1
|
Kabakov AY, Roder K, Bronk P, Turan NN, Dhakal S, Zhong M, Lu Y, Zeltzer ZA, Najman-Licht YB, Karma A, Koren G. E3 ubiquitin ligase rififylin has yin and yang effects on rabbit cardiac transient outward potassium currents (I to) and corresponding channel proteins. J Biol Chem 2024; 300:105759. [PMID: 38367666 PMCID: PMC10945274 DOI: 10.1016/j.jbc.2024.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
Genome-wide association studies have reported a correlation between a SNP of the RING finger E3 ubiquitin protein ligase rififylin (RFFL) and QT interval variability in humans (Newton-Cheh et al., 2009). Previously, we have shown that RFFL downregulates expression and function of the human-like ether-a-go-go-related gene potassium channel and corresponding rapidly activating delayed rectifier potassium current (IKr) in adult rabbit ventricular cardiomyocytes. Here, we report that RFFL also affects the transient outward current (Ito), but in a peculiar way. RFFL overexpression in adult rabbit ventricular cardiomyocytes significantly decreases the contribution of its fast component (Ito,f) from 35% to 21% and increases the contribution of its slow component (Ito,s) from 65% to 79%. Since Ito,f in rabbits is mainly conducted by Kv4.3, we investigated the effect of RFFL on Kv4.3 expressed in HEK293A cells. We found that RFFL overexpression reduced Kv4.3 expression and corresponding Ito,f in a RING domain-dependent manner in the presence or absence of its accessory subunit Kv channel-interacting protein 2. On the other hand, RFFL overexpression in Kv1.4-expressing HEK cells leads to an increase in both Kv1.4 expression level and Ito,s, similarly in a RING domain-dependent manner. Our physiologically detailed rabbit ventricular myocyte computational model shows that these yin and yang effects of RFFL overexpression on Ito,f, and Ito,s affect phase 1 of the action potential waveform and slightly decrease its duration in addition to suppressing IKr. Thus, RFFL modifies cardiac repolarization reserve via ubiquitination of multiple proteins that differently affect various potassium channels and cardiac action potential duration.
Collapse
Affiliation(s)
- Anatoli Y Kabakov
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Karim Roder
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Peter Bronk
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Nilüfer N Turan
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Saroj Dhakal
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Mingwang Zhong
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Yichun Lu
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Zachary A Zeltzer
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yonatan B Najman-Licht
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Gideon Koren
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
2
|
Baggett BC, Murphy KR, Sengun E, Mi E, Cao Y, Turan NN, Lu Y, Schofield L, Kim TY, Kabakov AY, Bronk P, Qu Z, Camelliti P, Dubielecka P, Terentyev D, del Monte F, Choi BR, Sedivy J, Koren G. Myofibroblast senescence promotes arrhythmogenic remodeling in the aged infarcted rabbit heart. eLife 2023; 12:e84088. [PMID: 37204302 PMCID: PMC10259375 DOI: 10.7554/elife.84088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
Progressive tissue remodeling after myocardial infarction (MI) promotes cardiac arrhythmias. This process is well studied in young animals, but little is known about pro-arrhythmic changes in aged animals. Senescent cells accumulate with age and accelerate age-associated diseases. Senescent cells interfere with cardiac function and outcome post-MI with age, but studies have not been performed in larger animals, and the mechanisms are unknown. Specifically, age-associated changes in timecourse of senescence and related changes in inflammation and fibrosis are not well understood. Additionally, the cellular and systemic role of senescence and its inflammatory milieu in influencing arrhythmogenesis with age is not clear, particularly in large animal models with cardiac electrophysiology more similar to humans than previously studied animal models. Here, we investigated the role of senescence in regulating inflammation, fibrosis, and arrhythmogenesis in young and aged infarcted rabbits. Aged rabbits exhibited increased peri-procedural mortality and arrhythmogenic electrophysiological remodeling at the infarct border zone (IBZ) compared to young rabbits. Studies of the aged infarct zone revealed persistent myofibroblast senescence and increased inflammatory signaling over a 12-week timecourse. Senescent IBZ myofibroblasts in aged rabbits appear to be coupled to myocytes, and our computational modeling showed that senescent myofibroblast-cardiomyocyte coupling prolongs action potential duration (APD) and facilitates conduction block permissive of arrhythmias. Aged infarcted human ventricles show levels of senescence consistent with aged rabbits, and senescent myofibroblasts also couple to IBZ myocytes. Our findings suggest that therapeutic interventions targeting senescent cells may mitigate arrhythmias post-MI with age.
Collapse
Affiliation(s)
- Brett C Baggett
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Kevin R Murphy
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Elif Sengun
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
- Department of Pharmacology, Institute of Graduate Studies in Health Sciences, Istanbul UniversityIstanbulTurkey
| | - Eric Mi
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Yueming Cao
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Nilufer N Turan
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Yichun Lu
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Lorraine Schofield
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Tae Yun Kim
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Anatoli Y Kabakov
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Peter Bronk
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Zhilin Qu
- School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of SurreyGuildfordUnited Kingdom
| | - Patrycja Dubielecka
- Brown UniversityProvidenceUnited States
- Department of Hematology, Rhode Island HospitalProvidenceUnited States
| | - Dmitry Terentyev
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | | | - Bum-Rak Choi
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | | | - Gideon Koren
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|
3
|
Kang GJ, Xie A, Kim E, Dudley SC. miR-448 regulates potassium voltage-gated channel subfamily A member 4 (KCNA4) in ischemia and heart failure. Heart Rhythm 2023; 20:730-736. [PMID: 36693615 PMCID: PMC10149585 DOI: 10.1016/j.hrthm.2023.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND MicroRNA miR-448 mediates some of the effects of ischemia on arrhythmic risk. Potassium voltage-gated channel subfamily A member 4 (KCNA4) encodes a Kv1.4 current that opens in response to membrane depolarization and is essential for regulating the action potential duration in heart. KCNA4 has a miR-448 binding site. OBJECTIVE We investigated whether miR-448 was involved in the regulation of KCNA4 messenger RNA expression in ischemia. METHODS Quantitative real-time reverse-transcriptase polymerase chain reaction was used to investigate the expression of KCNA4 and miR-448. Pull-down assays were used to examine the interaction between miR-448 and KCNA4. miR-448 decoy and binding site mutation were used to examine the specificity of the effect for KCNA4. RESULTS The expression of KCNA4 is diminished in ischemia and human heart failure tissues with ventricular tachycardia. Previously, we have shown that miR-448 is upregulated in ischemia and inhibition can prevent arrhythmic risk after myocardial infarction. The 3'-untranslated region of KCNA4 has a conserved miR-448 binding site. miR-448 bound to this site directly and reduced KCNA4 expression and the transient outward potassium current. Inhibition of miR-448 restored KCNA4. CONCLUSION These findings showed a link between Kv1.4 downregulation and miR-448-mediated upregulation in ischemia, suggesting a new mechanism for the antiarrhythmic effect of miR-448 inhibition.
Collapse
Affiliation(s)
- Gyeoung-Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - An Xie
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Eunji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Samuel C Dudley
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
4
|
Wu J, Tan Y, Kang D, Yu J, Qi J, Wu J, Zhang M. Xiaoyu Jiangzhi capsule protects against heart failure via Ca2+/CaMKII signaling pathways in mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|