitha TA, Moeller S, Chan KC. NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis improves brain activity detection across rodent and human functional MRI contexts. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-18. [PMID: 39463889 PMCID: PMC11506209 DOI: 10.1162/imag_a_00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/29/2024]
Abstract
NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis (PCA) has been shown to selectively suppress thermal noise and improve the temporal signal-to-noise ratio (tSNR) in human functional magnetic resonance imaging (fMRI). However, the feasibility to improve data quality for rodent fMRI using NORDIC PCA remains uncertain. NORDIC PCA may also be particularly beneficial for improving topological brain mapping, as conventional mapping requires precise spatiotemporal signals from large datasets (ideally ~1 hour acquisition) for individual representations. In this study, we evaluated the effects of NORDIC PCA compared with "Standard" processing in various rodent fMRI contexts that range from task-evoked optogenetic fMRI to resting-state fMRI. We also evaluated the effects of NORDIC PCA on human resting-state and retinotopic mapping fMRI via population receptive field (pRF) modeling. In rodent optogenetic fMRI, apart from doubling the tSNR, NORDIC PCA resulted in a larger number of activated voxels and a significant decrease in the variance of evoked brain responses without altering brain morphology. In rodent resting-state fMRI, we found that NORDIC PCA induced a nearly threefold increase in tSNR and preserved task-free relative cerebrovascular reactivity (rCVR) across cortical depth. NORDIC PCA further improved the detection of TGN020-induced aquaporin-4 inhibition on rCVR compared with Standard processing without NORDIC PCA. NORDIC PCA also increased the tSNR for both human resting-state and pRF fMRI, and for the latter also increased activation cluster sizes while retaining retinotopic organization. This suggests that NORDIC PCA preserves the spatiotemporal precision of fMRI signals needed for pRF analysis, and effectively captures small activity changes with high sensitivity. Taken together, these results broadly demonstrate the value of NORDIC PCA for the enhanced detection of neural dynamics across various rodent and human fMRI contexts. This can in turn play an important role in improving fMRI image quality and sensitivity for translational and preclinical neuroimaging research.
Collapse
Affiliation(s)
- Russell W. Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
- E-SENSE Innovation & Technology, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Giles Hamilton-Fletcher
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bradley J. Edelman
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Biological Intelligence, Planegg, Germany
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Muneeb A. Faiq
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Thajunnisa A. Sajitha
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Kevin C. Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Zhang K, Triphan SMF, Wielpütz MO, Ziener CH, Ladd ME, Schlemmer HP, Kauczor HU, Sedlaczek O, Kurz FT. Navigator-based motion compensation for liver BOLD measurement with five-echo SAGE EPI and breath-hold task. NMR IN BIOMEDICINE 2024; 37:e5173. [PMID: 38783837 DOI: 10.1002/nbm.5173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE The purpose of this work is to apply multi-echo spin- and gradient-echo (SAGE) echo-planar imaging (EPI) combined with a navigator-based (NAV) prospective motion compensation method for a quantitative liver blood oxygen level dependent (BOLD) measurement with a breath-hold (BH) task. METHODS A five-echo SAGE sequence was developed to quantitatively measure T2 and T2* to depict function with sufficient signal-to-noise ratio, spatial resolution and sensitivity to BOLD changes induced by the BH task. To account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI-based readouts, navigator acquisition and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. Six healthy volunteers and three patients with liver carcinoma were included in this study. Quantitative T2 and T2* were calculated at each time point of the BH task. Parameters of t value from first-level analysis using a general linear model and hepatovascular reactivity (HVR) of Echo1, T2 and T2* were calculated. RESULTS The motion caused by respiratory activity was successfully compensated using the navigator signal. The average changes of T2 and T2* during breath-hold were about 1% and 0.7%, respectively. With the help of NAV prospective motion compensation whole liver t values could be obtained without motion artifacts. The quantified liver T2 (34.7 ± 0.7 ms) and T2* (29 ± 1.2 ms) values agreed with values from literature. In healthy volunteers, the distribution of statistical t value and HVR was homogeneous throughout the whole liver. In patients with liver carcinoma, the distribution of t value and HVR was inhomogeneous due to metastases or therapy. CONCLUSIONS This study demonstrates the feasibility of using a NAV prospective motion compensation technique in conjunction with five-echo SAGE EPI for the quantitative measurement of liver BOLD with a BH task.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Christian H Ziener
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Hans-Ulrich Kauczor
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Sedlaczek
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Felix T Kurz
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
3
|
Reddy NA, Clements RG, Brooks JCW, Bright MG. Simultaneous cortical, subcortical, and brainstem mapping of sensory activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589099. [PMID: 38659741 PMCID: PMC11042175 DOI: 10.1101/2024.04.11.589099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Non-painful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging (fMRI) studies have highlighted the value of whole-brain, systems-level investigation for examining pain processing. However, whole-brain fMRI studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, the differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo fMRI acquisition at 3T with multi-echo independent component analysis (ME-ICA) denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to non-painful brushing of the right hand, left hand, and right foot, and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we were able to differentiate the small, adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Rebecca G. Clements
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
4
|
Reddy NA, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00057. [PMID: 39328846 PMCID: PMC11426116 DOI: 10.1162/imag_a_00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired blood oxygenation level dependent (BOLD) signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example, in a chronic stroke cohort with varying stroke location and degree of tissue damage.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
- Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
5
|
Richerson WT, Meier TB, Cohen AD, Wang Y, Goodman MJ, Schmit BD, Wolfgram DF. Cerebrovascular Function is Altered in Hemodialysis Patients. KIDNEY360 2023; 4:1717-1725. [PMID: 37962988 PMCID: PMC10758518 DOI: 10.34067/kid.0000000000000292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Key Points Hemodialysis patients have impaired cerebrovascular reactivity. Hemodialysis patients have cerebral structural deficits. Background Hemodialysis patients have declines in cerebral blood flow (CBF) and cerebral oxygenation during hemodialysis that may lead to ischemic brain injury. Cerebrovascular reactivity (CVR) may indicate which individuals are more susceptible to intradialytic hypoperfusion and ischemia. We hypothesized that hemodialysis patients would have decreased CVR and increased CBF relative to controls and deficits in CVR would be related to brain structural deficits. Methods We measured cortical thickness and white matter hyperintensity (WMH) volume from T1 and T2 fluid attenuation inversion recovery images, respectively; CVR from a breath hold blood oxygen level–dependent CVR functional magnetic resonance imaging (fMRI); and arterial transit time and CBF from arterial spin labeling. Cerebrovascular and structural deficits in gray matter and white matter (GM and WM) were tested by averaging across the tissue and with a pothole analysis. Finally, we correlated cortical thickness and WMH volume with GM and WM cerebrovascular variables to assess the relationship between brain structure and cerebrovascular health. Results In ten hemodialysis patients, cortical thickness was found to be decreased (P = 0.002), WMH volume increased (P = 0.004), and WM CBF increased (P = 0.02) relative to ten controls. Pothole analysis indicated a higher number of increased GM and WM CBF voxels (P = 0.03, P = 0.02) and a higher number of decreased GM and WM CVR voxels (P = 0.02, P = 0.01). Conclusions This pilot study demonstrates that hemodialysis patients have decreased CVR and increased CBF relative to controls, along with reduced brain integrity. Further investigation is required to fully understand whether these cerebrovascular deficits may lead to structural changes.
Collapse
Affiliation(s)
- Wesley T. Richerson
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander D. Cohen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dawn F. Wolfgram
- Department of Medicine, Medical College of Wisconsin, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
6
|
Agarwal S, Welker KM, Black DF, Little JT, DeLone DR, Messina SA, Passe TJ, Bettegowda C, Pillai JJ. Detection and Mitigation of Neurovascular Uncoupling in Brain Gliomas. Cancers (Basel) 2023; 15:4473. [PMID: 37760443 PMCID: PMC10527022 DOI: 10.3390/cancers15184473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) technique is useful for preoperative mapping of brain functional networks in tumor patients, providing reliable in vivo detection of eloquent cortex to help reduce the risk of postsurgical morbidity. BOLD task-based fMRI (tb-fMRI) is the most often used noninvasive method that can reliably map cortical networks, including those associated with sensorimotor, language, and visual functions. BOLD resting-state fMRI (rs-fMRI) is emerging as a promising ancillary tool for visualization of diverse functional networks. Although fMRI is a powerful tool that can be used as an adjunct for brain tumor surgery planning, it has some constraints that should be taken into consideration for proper clinical interpretation. BOLD fMRI interpretation may be limited by neurovascular uncoupling (NVU) induced by brain tumors. Cerebrovascular reactivity (CVR) mapping obtained using breath-hold methods is an effective method for evaluating NVU potential.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Kirk M. Welker
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David F. Black
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Jason T. Little
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David R. DeLone
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Steven A. Messina
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Theodore J. Passe
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Jay J. Pillai
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
7
|
Pommy J, Smart CM, Bryant AM, Wang Y. Three potential neurovascular pathways driving the benefits of mindfulness meditation for older adults. Front Aging Neurosci 2023; 15:1207012. [PMID: 37455940 PMCID: PMC10340530 DOI: 10.3389/fnagi.2023.1207012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Mindfulness meditation has been shown to be beneficial for a range of different health conditions, impacts brain function and structure relatively quickly, and has shown promise with aging samples. Functional magnetic resonance imaging metrics provide insight into neurovascular health which plays a key role in both normal and pathological aging processes. Experimental mindfulness meditation studies that included functional magnetic resonance metrics as an outcome measure may point to potential neurovascular mechanisms of action relevant for aging adults that have not yet been previously examined. We first review the resting-state magnetic resonance studies conducted in exclusively older adult age samples. Findings from older adult-only samples are then used to frame the findings of task magnetic resonance imaging studies conducted in both clinical and healthy adult samples. Based on the resting-state studies in older adults and the task magnetic resonance studies in adult samples, we propose three potential mechanisms by which mindfulness meditation may offer a neurovascular therapeutic benefit for older adults: (1) a direct neurovascular mechanism via increased resting-state cerebral blood flow; (2) an indirect anti-neuroinflammatory mechanism via increased functional connectivity within the default mode network, and (3) a top-down control mechanism that likely reflects both a direct and an indirect neurovascular pathway.
Collapse
Affiliation(s)
- Jessica Pommy
- Department of Neurology, Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Colette M. Smart
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | - Andrew M. Bryant
- Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - Yang Wang
- Department of Neurology, Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Glass Umfleet L, Pommy J, Cohen AD, Allen M, Obarski S, Mason L, Berres H, Franczak M, Wang Y. Decreased Cerebrovascular Reactivity in Mild Cognitive Impairment Phenotypes. J Alzheimers Dis 2023; 94:1503-1513. [PMID: 37424462 DOI: 10.3233/jad-221156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Cerebrovascular health plays an important role in cognitive health in older adults. Cerebrovascular reactivity (CVR), a measure of cerebrovascular health, changes in both normal and pathological aging, and is increasingly being conceptualized as contributory to cognitive decline. Interrogation of this process will yield new insights into cerebrovascular correlates of cognition and neurodegeneration. OBJECTIVE The current study examines CVR using advanced MRI in prodromal dementia states (amnestic and non-amnestic mild cognitive impairment phenotypes; aMCI and naMCI, respectively) and older adult controls. METHODS CVR was assessed in 41 subjects (20 controls, 11 aMCI, 10 naMCI) using multiband multi-echo breath-holding task functional magnetic resonance imaging. Imaging data were preprocessed and analyzed using AFNI. All participants also completed a battery of neuropsychological tests. T-tests and ANOVA/ANCOVA analyses were conducted to compare controls to MCI groups on CVR and cognitive metrics. Partial correlation analyses between CVR derived from regions-of-interest (ROIs) and different cognitive functions were conducted. RESULTS CVR was found to be significantly lower in aMCI and naMCI patients compared to controls. naMCI showed intermediate patterns between aMCI and controls (though aMCI and naMCI groups did not significantly differ). CVR of ROIs were positively correlated with neuropsychological measures of processing speed, executive functioning, and memory. CONCLUSION The findings highlight regional CVR differences in MCI phenotypes compared to controls, where aMCI may have lower CVR than naMCI. Our results suggest possible cerebrovascular abnormalities associated with MCI phenotypes.
Collapse
Affiliation(s)
| | - Jessica Pommy
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander D Cohen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Shawn Obarski
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lilly Mason
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Halle Berres
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Yang Wang
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Using multiband multi-echo imaging to improve the robustness and repeatability of co-activation pattern analysis for dynamic functional connectivity. Neuroimage 2021; 243:118555. [PMID: 34492293 PMCID: PMC10018461 DOI: 10.1016/j.neuroimage.2021.118555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023] Open
Abstract
Emerging evidence has shown that functional connectivity is dynamic and changes over the course of a scan. Furthermore, connectivity patterns can arise from short periods of co-activation on the order of seconds. Recently, a dynamic co-activation patterns (CAPs) analysis was introduced to examine the co-activation of voxels resulting from individual timepoints. The goal of this study was to apply CAPs analysis on resting state fMRI data collected using an advanced multiband multi-echo (MBME) sequence, in comparison with a multiband (MB) sequence with a single echo. Data from 28 healthy control subjects were examined. Subjects underwent two resting state scans, one MBME and one MB, and 19 subjects returned within two weeks for a repeat scan session. Data preprocessing included advanced denoising namely multi-echo independent component analysis (ME-ICA) for the MBME data and an ICA-based strategy for Automatic Removal of Motion Artifacts (ICA-AROMA) for the MB data. The CAPs analysis was conducted using the newly published TbCAPs toolbox. CAPs were extracted using both seed-based and seed-free approaches. Timepoints were clustered using k-means clustering. The following metrics were compared between MBME and MB datasets: mean activation in each CAP, the spatial correlation and mean squared error (MSE) between each timepoint and the centroid CAP it was assigned to, within-dataset variance across timepoints assigned to the same CAP, and the between-session spatial correlation of each CAP. Co-activation was heightened for MBME data for the majority of CAPs. Spatial correlation and MSE between each timepoint and its assigned centroid CAP were higher and lower respectively for MBME data. The within-dataset variance was also lower for MBME data. Finally, the between-session spatial correlation was higher for MBME data. Overall, our findings suggest that the advanced MBME sequence is a promising avenue for the measurement of dynamic co-activation patterns by increasing the robustness and reproducibility of the CAPs.
Collapse
|