1
|
Zhang WJ, Shi QM, Li TZ, Huang YW. G protein coupled P2Y2 receptor as a regulatory molecule in cancer progression. Arch Biochem Biophys 2024; 762:110194. [PMID: 39486566 DOI: 10.1016/j.abb.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The occurrence and development of cancer involves the participation of many factors, its pathological mechanism is far more complicated than other diseases, and the treatment is also extremely difficult. Although the treatment of cancer adopts diversified methods to improve the survival rate and quality of life of patients, but the drug resistance, metastasis and recurrence of cancer cause most patients to fail in treatment. Therefore, exploring new molecular targets in cancer pathology is of great value for improving and preventing the treatment of cancer. Fortunately, the P2Y2 purinergic receptor (P2Y2 receptor) in the G protein-coupled receptor family has been recognized for regulating cancer progression. Agonist activated P2Y2 receptor has a certain contribution to the growth and metastasis of tumor cells. P2Y2 receptor activation participates in cancer progression by regulating calcium ion channels and classical signaling pathways (such as PLC-PKC and PI3K/AKT). It has the effect of anti-tumor therapy by inhibiting the activation of P2Y2 receptor (the use of antagonist) and reducing its expression. Therefore, in this article, we focus on the expression patterns of P2Y2 receptor in cancer and potential pharmacological targets as anti-cancer treatments.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qing-Ming Shi
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Teng-Zheng Li
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Ya-Wei Huang
- Urology Department, The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang City, China.
| |
Collapse
|
2
|
Mutafova-Yambolieva VN. Mechanosensitive release of ATP in the urinary bladder mucosa. Purinergic Signal 2024:10.1007/s11302-024-10063-6. [PMID: 39541058 DOI: 10.1007/s11302-024-10063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The urinary bladder mucosa (urothelium and suburothelium/lamina propria) functions as a barrier between the content of the urine and the underlying bladder tissue. The bladder mucosa is also a mechanosensitive tissue that releases signaling molecules that affect functions of cells in the bladder wall interconnecting the mucosa with the detrusor muscle and the CNS. Adenosine 5'-triphosphate (ATP) is a primary mechanotransduction signal that is released from cells in the bladder mucosa in response to bladder wall distention and activates cell membrane-localized P2X and P2Y purine receptors on urothelial cells, sensory and efferent neurons, interstitial cells, and detrusor smooth muscle cells. The amounts of ATP at active receptor sites depend significantly on the amounts of extracellularly released ATP. Spontaneous and distention-induced release of ATP appear to be under differential control. This review is focused on mechanisms underlying urothelial release of ATP in response to mechanical stimulation. First, we present a brief overview of studies that report mechanosensitive ATP release in bladder cells or tissues. Then, we discuss experimental evidence for mechanosensitive release of urothelial ATP by vesicular and non-vesicular mechanisms and roles of the stretch-activated channels PIEZO channels, transient receptor potential vanilloid type 4, and pannexin 1. This is followed by brief discussion of possible involvement of calcium homeostasis modulator 1, acid-sensing channels, and connexins in the release of urothelial ATP. We conclude with brief discussion of limitations of current research and of needs for further studies to increase our understanding of mechanotransduction in the bladder wall and of purinergic regulation of bladder function.
Collapse
|
3
|
Liu J, Wang C, Wang W, Ding N, Liu J, Liu H, Wen J, Sun W, Zu S, Zhang X, Yan J. Activation of Piezo1 or TRPV2 channels inhibits human ureteral contractions via NO release from the mucosa. Front Pharmacol 2024; 15:1410565. [PMID: 38989142 PMCID: PMC11233528 DOI: 10.3389/fphar.2024.1410565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
We aimed to investigate the expression and motor modulatory roles of several mechano-sensitive channels (MSCs) in human ureter. Human proximal ureters were obtained from eighty patients subjected to nephrectomy. Expression of MSCs at mRNA, protein and functional levels were examined. Contractions of longitudinal ureter strips were recorded in organ bath. A fluorescent probe Diaminofluoresceins was used to measure nitric oxide (NO). RT-PCR analyses revealed predominant expression of Piezo1 and TRPV2 mRNA in intact ureter and mucosa. Immunofluorescence assays indicate proteins of MSCs (Piezo1/Piezo2, TRPV2 and TRPV4) were mainly distributed in the urothelium. Ca2+ imaging confirmed functional expression of TRPV2, TRPV4 and Piezo1 in cultured urothelial cells. Specific agonists of Piezo1 (Yoda1, 3-300 μM) and TRPV2 (cannabidiol, 3-300 μM) attenuated the frequency of ureteral contractions in a dose-dependent manner while the TRPV4 agonist GSK1016790A (100 nM-1 μM) exerted no effect. The inhibitory effects of Piezo1 and TRPV2 agonists were significantly blocked by the selective antagonists (Dooku 1 for Piezo1, Tranilast for TRPV2), removal of the mucosa, and pretreatment with NO synthase inhibitor L-NAME (10 μM). Yoda1 (30 μM) and cannabidiol (50 μM) increased production of NO in cultured urothelial cells. Our results suggest that activation of Piezo1 or TRPV2 evokes NO production and release from mucosa that may mediate mechanical stimulus-induced reduction of ureter contractions. Our findings support the idea that targeting Piezo1 and TRPV2 channels may be a promising pharmacological strategy for ureter stone passage or colic pain relief.
Collapse
Affiliation(s)
- Jianing Liu
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Cong Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wenyu Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ning Ding
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiaxin Liu
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jieke Yan
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Babaniamansour P, Jacho D, Niedzielski S, Rabino A, Garcia-Mata R, Yildirim-Ayan E. Modulating TRPV4 Channel Activity in Pro-Inflammatory Macrophages within the 3D Tissue Analog. Biomedicines 2024; 12:230. [PMID: 38275401 PMCID: PMC10813551 DOI: 10.3390/biomedicines12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Investigating macrophage plasticity emerges as a promising strategy for promoting tissue regeneration and can be exploited by regulating the transient receptor potential vanilloid 4 (TRPV4) channel. The TRPV4 channel responds to various stimuli including mechanical, chemical, and selective pharmacological compounds. It is well documented that treating cells such as epithelial cells and fibroblasts with a TRPV4 agonist enhances the Ca2+ influx to the cells, which leads to secretion of pro-inflammatory cytokines, while a TRPV4 antagonist reduces both Ca2+ influx and pro-inflammatory cytokine secretion. In this work, we investigated the effect of selective TRPV4 modulator compounds on U937-differentiated macrophages encapsulated within three-dimensional (3D) matrices. Despite offering a more physiologically relevant model than 2D cultures, pharmacological treatment of macrophages within 3D collagen matrices is largely overlooked in the literature. In this study, pro-inflammatory macrophages were treated with an agonist, 500 nM of GSK1016790A (TRPV4(+)), and an antagonist, 10 mM of RN-1734 (TRPV4(-)), to elucidate the modulation of the TRPV4 channel at both cellular and extracellular levels. To evaluate macrophage phenotypic alterations within 3D collagen matrices following TRPV4 modulator treatment, we employed structural techniques (SEM, Masson's trichrome, and collagen hybridizing peptide (CHP) staining), quantitative morphological measures for phenotypic assessment, and genotypic methods such as quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Our data reveal that pharmacological modulation of the macrophage TRPV4 channel alters the cytoskeletal structure of macrophages and influences the 3D structure encapsulating them. Moreover, we proved that treating macrophages with a TRPV4 agonist and antagonist enhances the expression of pro- and anti-inflammatory genes, respectively, leading to the upregulation of surface markers CD80 and CD206. In the TRPV4(-) group, the CD206 gene and CD206 surface marker were significantly upregulated by 9- and 2.5-fold, respectively, compared to the control group. These findings demonstrate that TRPV4 modulation can be utilized to shift macrophage phenotype within the 3D matrix toward a desired state. This is an innovative approach to addressing inflammation in musculoskeletal tissues.
Collapse
Affiliation(s)
- Parto Babaniamansour
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Diego Jacho
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Skyler Niedzielski
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| |
Collapse
|
5
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
6
|
Zhao M, Ding N, Wang H, Zu S, Liu H, Wen J, Liu J, Ge N, Wang W, Zhang X. Activation of TRPA1 in Bladder Suburothelial Myofibroblasts Counteracts TGF-β1-Induced Fibrotic Changes. Int J Mol Sci 2023; 24:ijms24119501. [PMID: 37298451 DOI: 10.3390/ijms24119501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The activation of the transient receptor potential ankyrin 1 (TRPA1) channel has anti-fibrotic effects in the lung and intestine. Suburothelial myofibroblasts (subu-MyoFBs), a specialized subset of fibroblasts in the bladder, are known to express TRPA1. However, the role of the TRPA1 in the development of bladder fibrosis remains elusive. In this study, we use the transforming growth factor-β1 (TGF-β1) to induce fibrotic changes in subu-MyoFBs and assess the consequences of TRPA1 activation utilizing RT-qPCR, western blotting, and immunocytochemistry. TGF-β1 stimulation increased α-SMA, collagen type I alpha 1 chain(col1A1), collagen type III (col III), and fibronectin expression, while simultaneously suppressing TRPA1 in cultured human subu-MyoFBs. The activation of TRPA1, with its specific agonist allylisothiocyanate (AITC), inhibited TGF-β1-induced fibrotic changes, and part of these inhibition effects could be reversed by the TRPA1 antagonist, HC030031, or by reducing TRPA1 expression via RNA interference. Furthermore, AITC reduced spinal cord injury-induced fibrotic bladder changes in a rat model. The increased expression of TGF-β1, α-SMA, col1A1 and col III, and fibronectin, and the downregulation of TRPA1, were also detected in the mucosa of fibrotic human bladders. These findings suggest that TRPA1 plays a pivotal role in bladder fibrosis, and the negative cross talk between TRPA1 and TGF-β1 signaling may represent one of the mechanisms underlying fibrotic bladder lesions.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Ning Ding
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Haoyu Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Jiaxin Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Nan Ge
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Wenzhen Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| |
Collapse
|
7
|
Mechanism of cis-Nerolidol-Induced Bladder Carcinoma Cell Death. Cancers (Basel) 2023; 15:cancers15030981. [PMID: 36765938 PMCID: PMC9913136 DOI: 10.3390/cancers15030981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nerolidol is a naturally occurring sesquiterpene alcohol with multiple properties, including antioxidant, antibacterial, and antiparasitic activities. A few studies investigating the antitumor properties of nerolidol have shown positive results in both cell culture and mouse models. In this study, we investigated the antitumor mechanism of cis-nerolidol in bladder carcinoma cell lines. The results of our experiments on two bladder carcinoma cell lines revealed that nerolidol inhibited cell proliferation and induced two distinct cell death pathways. We confirmed that cis-nerolidol induces DNA damage and ER stress. A mechanistic study identified a common cAMP, Ca2+, and MAPK axis involved in signal propagation and amplification, leading to ER stress. Inhibition of any part of this signaling cascade prevented both cell death pathways. The two cell death mechanisms can be distinguished by the involvement of caspases. The early occurring cell death pathway is characterized by membrane blebbing and cell swelling followed by membrane rupture, which can be prevented by the inhibition of caspase activation. In the late cell death pathway, which was found to be caspase-independent, cytoplasmic vacuolization and changes in cell shape were observed. cis-Nerolidol shows promising antitumor activity through an unorthodox mechanism of action that could help target resistant forms of malignancies, such as bladder cancer.
Collapse
|
8
|
Zhang Y, Yu J, Liu X, Gong L, Shi J, Li X, Nali, Liu S, Xie Z, He S, Wu X, Du S, Liu H. Electroacupuncture protects against bladder dysfunction induced by acute urinary retention via TRPV1/ATP signaling pathway: An animal and human research study. Biochem Biophys Res Commun 2022; 624:164-170. [DOI: 10.1016/j.bbrc.2022.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
|
9
|
Zhao M, Chen Z, Liu L, Ding N, Wen J, Liu J, Wang W, Ge N, Zu S, Song W, Chen G, Zhang X. Functional Expression of Transient Receptor Potential and Piezo1 Channels in Cultured Interstitial Cells of Human-Bladder Lamina Propria. Front Physiol 2022; 12:762847. [PMID: 35069237 PMCID: PMC8774296 DOI: 10.3389/fphys.2021.762847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/03/2021] [Indexed: 01/25/2023] Open
Abstract
The interstitial cells in bladder lamina propria (LP-ICs) are believed to be involved in sensing/afferent signaling in bladder mucosa. Transient receptor potential (TRP) cation channels act as mechano- or chemo-sensors and may underlie some of the sensing function of bladder LP-ICs. We aimed to investigate the molecular and functional expression of TRP channels implicated in bladder sensory function and Piezo1/Piezo2 channels in cultured LP-ICs of the human bladder. Bladder tissues were obtained from patients undergoing cystectomy. LP-ICs were isolated and cultured, and used for real-time reverse transcription-quantitative polymerase chain reaction, immunocytochemistry, and calcium-imaging experiments. At the mRNA level, TRPA1, TRPV2, and Piezo1 were expressed most abundantly. Immunocytochemical staining showed protein expression of TRPA1, TRPV1, TRPV2, TRPV4, TRPM8, as well as Piezo1 and Piezo2. Calcium imaging using channel agonists/antagonists provided evidence for functional expression of TRPA1, TRPV2, TRPV4, Piezo1, but not of TRPV1 or TRPM8. Activation of these channels with their agonist resulted in release of adenosine triphosphate (ATP) from LP-ICs. Inhibition of TRPV2, TRPV4 and Piezo1 blocked the stretch induced intracellular Ca2+ increase. Whereas inhibition of TRPA1 blocked H2O2 evoked response in LP-ICs. Our results suggest LP-ICs of the bladder can perceive stretch or chemical stimuli via activation of TRPV2, TRPV4, Piezo1 and TRPA1 channels. LP-ICs may work together with urothelial cells for perception and transduction of mechanical or chemical signals in human-bladder mucosa.
Collapse
Affiliation(s)
- MengMeng Zhao
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenghao Chen
- Department of Urology, Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ning Ding
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxin Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - WenZhen Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Ge
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shulu Zu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Song
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guoqing Chen
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Thompson CL, McFie M, Chapple JP, Beales P, Knight MM. Polycystin-2 Is Required for Chondrocyte Mechanotransduction and Traffics to the Primary Cilium in Response to Mechanical Stimulation. Int J Mol Sci 2021; 22:4313. [PMID: 33919210 PMCID: PMC8122406 DOI: 10.3390/ijms22094313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Primary cilia and associated intraflagellar transport are essential for skeletal development, joint homeostasis, and the response to mechanical stimuli, although the mechanisms remain unclear. Polycystin-2 (PC2) is a member of the transient receptor potential polycystic (TRPP) family of cation channels, and together with Polycystin-1 (PC1), it has been implicated in cilia-mediated mechanotransduction in epithelial cells. The current study investigates the effect of mechanical stimulation on the localization of ciliary polycystins in chondrocytes and tests the hypothesis that they are required in chondrocyte mechanosignaling. Isolated chondrocytes were subjected to mechanical stimulation in the form of uniaxial cyclic tensile strain (CTS) in order to examine the effects on PC2 ciliary localization and matrix gene expression. In the absence of strain, PC2 localizes to the chondrocyte ciliary membrane and neither PC1 nor PC2 are required for ciliogenesis. Cartilage matrix gene expression (Acan, Col2a) is increased in response to 10% CTS. This response is inhibited by siRNA-mediated loss of PC1 or PC2 expression. PC2 ciliary localization requires PC1 and is increased in response to CTS. Increased PC2 cilia trafficking is dependent on the activation of transient receptor potential cation channel subfamily V member 4 (TRPV4) activation. Together, these findings demonstrate for the first time that polycystins are required for chondrocyte mechanotransduction and highlight the mechanosensitive cilia trafficking of PC2 as an important component of cilia-mediated mechanotransduction.
Collapse
Affiliation(s)
- Clare L. Thompson
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (M.M.); (M.M.K.)
| | - Megan McFie
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (M.M.); (M.M.K.)
| | - J. Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Philip Beales
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Martin M. Knight
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (M.M.); (M.M.K.)
| |
Collapse
|