1
|
Nakashima M, Suga N, Yoshikawa S, Matsuda S. Caveolin and NOS in the Development of Muscular Dystrophy. Int J Mol Sci 2024; 25:8771. [PMID: 39201459 PMCID: PMC11354531 DOI: 10.3390/ijms25168771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/02/2024] Open
Abstract
Caveolin is a structural protein within caveolae that may be involved in transmembrane molecular transport and/or various intercellular interactions within cells. Specific mutations of caveolin-3 in muscle fibers are well known to cause limb-girdle muscular dystrophy. Altered expression of caveolin-3 has also been detected in Duchenne muscular dystrophy, which may be a part of the pathological process leading to muscle weakness. Interestingly, it has been shown that the renovation of nitric oxide synthase (NOS) in sarcolemma with muscular dystrophy could improve muscle health, suggesting that NOS may be involved in the pathology of muscular dystrophy. Here, we summarize the notable function of caveolin and/or NOS in skeletal muscle fibers and discuss their involvement in the pathology as well as possible tactics for the innovative treatment of muscular dystrophies.
Collapse
Affiliation(s)
| | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
2
|
Behrmann A, Cayton J, Hayden MR, Lambert MD, Nourian Z, Nyanyo K, Godbee B, Hanft LM, Krenz M, McDonald KS, Domeier TL. Right ventricular preload and afterload challenge induces contractile dysfunction and arrhythmia in isolated hearts of dystrophin-deficient male mice. Physiol Rep 2024; 12:e16004. [PMID: 38658324 PMCID: PMC11043033 DOI: 10.14814/phy2.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy due to mutations in the dystrophin gene. Diaphragmatic weakness in DMD causes hypoventilation and elevated afterload on the right ventricle (RV). Thus, RV dysfunction in DMD develops early in disease progression. Herein, we deliver a 30-min sustained RV preload/afterload challenge to isolated hearts of wild-type (Wt) and dystrophic (Dmdmdx-4Cv) mice at both young (2-6 month) and middle-age (8-12 month) to test the hypothesis that the dystrophic RV is susceptible to dysfunction with elevated load. Young dystrophic hearts exhibited greater pressure development than wild type under baseline (Langendorff) conditions, but following RV challenge exhibited similar contractile function as wild type. Following the RV challenge, young dystrophic hearts had an increased incidence of premature ventricular contractions (PVCs) compared to wild type. Hearts of middle-aged wild-type and dystrophic mice had similar contractile function during baseline conditions. After RV challenge, hearts of middle-aged dystrophic mice had severe RV dysfunction and arrhythmias, including ventricular tachycardia. Following the RV load challenge, dystrophic hearts had greater lactate dehydrogenase (LDH) release than wild-type mice indicative of damage. Our data indicate age-dependent changes in RV function with load in dystrophin deficiency, highlighting the need to avoid sustained RV load to forestall dysfunction and arrhythmia.
Collapse
MESH Headings
- Animals
- Male
- Dystrophin/genetics
- Dystrophin/deficiency
- Mice
- Myocardial Contraction
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/metabolism
- Mice, Inbred mdx
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Andrew Behrmann
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Jessica Cayton
- Department of Veterinary PathobiologyUniversity of MissouriColumbiaMissouriUSA
| | - Matthew R. Hayden
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Michelle D. Lambert
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Zahra Nourian
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Keith Nyanyo
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Brooke Godbee
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Laurin M. Hanft
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Maike Krenz
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| | - Kerry S. McDonald
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Timothy L. Domeier
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
3
|
Uryash A, Umlas J, Mijares A, Adams JA, Lopez JR. Enhancing Muscle Intracellular Ca 2+ Homeostasis and Glucose Uptake: Passive Pulsatile Shear Stress Treatment in Type 2 Diabetes. Biomedicines 2023; 11:2596. [PMID: 37892970 PMCID: PMC10604129 DOI: 10.3390/biomedicines11102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a significant global public health problem that has seen a substantial increase in the number of affected individuals in recent decades. In a murine model of T2D (db/db), we found several abnormalities, including aberrant intracellular calcium concentration ([Ca2+]i), decreased glucose transport, increased production of reactive oxygen species (ROS), elevated levels of pro-inflammatory interleukins and creatine phosphokinase (CK), and muscle weakness. Previously, we demonstrated that passive pulsatile shear stress, generated by sinusoidal (headward-forward) motion, using a motion platform that provides periodic acceleration of the whole body in the Z plane (pGz), induces the synthesis of nitric oxide (NO) mediated by constitutive nitric oxide synthase (eNOS and nNOS). We investigated the effect of pGz on db/db a rodent model of T2D. The treatment of db/db mice with pGz resulted in several beneficial effects. It reduced [Ca2+]i overload; enhanced muscle glucose transport; and decreased ROS levels, interleukins, and CK. Furthermore, pGz treatment increased the expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and neuronal nitric oxide synthase (nNOS); reduced inducible nitric oxide synthase (iNOS); and improved muscle strength. The cytoprotective effects of pGz appear to be mediated by NO, since pretreatment with L-NAME, a nonspecific NOS inhibitor, abolished the effects of pGz on [Ca2+]i and ROS production. Our findings suggest that a non-pharmacological strategy such as pGz has therapeutic potential as an adjunct treatment to T2D.
Collapse
Affiliation(s)
- Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL 33140, USA; (A.U.); (J.A.A.)
| | - Jordan Umlas
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL 33140, USA; (A.U.); (J.A.A.)
| | - Alfredo Mijares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas 21827, Venezuela;
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL 33140, USA; (A.U.); (J.A.A.)
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
4
|
Uryash A, Mijares A, Estève E, Adams JA, Lopez JR. Smooth Muscle Cells of Dystrophic (mdx) Mice Are More Susceptible to Hypoxia; The Protective Effect of Reducing Ca 2+ Influx. Biomedicines 2023; 11:biomedicines11020623. [PMID: 36831159 PMCID: PMC9953629 DOI: 10.3390/biomedicines11020623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an inherited muscular disorder caused by mutations in the dystrophin gene. DMD patients have hypoxemic events due to sleep-disordered breathing. We reported an anomalous regulation of resting intracellular Ca2+ ([Ca2+]i) in vascular smooth muscle cells (VSMCs) from a mouse (mdx) model of DMD. We investigated the effect of hypoxia on [Ca2+]i in isolated and quiescent VSMCs from C57BL/10SnJ (WT) and C57BL/10ScSn-Dmd (mdx) male mice. [Ca2+]i was measured using Ca2+-selective microelectrodes under normoxic conditions (95% air, 5% CO2) and after hypoxia (glucose-free solution aerated with 95% N2-5% CO2 for 30 min). [Ca2+]i in mdx VSMCs was significantly elevated compared to WT under normoxia. Hypoxia-induced [Ca2+]i overload, which was significantly greater in mdx than in WT VSMCs. A low Ca2+ solution caused a reduction in [Ca2+]i and prevented [Ca2+]i overload secondary to hypoxia. Nifedipine (10 µM), a Ca2+ channel blocker, did not modify resting [Ca2+]i in VSMCs but partially prevented the hypoxia-induced elevation of [Ca2+]i in both genotypes. SAR7334 (1 µM), an antagonist of TRPC3 and TRPC6, reduced the basal and [Ca2+]i overload caused by hypoxia. Cell viability, assessed by tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, was significantly reduced in mdx compared to WT VSMCs. Pretreatment with SAR7341 increases cell viability in normoxic mdx (p < 0.001) and during hypoxia in WT and mdx VSMCs. These results provide evidence that the lack of dystrophin makes VSMCs more susceptible to hypoxia-induced [Ca2+]i overload, which appears to be mediated by increased Ca2+ entry through L-type Ca2+ and TRPC channels.
Collapse
Affiliation(s)
- Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL 33140, USA
| | - Alfredo Mijares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas 21827, Venezuela
| | - Eric Estève
- PhyMedExp, University of Montpellier, CNRS, INSERM, CHRU Montpellier, 34090 Montpellier, France
- Univ. Grenoble Alpes, CNRS, TIMC-IMAG/PRETA (UMR 5525), 38000 Grenoble, France
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL 33140, USA
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence: ; Tel.: +1-305-674-2727
| |
Collapse
|
5
|
Adams JA, Lopez JR, Banderas V, Sackner MA. A Nonrandomized Trial of the Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in Type 2 Diabetic Subjects. J Diabetes Res 2023; 2023:4454396. [PMID: 37082380 PMCID: PMC10113059 DOI: 10.1155/2023/4454396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2022] [Accepted: 03/18/2023] [Indexed: 04/22/2023] Open
Abstract
Background Diabetes mellitus has reached global epidemic proportions, with type 2 diabetes (T2DM) comprising more than 90% of all subjects with diabetes. Cardiovascular autonomic neuropathy (CAN) frequently occurs in T2DM. Heart rate variability (HRV) reflects a neural balance between the sympathetic and parasympathetic autonomic nervous systems (ANS) and a marker of CAN. Reduced HRV has been shown in T2DM and improved by physical activity and exercise. External addition of pulses to the circulation, as accomplished by a passive simulated jogging device (JD), restores HRV in nondiseased sedentary subjects after a single session. We hypothesized that application of JD for a longer period (7 days) might improve HRV in T2DM participants. Methods We performed a nonrandomized study on ten T2DM subjects (age range 44-73 yrs) who were recruited and asked to use a physical activity intervention, a passive simulated jogging device (JD) for 7 days. JD moves the feet in a repetitive and alternating manner; the upward movement of the pedal is followed by a downward movement of the forefoot tapping against a semirigid bumper to simulate the tapping of feet against the ground during jogging. Heart rate variability (HRV) analysis was performed using an electrocardiogram in each subject in seated posture on day 1 (baseline, BL), after seven days of JD (JD7), and seven days after discontinuation of JD (Post-JD). Time domain variables were computed, viz., standard deviation of all normal RR intervals (SDNN), standard deviation of the delta of all RR intervals (SDΔNN), and the square root of the mean of the sum of the squares of differences between adjacent RR intervals (RMSSD). Frequency domain measures were determined using a standard Fast Fourier spectral analysis, as well as the parameters of the Poincaré plots (SD1 and SD2). Results Seven days of JD significantly increased SDNN, SDΔNN, RMSSD, and both SD1 and SD2 from baseline values. The latter parameters remained increased Post-JD. JD did not modify the frequency domain measures of HRV. Conclusion A passive simulated jogging device increased the time domain and Poincaré variables of HRV in T2DM. This intervention provided effortless physical activity as a novel method to harness the beneficial effects of passive physical activity for improving HRV in T2DM subjects.
Collapse
Affiliation(s)
- Jose A. Adams
- Division Neonatology, Mount Sinai Medical Center of Greater Miami, Miami Beach, Florida, USA
| | - Jose R. Lopez
- Mount Sinai Medical Center of Greater Miami, Miami Beach, Florida, USA
| | | | - Marvin A. Sackner
- Mount Sinai Medical Center of Greater Miami, Miami Beach, Florida, USA
| |
Collapse
|
6
|
Lopez JR, Linares N, Adams JA, Mijares A. The Role of the Na+/Ca2+ Exchanger in Aberrant Intracellular Ca2+ in Cardiomyocytes of Chagas-Infected Rodents. Front Cell Infect Microbiol 2022; 12:890709. [PMID: 35903196 PMCID: PMC9318578 DOI: 10.3389/fcimb.2022.890709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Abstract
Chagas disease is produced by the parasite Trypanosoma cruzi (T. cruzi), which is the leading cause of death and morbidity in Latin America. We have shown that in patients with Chagas cardiomyopathy, there is a chronic elevation of diastolic Ca2+ concentration ([Ca2+]d), associated with deterioration to further address this issue, we explored the role Na+/Ca2+ exchanger (NCX). Experiments were carried out in noninfected C57BL/6 mice and infected with blood-derived trypomastigotes of the T. cruzi Y strain. Anesthetized mice were sacrificed and the cardiomyocytes were enzymatically dissociated. Diastolic [Ca2+] ([Ca2+]d) was measured using Ca2+ selective microelectrodes in cardiomyocytes from control mice (CONT) and cardiomyocytes from T. cruzi infected mice in the early acute phase (EAP) at 20 dpi, in the acute phase (AP) at 40 dpi, and in the chronic phase (CP) at 120 dpi. [Ca2+]d was 1.5-times higher in EAP, 2.6-times in AP, and 3.4-times in CP compared to CONT. Exploring the reverse mode activity of NCX, we replaced extracellular Na+ in equivalent amounts with N-methyl-D-glucamine. Reduction of [Na+]e to 65 mM caused an increase in [Ca2+]d of 1.7 times in cardiomyocytes from CONT mice, 2 times in EAP infected mice, 2.4 times in AP infected mice and 2.8 in CP infected mice. The Na+ free solution caused a further elevation of [Ca2+]d of 2.5 times in cardiomyocytes from CONT, 2.8 times in EAP infected mice, 3.1 times in AP infected mice, and 3.3 times in CP infected mice. Extracellular Ca2+ withdrawal reduced [Ca2+]d in both CONT and cardiomyocytes from Chagas-infected mice and prevented the increase in [Ca2+]d induced by Na+ depletion. Preincubation with 10µM KB-R7943 or in 1µM YM-244769 reduced [Ca2+]d in cardiomyocytes from infected mice, but not control mice. Furthermore, both NCX blockers prevented the increase in [Ca2+]d associated with exposure to a solution without Na+. These results suggest that Ca2+ entry through the reverse NCX mode plays a significant role in the observed [Ca2+]d dyshomeostasis in Chagas infected cardiomyocytes. Additionally, NCX inhibitors may be a viable therapeutic approach for treating patients with Chagas cardiomyopathy.
Collapse
Affiliation(s)
- Jose R. Lopez
- Department of Research, Mount Sinai, Medical Center, Miami, FL, United States
| | - Nancy Linares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai, Medical Center, Miami, FL, United States
| | - Alfredo Mijares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
- *Correspondence: Alfredo Mijares,
| |
Collapse
|