1
|
Leclerc D, Christensen KE, Reagan AM, Keser V, Luan Y, Malysheva OV, Wasek B, Bottiglieri T, Caudill MA, Howell GR, Rozen R. Folate Deficiency and/or the Genetic Variant Mthfr 677C >T Can Drive Hepatic Fibrosis or Steatosis in Mice, in a Sex-Specific Manner. Mol Nutr Food Res 2024; 68:e2300355. [PMID: 38327171 DOI: 10.1002/mnfr.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/24/2023] [Indexed: 02/09/2024]
Abstract
SCOPE Disturbances in one-carbon metabolism contribute to nonalcoholic fatty liver disease (NAFLD) which encompasses steatosis, steatohepatitis, fibrosis, and cirrhosis. The goal is to examine impact of folate deficiency and the Mthfr677C >T variant on NAFLD. METHODS AND RESULTS This study uses the new Mthfr677C >T mouse model for the human MTHFR677C >T variant. Mthfr677CC and Mthfr677TT mice were fed control diet (CD) or folate-deficient (FD) diets for 4 months. FD and Mthfr677TT alter choline/methyl metabolites in liver and/or plasma (decreased S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio, methyltetrahydrofolate, and betaine; increased homocysteine [Hcy]). FD, with contribution from Mthfr677TT, provokes fibrosis in males. Studies of normal livers reveal alterations in plasma markers and gene expression that suggest an underlying predisposition to fibrosis induced by FD and/or Mthfr677TT in males. These changes are absent or reverse in females, consistent with the sex disparity of fibrosis. Sex-based differences in methylation potential, betaine, sphingomyelin, and trimethylamine-N-oxide (TMAO) levels may prevent fibrogenesis in females. In contrast, Mthfr677TT alters choline metabolism, dysregulates expression of lipid metabolism genes, and promotes steatosis in females. CONCLUSION This study suggests that folate deficiency predisposes males to fibrosis, which is exacerbated by Mthfr677TT, whereas Mthfr677TT predisposes females to steatosis, and reveal novel contributory mechanisms for these NAFLD-related disorders.
Collapse
Affiliation(s)
- Daniel Leclerc
- Departments of Human Genetics and Pediatrics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Karen E Christensen
- Departments of Human Genetics and Pediatrics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | | | - Vafa Keser
- Departments of Human Genetics and Pediatrics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Yan Luan
- Departments of Human Genetics and Pediatrics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Olga V Malysheva
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Marie A Caudill
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY, USA
| | | | - Rima Rozen
- Departments of Human Genetics and Pediatrics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Coyne ES, Nie Y, Abdurrachim D, Ong CZL, Zhou Y, Ali AAB, Meyers S, Grein J, Blumenschein W, Gongol B, Liu Y, Hugelshofer C, Carballo-Jane E, Talukdar S. Leukotriene B4 receptor 1 (BLT1) does not mediate disease progression in a mouse model of liver fibrosis. Biochem J 2023; 481:BCJ20230422. [PMID: 38014500 PMCID: PMC10903445 DOI: 10.1042/bcj20230422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
MASH is a prevalent liver disease that can progress to fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and ultimately death, but there are no approved therapies. Leukotriene B4 (LTB4) is a potent pro-inflammatory chemoattractant that drives macrophage and neutrophil chemotaxis, and genetic loss or inhibition of its high affinity receptor, leukotriene B4 receptor 1 (BLT1), results in improved insulin sensitivity and decreased hepatic steatosis. To validate the therapeutic efficacy of BLT1 inhibition in an inflammatory and pro-fibrotic mouse model of MASH and fibrosis, mice were challenged with a choline-deficient, L-amino acid defined high fat diet and treated with a BLT1 antagonist at 30 or 90 mg/kg for 8 weeks. Liver function, histology, and gene expression were evaluated at the end of the study. Treatment with the BLT1 antagonist significantly reduced plasma lipids and liver steatosis but had no impact on liver injury biomarkers or histological endpoints such as inflammation, ballooning, or fibrosis compared to control. Artificial intelligence-powered digital pathology analysis revealed a significant reduction in steatosis co-localized fibrosis in livers treated with the BLT1 antagonist. Liver RNA-seq and pathway analyses revealed significant changes in fatty acid, arachidonic acid, and eicosanoid metabolic pathways with BLT1 antagonist treatment, however, these changes were not sufficient to impact inflammation and fibrosis endpoints. Targeting this LTB4-BLT1 axis with a small molecule inhibitor in animal models of chronic liver disease should be considered with caution, and additional studies are warranted to understand the mechanistic nuances of BLT1 inhibition in the context of MASH and liver fibrosis.
Collapse
Affiliation(s)
| | - Yilin Nie
- Merck & Co., Inc., South San Francisco, CA, U.S.A
| | | | | | | | | | | | - Jeff Grein
- Merck & Co., Inc., South San Francisco, CA, U.S.A
| | | | | | - Yang Liu
- Merck & Co., Inc., South San Francisco, CA, U.S.A
| | | | | | | |
Collapse
|
3
|
Shang Y, Morioka T, Daino K, Nakayama T, Nishimura M, Kakinuma S. Ionizing radiation promotes, whereas calorie restriction suppresses, NASH and hepatocellular carcinoma in mice. Int J Cancer 2023; 153:1529-1542. [PMID: 37458118 DOI: 10.1002/ijc.34651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
The pathological conditions of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH) are the major risk factors for hepatocellular carcinoma (HCC). Exposure to DNA-damaging agents such as ionizing radiation is another risk factor for HCC; calorie restriction (CR), however, effectively delays the onset of radiation-induced HCC. We investigated whether NASH is relevant to radiation-induced HCC and the cancer-preventing effect of CR. Eight-day-old male B6C3F1 mice were irradiated with 3.8 Gy of X-rays and then fed a standard diet or 30% CR diet from 49 days of age until necropsy, which was performed from 56 to 600 days with ~100-day intervals to assess both pathological changes and gene expression levels. We found that early-life exposure to radiation accelerated lipid accumulation and NASH-like histopathological changes in the liver, accompanied by accelerated development of HCC. CR ameliorated the changes in lipid metabolism in the liver and reversed the NASH-like pathology, which effectively delayed HCC development. Gene-expression profiling revealed the radiation-related activation and CR-related suppression of the peroxisome proliferator-activated receptor gamma/Cd36 pathway of transmembrane fatty-acid translocation before development of the NASH-like state. Thus, early-life exposure to radiation affects lipid metabolism and induces a steatoinflammatory microenvironment that favors HCC development. Therefore, targeting this pathway by CR (or measures that mimic CR) may be a promising strategy for preventing HCC caused by either radiation or other DNA-damaging agents.
Collapse
Affiliation(s)
- Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takafumi Nakayama
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
4
|
Su W, Wu S, Yang Y, Guo Y, Zhang H, Su J, Chen L, Mao Z, Lan R, Cao R, Wang C, Xu H, Zhang C, Li S, Gao M, Chen X, Zheng Z, Wang B, Liu Y, Liu Z, Wang Z, Liu B, Fan X, Zhang X, Guan Y. Phosphorylation of 17β-hydroxysteroid dehydrogenase 13 at serine 33 attenuates nonalcoholic fatty liver disease in mice. Nat Commun 2022; 13:6577. [PMID: 36323699 PMCID: PMC9630536 DOI: 10.1038/s41467-022-34299-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
17β-hydroxysteroid dehydrogenase-13 is a hepatocyte-specific, lipid droplet-associated protein. A common loss-of-function variant of HSD17B13 (rs72613567: TA) protects patients against non-alcoholic fatty liver disease with underlying mechanism incompletely understood. In the present study, we identify the serine 33 of 17β-HSD13 as an evolutionally conserved PKA target site and its phosphorylation facilitates lipolysis by promoting its interaction with ATGL on lipid droplets. Targeted mutation of Ser33 to Ala (S33A) decreases ATGL-dependent lipolysis in cultured hepatocytes by reducing CGI-58-mediated ATGL activation. Importantly, a transgenic knock-in mouse strain carrying the HSD17B13 S33A mutation (HSD17B1333A/A) spontaneously develops hepatic steatosis with reduced lipolysis and increased inflammation. Moreover, Hsd17B1333A/A mice are more susceptible to high-fat diet-induced nonalcoholic steatohepatitis. Finally, we find reproterol, a potential 17β-HSD13 modulator and FDA-approved drug, confers a protection against nonalcoholic steatohepatitis via PKA-mediated Ser33 phosphorylation of 17β-HSD13. Therefore, targeting the Ser33 phosphorylation site could represent a potential approach to treat NASH.
Collapse
Affiliation(s)
- Wen Su
- grid.263488.30000 0001 0472 9649Department of Pathophysiology, Shenzhen University, Shenzhen, 518060 China ,Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Sijin Wu
- grid.9227.e0000000119573309State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116024 China
| | - Yongliang Yang
- grid.30055.330000 0000 9247 7930Laboratoy of Innovative Drug Discovery, School of Bioengineering, Dalian University of Technology, Dalian, 116023 China
| | - Yanlin Guo
- grid.22069.3f0000 0004 0369 6365Health Science Center, East China Normal University, Shanghai, 200241 China
| | - Haibo Zhang
- grid.411971.b0000 0000 9558 1426Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044 China
| | - Jie Su
- grid.263488.30000 0001 0472 9649Department of Pathophysiology, Shenzhen University, Shenzhen, 518060 China ,Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Lei Chen
- grid.263488.30000 0001 0472 9649Department of Pathophysiology, Shenzhen University, Shenzhen, 518060 China ,Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Zhuo Mao
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Rongfeng Lan
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Rong Cao
- grid.263488.30000 0001 0472 9649Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035 China
| | - Chunjiong Wang
- grid.265021.20000 0000 9792 1228Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Hu Xu
- grid.411971.b0000 0000 9558 1426Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044 China
| | - Cong Zhang
- grid.411971.b0000 0000 9558 1426Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044 China
| | - Sha Li
- grid.412028.d0000 0004 1757 5708Medical College, Hebei University of Engineering, Handan, China
| | - Min Gao
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Xiaocong Chen
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Zhiyou Zheng
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Bing Wang
- grid.411971.b0000 0000 9558 1426Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044 China
| | - Yi’ao Liu
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Zuojun Liu
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Zimei Wang
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Baohua Liu
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Xinmin Fan
- grid.263488.30000 0001 0472 9649Department of Pathophysiology, Shenzhen University, Shenzhen, 518060 China ,Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Xiaoyan Zhang
- grid.22069.3f0000 0004 0369 6365Health Science Center, East China Normal University, Shanghai, 200241 China
| | - Youfei Guan
- grid.411971.b0000 0000 9558 1426Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044 China ,grid.411971.b0000 0000 9558 1426Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, 116044 China
| |
Collapse
|
5
|
Zhang L, Chen H, Cui C, Liang L, Ge H, Meng L, Zhang C. Effects of oocyte vitrification on gene expression in the liver and kidney tissues of adult offspring. J Assist Reprod Genet 2022; 39:2635-2646. [PMID: 36223009 PMCID: PMC9723011 DOI: 10.1007/s10815-022-02611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
Oocyte vitrification is an important assisted reproductive technology (ART) that preserves the fertility of unmarried patients with malignant tumors, and promotes the development of the oocyte donation program. In recent years, the effects of ART, including the vitrification of oocytes and embryos on the health of offspring, have attracted much attention; however, it is difficult to conduct long-term follow-up and biochemical evaluation in humans. In this study, we detected the effect of oocyte vitrification on gene expression in the organs of adult mice offspring by RNA sequencing for the first time. Our results showed that only a small amount of gene expression was significantly affected. Seven genes (Tpm3, Hspe1-rs1, Ntrk2, Cyp4a31, Asic5, Cyp4a14, Retsat) were abnormally expressed in the liver, and ten genes (Lbp, Hspe1-rs1, Prxl2b, Pfn3, Gm9008, Bglap3, Col8a1, Hmgcr, Ero1lb, Ifi44l) were abnormal in the kidney. Several genes were related to metabolism and disease occurrence in the liver or kidney. Besides, we paid special attention to the expression of known imprinted genes and DNA methylation-related genes in adult organs, which are susceptible to oocyte cryopreservation in the preimplantation stage. As a result, some of these transcripts were detected in adult organs, but they were not affected by oocyte vitrification. In conclusion, we first report that oocyte vitrification did not significantly change the global gene expression in offspring organs; nonetheless, it can still influence the transcription of a few functional genes. The potential adverse effects caused by oocyte vitrification need attention and further study.
Collapse
Affiliation(s)
- Lei Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China
| | - Huanhuan Chen
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China
| | - Chenchen Cui
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China
| | - Linlin Liang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China
| | - Hengtao Ge
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China
| | - Li Meng
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China.
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China.
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China.
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China.
| |
Collapse
|
6
|
Su W, Feng M, Liu Y, Cao R, Liu Y, Tang J, Pan K, Lan R, Mao Z. ZnT8 Deficiency Protects From APAP-Induced Acute Liver Injury by Reducing Oxidative Stress Through Upregulating Hepatic Zinc and Metallothioneins. Front Pharmacol 2021; 12:721471. [PMID: 34413780 PMCID: PMC8369884 DOI: 10.3389/fphar.2021.721471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Zinc transporter 8 (ZnT8) is an important zinc transporter highly expressed in pancreatic islets. Deficiency of ZnT8 leads to a marked decrease in islet zinc, which is thought to prevent liver diseases associated with oxidative stress. Herein, we aimed to investigate whether loss of islet zinc affects the antioxidant capacity of the liver and acute drug-induced liver injury. To address this question, we treated ZnT8 knockout (KO) or wild-type control mice with 300 mg/ kg acetaminophen (APAP) or phosphate-buffered saline (PBS). Unexpectedly, we found that loss of ZnT8 in mice ameliorated APAP-induced injury and was accompanied by inhibition of c-Jun N-terminal kinase (JNK) activation, reduced hepatocyte death, and decreased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). An increase in hepatic glutathione (GSH) was observed, corresponding to a decrease in malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels. APAP-induced inflammation and glycogen depletion were alleviated. In contrast, no significant changes were observed in cytochrome P450 family 2 subfamily E member 1 (CYP2E1), the main enzyme responsible for drug metabolism. Elevated levels of hepatic zinc and metallothionein (MT) were also observed, which may contribute to the hepatoprotective effect in ZnT8 KO mice. Taken together, these results suggest that ZnT8 deficiency protects the liver from APAP toxicity by attenuating oxidative stress and promoting hepatocyte proliferation. This study provides new insights into the functions of ZnT8 and zinc as key mediators linking pancreatic and hepatic functions.
Collapse
Affiliation(s)
- Wen Su
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Mingji Feng
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Liu
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Rong Cao
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yiao Liu
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Junyao Tang
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Rongfeng Lan
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhuo Mao
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|