1
|
Lin K, Hou Y, Li R, Fan F, Hao Y, Wang Y, Huang Y, Li P, Zhu L, Huang X, Zhao YQ. Annexin-A1 tripeptide enhances functional recovery and mitigates brain damage in traumatic brain injury by inhibiting neuroinflammation and preventing ANXA1 nuclear translocation in mice. Metab Brain Dis 2024; 39:1559-1571. [PMID: 39120851 DOI: 10.1007/s11011-024-01404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
This study explores the role and mechanism of Annexin-A1 Tripeptide (ANXA1sp) in mitigating neuronal damage and promoting functional recovery in a mouse model of traumatic brain injury (TBI). Our goal is to identify ANXA1sp as a potential therapeutic drug candidate for TBI treatment. Adult male C57BL/6J mice were subjected to controlled cortical impact (CCI) to simulate TBI, supplemented by an in vitro model of glutamate-induced TBI in HT22 cells. We assessed neurological deficits using the Modified Neurological Severity Score (mNSS), tested sensorimotor functions with beam balance and rotarod tests, and evaluated cognitive performance via the Morris water maze. Neuronal damage was quantified using Nissl and TUNEL staining, while microglial activation and inflammatory responses were measured through immunostaining, quantitative PCR (qPCR), Western blotting, and ELISA. Additionally, we evaluated cell viability in response to glutamate toxicity using the Cell Counting Kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release. Intraperitoneal administration of ANXA1sp significantly enhanced neurological outcomes, markedly reducing sensorimotor and cognitive impairments caused by TBI. This treatment resulted in a significant reduction in lesion volume and decreased neuronal cell death in the ipsilateral cortex. Moreover, ANXA1sp effectively diminished microglial activation around the brain lesion and decreased the levels of pro-inflammatory markers such as IL-6, IL-1β, TNF-α, and TGF-β in the cortex, indicating a significant reduction in neuroinflammation post-TBI. ANXA1sp also offered protection against neuronal cell death induced by glutamate toxicity, primarily by inhibiting the nuclear translocation of ANXA1, highlighting its potential as a neuroprotective strategy in TBI management. Administration of ANXA1sp significantly reduced neuroinflammation and neuronal cell death, primarily by blocking the nuclear translocation of ANXA1. This treatment substantially reduced brain damage and improved neurological functional recovery after TBI. Consequently, ANXA1sp stands out as a promising neuroprotective agent for TBI therapy.
Collapse
Affiliation(s)
- Kai Lin
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yuejiao Hou
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ruxin Li
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Fengyan Fan
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yinan Hao
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yuan Wang
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yue Huang
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Peng Li
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Lingling Zhu
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Yong-Qi Zhao
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
2
|
Ma W, Huang Z, Miao Y, Ma X, Zhang Z, Liu W, Xie P. ANXA1sp modulates the protective effect of Sirt3-induced mitophagy against sepsis-induced myocardial injury in mice. Acta Physiol (Oxf) 2024; 240:e14184. [PMID: 38822624 DOI: 10.1111/apha.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
AIM Sepsis-induced myocardial injury (SIMI) may be associated with insufficient mitophagy in cardiomyocytes, but the exact mechanism involved remains unknown. Sirtuin 3 (Sirt3) is mainly found in the mitochondrial matrix and is involved in repairing mitochondrial function through means such as the activation of autophagy. Previously, we demonstrated that the annexin-A1 small peptide (ANXA1sp) can promote Sirt3 expression in mitochondria. In this study, we hypothesized that the activation of Sirt3 by ANXA1sp induces mitophagy, thereby providing a protective effect against SIMI in mice. METHODS A mouse model of SIMI was established via cecal ligation and puncture. Intraperitoneal injections of ANXA1sp, 3TYP, and 3MA were administered prior to modeling. After successful modeling, IL-6, TNF-α, CK-MB, and CTn-I levels were measured; cardiac function was assessed using echocardiography; myocardial mitochondrial membrane potential, ROS, and ATP production were determined; myocardial mitochondrial ultrastructure was observed using transmission electron microscopy; and the expression levels of Sirt3 and autophagy-related proteins were detected using western blotting. RESULTS ANXA1sp significantly reduced serum IL-6, TNF-α, CK-MB, and CTn-I levels; decreased myocardial ROS production; increased mitochondrial membrane potential and ATP synthesis; and improved myocardial mitochondrial ultrastructure in septic mice. Furthermore, ANXA1sp promoted Sirt3 expression and activated the AMPK-mTOR pathway to induce myocardial mitophagy. These protective effects of ANXA1sp were reversed upon treatment with the Sirt3 blocker, 3-TYP. CONCLUSION ANXA1sp can reverse SIMI, and the underlying mechanism may be related to the activation of the AMPK-mTOR pathway following upregulation of Sirt3 by ANXA1sp, which, in turn, induces autophagy.
Collapse
Affiliation(s)
- Wanyu Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhijia Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Wenjie Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Xie
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Peng X, Ni H, Kuang B, Wang Z, Hou S, Gu S, Gong N. Sirtuin 3 in renal diseases and aging: From mechanisms to potential therapies. Pharmacol Res 2024; 206:107261. [PMID: 38917912 DOI: 10.1016/j.phrs.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The longevity protein sirtuins (SIRTs) belong to a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases. In mammals, SIRTs comprise seven members (SIRT1-7) which are localized to different subcellular compartments. As the most prominent mitochondrial deacetylases, SIRT3 is known to be regulated by various mechanisms and participate in virtually all aspects of mitochondrial homeostasis and metabolism, exerting significant impact on multiple organs. Notably, the kidneys possess an abundance of mitochondria that provide substantial energy for filtration and reabsorption. A growing body of evidence now supports the involvement of SIRT3 in several renal diseases, including acute kidney injury, chronic kidney disease, and diabetic nephropathy; notably, these diseases are all associated with aging. In this review, we summarize the emerging role of SIRT3 in renal diseases and aging, and highlights the intricate mechanisms by which SIRT3 exerts its effects. In addition, we highlight the potential therapeutic significance of modulating SIRT3 and provide valuable insights into the therapeutic role of SIRT3 in renal diseases to facilitate clinical application.
Collapse
Affiliation(s)
- Xuan Peng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Haiqiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Baicheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhiheng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuaiheng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shiqi Gu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
4
|
Qin S, Ren Y, Feng B, Wang X, Liu J, Zheng J, Li K, Mei H, Dai Q, Yu H, Fu X. Annexin-A1 short peptide alleviates septic myocardial injury by upregulating SIRT3 and inhibiting myocardial cell apoptosis. Histol Histopathol 2024; 39:947-957. [PMID: 38174782 DOI: 10.14670/hh-18-691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Septic myocardial injury is a common complication of severe sepsis, which occurs in about 50% of cases. Patients with this disease may experience varying degrees of myocardial damage. Annexin-A1 short peptide (ANXA1sp), with a molecular structure of Ac-Gln-Ala-Tyr, has been reported to exert an organ protective effect in the perioperative period by modulating sirtuin-3 (SIRT3). Whether it possesses protective activity against sepsis-induced cardiomyopathy is worthy of study. This study aimed to investigate whether ANXA1sp exerts its anti-apoptotic effect in septic myocardial injury in vitro and in vivo via regulating SIRT3. In this study, we established in vivo and in vivo models of septic myocardial injury based on C57BL/6 mice and primary cardiomyocytes by lipopolysaccharide (LPS) induction. Results showed that ANXA1sp pretreatment enhanced the seven-day survival rate, improved left ventricular ejection fraction (EF), left ventricular fractional shortening (FS), and cardiac output (CO), and reduced the levels of creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH). Western blotting results revealed that ANXA1sp significantly increased the expression of SIRT3, Bcl-2, and downregulated Bax expression. TUNEL staining and flow cytometry results showed that ANXA1sp could attenuate the apoptosis rate of cardiomyocytes, whereas this anti-apoptotic effect was significantly attenuated after SIRT3 knockout. To sum up, ANXA1sp can alleviate LPS-induced myocardial injury by reducing myocardial apoptosis via SIRT3 upregulation.
Collapse
Affiliation(s)
- Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Banghai Feng
- Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou, PR China
| | - Xiaoqin Wang
- Department of Pediatric, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Junya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Jie Zheng
- Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Kang Li
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Qiuyu Dai
- Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Hong Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Xiaoyun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| |
Collapse
|
5
|
Ge L, Chen W, Wei F. Annexin A1 protects epidermal stem cells against ultraviolet-B irradiation-induced mitochondrial dysfunction. Arch Dermatol Res 2024; 316:385. [PMID: 38874830 DOI: 10.1007/s00403-024-02875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 02/28/2024] [Accepted: 04/07/2024] [Indexed: 06/15/2024]
Abstract
Ultraviolet-B (UV-B) radiation overexposure causes function impairment of epidermal stem cells (ESCs). We explored the mechanism of Annexin A1 (ANXA1) ameliorating UV-B-induced ESC mitochondrial dysfunction/cell injury. ESCs were cultured in vitro and irradiated with different doses of UV-B. Cell viability/ANXA1 protein level were assessed. After oe-ANXA1 transfection, ESCs were treated with oe-ANXA1/UV-B irradiation/CCCP/CCG-1423/3-methyladenine for 12 h. Cell viability/death, and adenosine triphosphate (ATP)/reactive oxygen species (ROS) levels were determined. Mitochondrial membrane potential (MMP) changes/DNA (mtDNA) content/oxygen consumption and RhoA activation were assessed. ROCK1/p-MYPT1/MYPT1/(LC3BII/I)/Beclin-1/p62 protein levels were determined. Mitochondrial morphology was observed. Mito-Tracker Green (MTG) and LC3B levels were determined. UV-B irradiation decreased cell viability/ANXA1 expression in a dose-dependent manner. UV-B-treated ESCs exhibited reduced cell viability/ATP content/MMP level/mitochondrial respiratory control ratio/mtDNA number/RhoA activity/MYPT1 phosphorylation/MTG+LC3B+ cells/(LC3BII/I) and Beclin-1 proteins, increased cell death/ROS/p62/IL-1β/IL-6/TNF-α expression, contracted mitochondrial, disappeared mitochondrial cristae, and increased vacuolar mitochondria, which were averted by ANXA1 overexpression, suggesting that UV-B induced ESC mitochondrial dysfunction/cell injury/inflammation by repressing mitophagy, but ANXA1 promoted mitophagy by activating the RhoA/ROCK1 pathway, thus repressing UV-B's effects. Mitophagy activation ameliorated UV-B-caused ESC mitochondrial dysfunction/cell injury/inflammation. Mitophagy inhibition partly diminished ANXA1-ameliorated UV-B's effects. Conjointly, ANXA1 promoted mitophagy by activating the RhoA/ROCK1 pathway, thereby improving UV-B-induced ESC mitochondrial dysfunction/cell injury.
Collapse
Affiliation(s)
- Lingzhi Ge
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Mount Tai Street, Taian, 271000, Shandong Province, China
| | - Wenfang Chen
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Mount Tai Street, Taian, 271000, Shandong Province, China
| | - Fangli Wei
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Mount Tai Street, Taian, 271000, Shandong Province, China.
| |
Collapse
|
6
|
Zheng F, Li W, Su S, Hui Q. Annexin A1 conveys neuroprotective function via inhibiting oxidative stress in diffuse axonal injury of rats. Neuroreport 2024; 35:466-475. [PMID: 38526918 DOI: 10.1097/wnr.0000000000002030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Diffuse axonal injury (DAI) is a critical pathological facet of traumatic brain injury (TBI). Oxidative stress plays a significant role in the progress of DAI. Annexin A1 (AnxA1) has been demonstrated to benefit from recovery of neurofunctional outcomes after TBI. However, whether AnxA1 exhibits neuronal protective function by modulating oxidative stress in DAI remains unknown. Expression of AnxA1 was evaluated via real-time PCR and western blotting in rat brainstem after DAI. The neurological effect of AnxA1 following DAI through quantification of modified neurologic severity score (mNSS) was compared between wild-type and AnxA1-knockout rats. Brain edema and neuronal apoptosis, as well as expression of oxidative factors and inflammatory cytokines, were analyzed between wild-type and AnxA1 deficiency rats after DAI. Furthermore, mNSS, oxidative and inflammatory cytokines were assayed after timely administration of recombinant AnxA1 for DAI rats. In the brainstem of DAI, the expression of AnxA1 remarkably increased. Ablation of AnxA1 increased the mNSS score and brain water content of rats after DAI. Neuron apoptosis in the brainstem after DAI was exaggerated by AnxA1 deficiency. In addition, AnxA1 deficiency significantly upregulated the level of oxidative and inflammatory factors in the brainstem of DAI rats. Moreover, mNSS decreased by AnxA1 treatment in rats following DAI. Expression of oxidative and inflammatory molecules in rat brainstem subjected to DAI inhibited by AnxA1 administration. AnxA1 exhibited neuronal protective function in the progression of DAI mainly dependent on suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Weixin Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Shaobo Su
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qiaoyan Hui
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Chen Y, Lu X, Whitney RL, Li Y, Robson MJ, Blakely RD, Chi JT, Crowley SD, Privratsky JR. Novel anti-inflammatory effects of the IL-1 receptor in kidney myeloid cells following ischemic AKI. Front Mol Biosci 2024; 11:1366259. [PMID: 38693918 PMCID: PMC11061482 DOI: 10.3389/fmolb.2024.1366259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024] Open
Abstract
Introduction: Acute kidney injury (AKI) is one of the most common causes of organ failure in critically ill patients. Following AKI, the canonical pro-inflammatory cytokine interleukin-1β (IL-1β) is released predominantly from activated myeloid cells and binds to the interleukin-1 receptor R1 (IL-1R1) on leukocytes and kidney parenchymal cells. IL-1R1 on kidney tubular cells is known to amplify the immune response and exacerbate AKI. However, the specific role of IL-1R1 on myeloid cells during AKI is poorly understood. The objective of the present study was to elucidate the function of myeloid cell IL-1R1 during AKI. As IL-1R1 is known to signal through the pro-inflammatory Toll-like receptor (TLR)/MyD88 pathway, we hypothesized that myeloid cells expressing IL-1R1 would exacerbate AKI. Methods: IL-1R1 was selectively depleted in CD11c+-expressing myeloid cells with CD11cCre + /IL-1R1 fl/fl (Myel KO) mice. Myel KO and littermate controls (CD11cCre - /IL-1R1 fl/fl-Myel WT) were subjected to kidney ischemia/reperfusion (I/R) injury. Kidney injury was assessed by blood urea nitrogen (BUN), serum creatinine and injury marker neutrophil gelatinase-associated lipocalin (NGAL) protein expression. Renal tubular cells (RTC) were co-cultured with CD11c+ bone marrow-derived dendritic cells (BMDC) from Myel KO and Myel WT mice. Results: Surprisingly, compared to Myel WT mice, Myel KO mice displayed exaggerated I/R-induced kidney injury, as measured by elevated levels of serum creatinine and BUN, and kidney NGAL protein expression. In support of these findings, in vitro co-culture studies showed that RTC co-cultured with Myel KO BMDC (in the presence of IL-1β) exhibited higher mRNA levels of the kidney injury marker NGAL than those co-cultured with Myel WT BMDC. In addition, we observed that IL-1R1 on Myel WT BMDC preferentially augmented the expression of anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1ra/Il1rn), effects that were largely abrogated in Myel KO BMDC. Furthermore, recombinant IL-1Ra could rescue IL-1β-induced tubular cell injury. Discussion: Our findings suggest a novel function of IL-1R1 is to serve as a critical negative feedback regulator of IL-1 signaling in CD11c+ myeloid cells to dampen inflammation to limit AKI. Our results lend further support for cell-specific, as opposed to global, targeting of immunomodulatory agents.
Collapse
Affiliation(s)
- Yanting Chen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Xiaohan Lu
- Department of Medicine, Duke University, Durham, NC, United States
| | - Raeann L. Whitney
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Yu Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Anesthesiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi, China
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Jen-Tsan Chi
- Department of Microbiology and Molecular Genetics, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Steven D. Crowley
- Department of Medicine, Duke University, Durham, NC, United States
- Durham VA Medical Center, Durham, NC, United States
| | - Jamie R. Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
8
|
Yuan J, Zhao J, Qin Y, Zhang Y, Wang A, Ma R, Han M, Hui Y, Guo S, Ning X, Sun S. The protective mechanism of SIRT3 and potential therapy in acute kidney injury. QJM 2024; 117:247-255. [PMID: 37354530 DOI: 10.1093/qjmed/hcad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Indexed: 06/26/2023] Open
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome with a poor short-term prognosis, which increases the risk of the development of chronic kidney diseases and end-stage kidney disease. However, the underlying mechanism of AKI remains to be fully elucidated, and effective prevention and therapeutic strategies are still lacking. Given the enormous energy requirements for filtration and absorption, the kidneys are rich in mitochondria, which are unsurprisingly involved in the onset or progression of AKI. Accumulating evidence has recently documented that Sirtuin 3 (SIRT3), one of the most prominent deacetylases highly expressed in the mitochondria, exerts a protective effect on AKI. SIRT3 protects against AKI by regulating energy metabolism, inhibiting oxidative stress, suppressing inflammation, ameliorating apoptosis, inhibiting early-stage fibrosis and maintaining mitochondrial homeostasis. Besides, a number of SIRT3 activators have exhibited renoprotective properties both in animal models and in vitro experiments, but have not yet been applied to clinical practice, indicating a promising therapeutic approach. In this review, we unravel and summarize the recent advances in SIRT3 research and the potential therapy of SIRT3 activators in AKI.
Collapse
Affiliation(s)
- Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Nephrology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, 050011, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, 710021, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, 710021, China
| | - Rui Ma
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, 710021, China
| | - Yueqing Hui
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuxian Guo
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
9
|
Qin S, Ren YC, Liu JY, Chen WB, Fu B, Zheng J, Fu XY. ANXA1sp attenuates sepsis-induced myocardial injury by promoting mitochondrial biosynthesis and inhibiting oxidative stress and autophagy via SIRT3 upregulation. Kaohsiung J Med Sci 2024; 40:35-45. [PMID: 37877496 DOI: 10.1002/kjm2.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Sepsis-induced myocardial injury is one of the most difficult complications of sepsis in intensive care units. Annexin A1 (ANXA1) short peptide (ANXA1sp) protects organs during the perioperative period. However, the protective effect of ANXA1sp against sepsis-induced myocardial injury remains unclear. We aimed to explore the protective effects and mechanisms of ANXA1sp against sepsis-induced myocardial injury both in vitro and in vivo. Cellular and animal models of myocardial injury in sepsis were established with lipopolysaccharide. The cardiac function of mice was assessed by high-frequency echocardiography. Elisa assay detected changes in inflammatory mediators and markers of myocardial injury. Western blotting detected autophagy and mitochondrial biosynthesis-related proteins. Autophagic flux changes were observed by confocal microscopy, and autophagosomes were evaluated by TEM. ATP, SOD, ROS, and MDA levels were also detected.ANXA1sp pretreatment enhanced the 7-day survival rate, improved cardiac function, and reduced TNF-α, IL-6, IL-1β, CK-MB, cTnI, and LDH levels. ANXA1sp significantly increased the expression of sirtuin-3 (SIRT3), mitochondrial biosynthesis-related proteins peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), and mitochondrial transcription factor A (TFAM). ANXA1sp increased mitochondrial membrane potential (△Ψm), ATP, and SOD, and decreased ROS, autophagy flux, the production of autophagosomes per unit area, and MDA levels. The protective effect of ANXA1sp decreased significantly after SIRT3 silencing in vitro and in vivo, indicating that the key factor in ANXA1sp's protective role is the upregulation of SIRT3. In summary, ANXA1sp attenuated sepsis-induced myocardial injury by upregulating SIRT3 to promote mitochondrial biosynthesis and inhibit oxidative stress and autophagy.
Collapse
Affiliation(s)
- Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Ying-Cong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Jun-Ya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Wen-Bo Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Bao Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Jie Zheng
- Department of anesthesiology, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Xiao-Yun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| |
Collapse
|
10
|
Qin S, Ren Y, Feng B, Wang X, Liu J, Zheng J, Li K, Chen M, Chen T, Mei H, Fu X. ANXA1sp Protects against Sepsis-Induced Myocardial Injury by Inhibiting Ferroptosis-Induced Cardiomyocyte Death via SIRT3-Mediated p53 Deacetylation. Mediators Inflamm 2023; 2023:6638929. [PMID: 37057132 PMCID: PMC10089776 DOI: 10.1155/2023/6638929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Sepsis-induced myocardial injury (SIMI), a common complication of sepsis, may cause significant mortality. Ferroptosis, a cell death associated with oxidative stress and inflammation, has been identified to be involved in SIMI. This study sought to investigate the role of ANXA1 small peptide (ANXA1sp) in SIMI pathogenesis. In this study, the mouse cardiomyocytes (H9C2 cells) were stimulated with lipopolysaccharide (LPS) to imitate SIMI in vitro. It was shown that ANXA1sp treatment substantially abated LPS-triggered H9C2 cell death and excessive secretion of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). ANXA1sp pretreatment also reversed the increase of ROS and MDA generation as well as the decrease of SOD and GSH activity in H9C2 cells caused by LPS treatment. In addition, ANXA1sp considerably eliminated LPS-caused H9C2 cell ferroptosis, as revealed by the suppression of iron accumulation and the increase in GPX4 and FTH1 expression. Furthermore, the ameliorative effects of ANXA1sp on LPS-induced H9C2 cell damage could be partially abolished by erastin, a ferroptosis agonist. ANXA1sp enhanced SIRT3 expression in LPS-challenged H9C2 cells, thereby promoting p53 deacetylation. SIRT3 knockdown diminished ANXA1sp-mediated alleviation of cell death, inflammation, oxidative stress, and ferroptosis of LPS-treated H9C2 cells. Our study demonstrated that ANXA1sp is protected against LPS-induced cardiomyocyte damage by inhibiting ferroptosis-induced cell death via SIRT3-dependent p53 deacetylation, suggesting that ANXA1sp may be a potent therapeutic agent for SIMI.
Collapse
Affiliation(s)
- Song Qin
- Soochow University Medical College, Suzhou 215000, China
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Banghai Feng
- Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou 563000, China
| | - Xiaoqin Wang
- Department of Pediatric, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Junya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Zheng
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Kang Li
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Tao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xiaoyun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
11
|
Labes R, Dong L, Mrowka R, Bachmann S, von Vietinghoff S, Paliege A. Annexin A1 exerts renoprotective effects in experimental crescentic glomerulonephritis. Front Physiol 2022; 13:984362. [PMID: 36311242 PMCID: PMC9605209 DOI: 10.3389/fphys.2022.984362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Non-resolving inflammation plays a critical role during the transition from renal injury towards end-stage renal disease. The glucocorticoid-inducible protein annexin A1 has been shown to function as key regulator in the resolution phase of inflammation, but its role in immune-mediated crescentic glomerulonephritis has not been studied so far. Methods: Acute crescentic glomerulonephritis was induced in annexin A1-deficient and wildtype mice using a sheep serum against rat glomerular basement membrane constituents. Animals were sacrificed at d5 and d10 after nephritis induction. Renal leukocyte abundance was studied by immunofluorescence and flow cytometry. Alterations in gene expression were determined by RNA-Seq and gene ontology analysis. Renal levels of eicosanoids and related lipid products were measured using lipid mass spectrometry. Results: Histological analysis revealed an increased number of sclerotic glomeruli and aggravated tubulointerstitial damage in the kidneys of annexin A1-deficient mice compared to the wildtype controls. Flow cytometry analysis confirmed an increased number of CD45+ leukocytes and neutrophil granulocytes in the absence of annexin A1. Lipid mass spectrometry showed elevated levels of prostaglandins PGE2 and PGD2 and reduced levels of antiinflammatory epoxydocosapentaenoic acid regioisomers. RNA-Seq with subsequent gene ontology analysis revealed induction of gene products related to leukocyte activation and chemotaxis as well as regulation of cytokine production and secretion. Conclusion: Intrinsic annexin A1 reduces proinflammatory signals and infiltration of neutrophil granulocytes and thereby protects the kidney during crescentic glomerulonephritis. The annexin A1 signaling cascade may therefore provide novel targets for the treatment of inflammatory kidney disease.
Collapse
Affiliation(s)
- Robert Labes
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lei Dong
- Nephrology Department, Tongji Hospital, Tongji College, Huazhong University of Science and Technology, Wuhan, China
| | - Ralf Mrowka
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie, Universitätsklinikum Jena, Jena, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sibylle von Vietinghoff
- Nephrology Section, First Medical Clinic, University Clinic and Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany
| | - Alexander Paliege
- Division of Nephrology, Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- *Correspondence: Alexander Paliege,
| |
Collapse
|
12
|
Packialakshmi B, Stewart IJ, Burmeister DM, Feng Y, McDaniel DP, Chung KK, Zhou X. Tourniquet-induced lower limb ischemia/reperfusion reduces mitochondrial function by decreasing mitochondrial biogenesis in acute kidney injury in mice. Physiol Rep 2022; 10:e15181. [PMID: 35146957 PMCID: PMC8831939 DOI: 10.14814/phy2.15181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023] Open
Abstract
The mechanisms by which lower limb ischemia/reperfusion induces acute kidney injury (AKI) remain largely uncharacterized. We hypothesized that tourniquet-induced lower limb ischemia/reperfusion (TILLIR) would inhibit mitochondrial function in the renal cortex. We used a murine model to show that TILLIR of the high thigh regions inflicted time-dependent AKI as determined by renal function and histology. This effect was associated with decreased activities of mitochondrial complexes I, II, V and citrate synthase in the kidney cortex. Moreover, TILLIR reduced mRNA levels of a master regulator of mitochondrial biogenesis PGC-1α, and its downstream genes NDUFS1 and ATP5o in the renal cortex. TILLIR also increased serum corticosterone concentrations. TILLIR did not significantly affect protein levels of the critical regulators of mitophagy PINK1 and PARK2, mitochondrial transport proteins Tom20 and Tom70, or heat-shock protein 27. TILLIR had no significant effect on mitochondrial oxidative stress as determined by mitochondrial ability to generate reactive oxygen species, protein carbonylation, or protein levels of MnSOD and peroxiredoxin1. However, TILLIR inhibited classic autophagic flux by increasing p62 protein abundance and preventing the conversion of LC3-I to LC3-II. TILLIR increased phosphorylation of cytosolic and mitochondrial ERK1/2 and mitochondrial AKT1, as well as mitochondrial SGK1 activity. In conclusion, lower limb ischemia/reperfusion induces distal AKI by inhibiting mitochondrial function through reducing mitochondrial biogenesis. This AKI occurs without significantly affecting PINK1-PARK2-mediated mitophagy or mitochondrial oxidative stress in the kidney cortex.
Collapse
Affiliation(s)
- Balamurugan Packialakshmi
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
- The Henry Jackson M. Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Ian J. Stewart
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - David M. Burmeister
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Yuanyi Feng
- Department of BiochemistryUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Dennis P. McDaniel
- Biomedical Instrumentation CenterUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Kevin K. Chung
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Xiaoming Zhou
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| |
Collapse
|
13
|
Therapeutic Potential of Annexin A1 Modulation in Kidney and Cardiovascular Disorders. Cells 2021; 10:cells10123420. [PMID: 34943928 PMCID: PMC8700139 DOI: 10.3390/cells10123420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Renal and cardiovascular disorders are very prevalent and associated with significant morbidity and mortality. Among diverse pathogenic mechanisms, the dysregulation of immune and inflammatory responses plays an essential role in such disorders. Consequently, the discovery of Annexin A1, as a glucocorticoid-inducible anti-inflammatory protein, has fueled investigation of its role in renal and cardiovascular pathologies. Indeed, with respect to the kidney, its role has been examined in diverse renal pathologies, including acute kidney injury, diabetic nephropathy, immune-mediated nephropathy, drug-induced kidney injury, kidney stone formation, and renal cancer. Regarding the cardiovascular system, major areas of investigation include the role of Annexin A1 in vascular abnormalities, atherosclerosis, and myocardial infarction. Thus, this review briefly describes major structural and functional features of Annexin A1 followed by a review of its role in pathologies of the kidney and the cardiovascular system, as well as the therapeutic potential of its modulation for such disorders.
Collapse
|