1
|
Rai M, Demontis F. Muscle-to-Brain Signaling Via Myokines and Myometabolites. Brain Plast 2022; 8:43-63. [PMID: 36448045 PMCID: PMC9661353 DOI: 10.3233/bpl-210133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle health and function are important determinants of systemic metabolic homeostasis and organism-wide responses, including disease outcome. While it is well known that exercise protects the central nervous system (CNS) from aging and disease, only recently this has been found to depend on the endocrine capacity of skeletal muscle. Here, we review muscle-secreted growth factors and cytokines (myokines), metabolites (myometabolites), and other unconventional signals (e.g. bioactive lipid species, enzymes, and exosomes) that mediate muscle-brain and muscle-retina communication and neuroprotection in response to exercise and associated processes, such as the muscle unfolded protein response and metabolic stress. In addition to impacting proteostasis, neurogenesis, and cognitive functions, muscle-brain signaling influences complex brain-dependent behaviors, such as depression, sleeping patterns, and biosynthesis of neurotransmitters. Moreover, myokine signaling adapts feeding behavior to meet the energy demands of skeletal muscle. Contrary to protective myokines induced by exercise and associated signaling pathways, inactivity and muscle wasting may derange myokine expression and secretion and in turn compromise CNS function. We propose that tailoring muscle-to-CNS signaling by modulating myokines and myometabolites may combat age-related neurodegeneration and brain diseases that are influenced by systemic signals.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
2
|
"HIIT the Inflammation": Comparative Effects of Low-Volume Interval Training and Resistance Exercises on Inflammatory Indices in Obese Metabolic Syndrome Patients Undergoing Caloric Restriction. Nutrients 2022; 14:nu14101996. [PMID: 35631137 PMCID: PMC9145085 DOI: 10.3390/nu14101996] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Exercise is a cornerstone in metabolic syndrome (MetS) treatment. However, the effects of low-volume exercise modalities on MetS-associated low-grade inflammation are unclear. A total of 106 MetS patients (53.7 ± 11.4 years) were randomized to low-volume high-intensity interval training (LOW-HIIT, 14 min/session), single-set resistance training (1-RT, ~15 min/session), whole-body electromyostimulation (WB-EMS, 20 min/session), three-set resistance training (3-RT, ~50 min/session), each performed 2 ×/week for 12 weeks, or a control group (CON). All groups received nutritional counseling for weight loss. Inflammatory and cardiometabolic indices were analyzed pre- and post-intervention. All groups significantly reduced body weight by an average of 3.6%. Only LOW-HIIT reduced C-reactive protein (CRP) (−1.6 mg/L, p = 0.001) and interleukin-6 (−1.1 pg/mL, p = 0.020). High-sensitivity CRP and lipopolysaccharide-binding protein decreased following LOW-HIIT (−1.4 mg/L, p = 0.001 and −2.1 ng/mL, p = 0.004) and 3-RT (−0.6 mg/L, p = 0.044 and −2.0 ng/mL, p < 0.001). MetS severity score improved with LOW-HIIT (−1.8 units, p < 0.001), 1-RT (−1.6 units, p = 0.005), and 3-RT (−2.3 units, p < 0.001). Despite similar effects on body weight, low-volume exercise modalities have different impact on inflammatory and cardiometabolic outcomes in MetS patients. LOW-HIIT has superior efficacy for improving inflammation compared to 1-RT and WB-EMS. Resistance-based exercise appears to require a higher volume to promote beneficial impact on inflammation.
Collapse
|
3
|
Nagel T, Melton B, Grosicki GJ. Fighting arterial stiffness: A case for the importance of cardiorespiratory fitness in firefighters. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Profit versus Quality: The Enigma of Scientific Wellness. J Pers Med 2022; 12:jpm12010034. [PMID: 35055349 PMCID: PMC8779909 DOI: 10.3390/jpm12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Abstract
The “best of both worlds” is not often the case when it comes to implementing new health models, particularly in community settings. It is often a struggle between choosing or balancing between two components: depth of research or financial profit. This has become even more apparent with the recent shift to move away from a traditionally reactive model of medicine toward a predictive/preventative one. This has given rise to many new concepts and approaches with a variety of often overlapping aims. The purpose of this perspective is to highlight the pros and cons of the numerous ventures already implementing new concepts, to varying degrees, in community settings of quite differing scales—some successful and some falling short. Scientific wellness is a complex, multifaceted concept that requires integrated experimental/analytical designs that demand both high-quality research/healthcare and significant funding. We currently see the more likely long-term success of those ventures in which any profit is largely reinvested into research efforts and health/healthspan is the primary focus.
Collapse
|
5
|
Gherghel A, Badau D, Badau A, Moraru L, Manolache GM, Oancea BM, Tifrea C, Tudor V, Costache RM. Optimizing the Explosive Force of the Elite Level Football-Tennis Players through Plyometric and Specific Exercises. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158228. [PMID: 34360523 PMCID: PMC8345974 DOI: 10.3390/ijerph18158228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
The aim of the research was to implement an athletic program to improve the explosive force in order to optimize physical fitness at the level of elite football-tennis players and evaluate the progress made through specific tests using the Opto Jump. The research included 10 elite European and world-class players, on whom an experimental program was applied in order to improve the explosive force of the limbs in conditions of speed, endurance, and dynamic balance. Study tests: five vertical jumps on the spot, on the left/right leg; five back and forth jumps on the left/right leg; five left/right side jumps on the left/right leg; vertical jumps on both legs 60 s; BFS vertical jumps. For each test, the following parameters specific to the explosive force were statistically analyzed: contact time (s); flight time (s); jump height (cm), jump power (w/kg); RSI—Reactive Strength Index, defined as Height (m/s). In the study, the average value of the parameters specific to the jumps performed in each test was taken into account. During the study, the tests were performed and processed on the Opto Jump device and software. In all tests of the experiment monitored through Opto Jump, significant progress was made in the final test compared to the initial one, which demonstrates the efficiency of the physical training program implemented for the development of explosive force, with an impact on the sports performance of elite players. The most relevant results obtained for the left leg regarding the improvement of the explosive force of the lower limbs materialized in the jump height parameter was in the test of five vertical jumps on one leg on the spot, and for the right leg in the tests of: five back and forth jumps and five left/right side jumps. The most significant advances in the study were in the tests, in descending order of their weight: 60 s vertical jumps on both legs; five back-and-forth jumps and five left/right side jumps, five vertical jumps on one leg standing, and BFS vertical jumps.
Collapse
Affiliation(s)
- Anamaria Gherghel
- Faculty of Physical Education and Sports, National University of Physical Education and Sports, 060057 Bucharest, Romania; (A.G.); (C.T.); (V.T.); (R.M.C.)
| | - Dana Badau
- Faculty of Sciences and Letters, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania;
- Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Brasov, Romania;
- Correspondence: (D.B.); (L.M.)
| | - Adela Badau
- Faculty of Sciences and Letters, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania;
| | - Liviu Moraru
- Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
- Correspondence: (D.B.); (L.M.)
| | | | - Bogdan Marian Oancea
- Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Brasov, Romania;
| | - Corina Tifrea
- Faculty of Physical Education and Sports, National University of Physical Education and Sports, 060057 Bucharest, Romania; (A.G.); (C.T.); (V.T.); (R.M.C.)
| | - Virgil Tudor
- Faculty of Physical Education and Sports, National University of Physical Education and Sports, 060057 Bucharest, Romania; (A.G.); (C.T.); (V.T.); (R.M.C.)
| | - Raluca Maria Costache
- Faculty of Physical Education and Sports, National University of Physical Education and Sports, 060057 Bucharest, Romania; (A.G.); (C.T.); (V.T.); (R.M.C.)
| |
Collapse
|
6
|
Atakan MM, Li Y, Koşar ŞN, Turnagöl HH, Yan X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7201. [PMID: 34281138 PMCID: PMC8294064 DOI: 10.3390/ijerph18137201] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Engaging in regular exercise results in a range of physiological adaptations offering benefits for exercise capacity and health, independent of age, gender or the presence of chronic diseases. Accumulating evidence shows that lack of time is a major impediment to exercise, causing physical inactivity worldwide. This issue has resulted in momentum for interval training models known to elicit higher enjoyment and induce adaptations similar to or greater than moderate-intensity continuous training, despite a lower total exercise volume. Although there is no universal definition, high-intensity interval exercise is characterized by repeated short bursts of intense activity, performed with a "near maximal" or "all-out" effort corresponding to ≥90% of maximal oxygen uptake or >75% of maximal power, with periods of rest or low-intensity exercise. Research has indicated that high-intensity interval training induces numerous physiological adaptations that improve exercise capacity (maximal oxygen uptake, aerobic endurance, anaerobic capacity etc.) and metabolic health in both clinical and healthy (athletes, active and inactive individuals without any apparent disease or disorder) populations. In this paper, a brief history of high-intensity interval training is presented, based on the novel findings of some selected studies on exercise capacity and health, starting from the early 1920s to date. Further, an overview of the mechanisms underlying the physiological adaptations in response to high-intensity interval training is provided.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (H.H.T.)
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (H.H.T.)
| | - Hüseyin Hüsrev Turnagöl
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (H.H.T.)
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne 8001, Australia;
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
| |
Collapse
|
7
|
Burtscher J, Millet GP, Place N, Kayser B, Zanou N. The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection. Int J Mol Sci 2021; 22:6479. [PMID: 34204228 PMCID: PMC8235687 DOI: 10.3390/ijms22126479] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Regular exercise is associated with pronounced health benefits. The molecular processes involved in physiological adaptations to exercise are best understood in skeletal muscle. Enhanced mitochondrial functions in muscle are central to exercise-induced adaptations. However, regular exercise also benefits the brain and is a major protective factor against neurodegenerative diseases, such as the most common age-related form of dementia, Alzheimer's disease, or the most common neurodegenerative motor disorder, Parkinson's disease. While there is evidence that exercise induces signalling from skeletal muscle to the brain, the mechanistic understanding of the crosstalk along the muscle-brain axis is incompletely understood. Mitochondria in both organs, however, seem to be central players. Here, we provide an overview on the central role of mitochondria in exercise-induced communication routes from muscle to the brain. These routes include circulating factors, such as myokines, the release of which often depends on mitochondria, and possibly direct mitochondrial transfer. On this basis, we examine the reported effects of different modes of exercise on mitochondrial features and highlight their expected benefits with regard to neurodegeneration prevention or mitigation. In addition, knowledge gaps in our current understanding related to the muscle-brain axis in neurodegenerative diseases are outlined.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|