1
|
Ono M, Burgess DE, Johnson SR, Elayi CS, Esser KA, Seward TS, Boychuk CR, Carreño AP, Stalcup RA, Prabhat A, Schroder EA, Delisle BP. Feeding behavior modifies the circadian variation in RR and QT intervals by distinct mechanisms in mice. Am J Physiol Regul Integr Comp Physiol 2024; 327:R109-R121. [PMID: 38766772 PMCID: PMC11380991 DOI: 10.1152/ajpregu.00025.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Rhythmic feeding behavior is critical for regulating phase and amplitude in the ≈24-h variation of heart rate (RR intervals), ventricular repolarization (QT intervals), and core body temperature in mice. We hypothesized changes in cardiac electrophysiology associated with feeding behavior were secondary to changes in core body temperature. Telemetry was used to record electrocardiograms and core body temperature in mice during ad libitum-fed conditions and after inverting normal feeding behavior by restricting food access to the light cycle. Light cycle-restricted feeding modified the phase and amplitude of 24-h rhythms in RR and QT intervals, and core body temperature to realign with the new feeding time. Changes in core body temperature alone could not account for changes in phase and amplitude in the ≈24-h variation of the RR intervals. Heart rate variability analysis and inhibiting β-adrenergic and muscarinic receptors suggested that changes in the phase and amplitude of 24-h rhythms in RR intervals were secondary to changes in autonomic signaling. In contrast, changes in QT intervals closely mirrored changes in core body temperature. Studies at thermoneutrality confirmed that the daily variation in QT interval, but not RR interval, primarily reflected daily changes in core body temperature (even in ad libitum-fed conditions). Correcting the QT interval for differences in core body temperature helped unmask QT interval prolongation after starting light cycle-restricted feeding and in a mouse model of long QT syndrome. We conclude feeding behavior alters autonomic signaling and core body temperature to regulate phase and amplitude in RR and QT intervals, respectively.NEW & NOTEWORTHY We used time-restricted feeding and thermoneutrality to demonstrate that different mechanisms regulate the 24-h rhythms in heart rate and ventricular repolarization. The daily rhythm in heart rate reflects changes in autonomic input, whereas daily rhythms in ventricular repolarization reflect changes in core body temperature. This novel finding has major implications for understanding 24-h rhythms in mouse cardiac electrophysiology, arrhythmia susceptibility in transgenic mouse models, and interpretability of cardiac electrophysiological data acquired in thermoneutrality.
Collapse
Affiliation(s)
- Makoto Ono
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - Don E Burgess
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - Sidney R Johnson
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - Claude S Elayi
- CHI Saint Joseph Hospital, Lexington, Kentucky, United States
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Tanya S Seward
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - Carie R Boychuk
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Andrés P Carreño
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - Rebecca A Stalcup
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - Abhilash Prabhat
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - Elizabeth A Schroder
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
2
|
Ono M, Burgess DE, Johnson SR, Elayi CS, Esser KA, Seward TS, Boychuk CR, Carreño AP, Stalcup RA, Prabhat A, Schroder EA, Delisle BP. Feeding Behavior Modifies the Circadian Variation in RR and QT intervals by Distinct Mechanisms in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565372. [PMID: 37961515 PMCID: PMC10635091 DOI: 10.1101/2023.11.02.565372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Rhythmic feeding behavior is critical for regulating the phase and amplitude in the ≍24-hour variation of the heart rate (RR intervals), ventricular repolarization (QT intervals), and core body temperature in mice. We hypothesized the changes in cardiac electrophysiology associated with feeding behavior were secondary to changes in core body temperature. Telemetry was used to record electrocardiograms and core body temperature in mice during ad libitum-fed conditions and after inverting normal feeding behavior by restricting food access to the light cycle. Light cycle-restricted feeding quickly modified the phase and amplitude of the 24-hour rhythms in RR intervals, QT intervals, and core body temperature to realign with the new feeding time. Heart rate variability analysis and inhibiting β-adrenergic and muscarinic receptors suggested that the changes in the phase and amplitude of the 24-hour rhythms in RR intervals were secondary to changes in autonomic signaling. In contrast, the changes in the QT intervals closely mirrored changes in core body temperature. Studies at thermoneutrality confirmed the daily variation in the QT interval, but not the RR interval, and reflected daily changes in core body temperature (even in ad libitum-fed conditions). Correcting the QT interval for differences in core body temperature helped to unmask QT interval prolongation after starting light cycle-restricted feeding and in a mouse model of long QT syndrome. We conclude feeding behavior alters autonomic signaling and core body temperature to regulate the phase and amplitude in RR and QT intervals, respectively.
Collapse
|
3
|
Delisle BP, Prabhat A, Burgess DE, Ono M, Esser KA, Schroder EA. Circadian Regulation of Cardiac Arrhythmias and Electrophysiology. Circ Res 2024; 134:659-674. [PMID: 38484028 PMCID: PMC11177776 DOI: 10.1161/circresaha.123.323513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Circadian rhythms in physiology and behavior are ≈24-hour biological cycles regulated by internal biological clocks (ie, circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. These clocks are present in virtually all cells in the body, including cardiomyocytes. Many decades ago, clinicians and researchers became interested in studying daily patterns of triggers for sudden cardiac death, the incidence of sudden cardiac death, and cardiac arrhythmias. This review highlights historical and contemporary studies examining the role of day/night rhythms in the timing of cardiovascular events, delves into changes in the timing of these events over the last few decades, and discusses cardiovascular disease-specific differences in the timing of cardiovascular events. The current understanding of the environmental, behavioral, and circadian mechanisms that regulate cardiac electrophysiology is examined with a focus on the circadian regulation of cardiac ion channels and ion channel regulatory genes. Understanding the contribution of environmental, behavioral, and circadian rhythms on arrhythmia susceptibility and the incidence of sudden cardiac death will be essential in developing future chronotherapies.
Collapse
Affiliation(s)
- Brian P. Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Abhilash Prabhat
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Don E. Burgess
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Makoto Ono
- Division of Cardiology and Rehabilitation, Tamaki Hospital, Japan
| | | | | |
Collapse
|
4
|
Gorman RA, Yakobov S, Polidovitch N, Debi R, Sanfrancesco VC, Hood DA, Lakin R, Backx PH. The effects of daily dose of intense exercise on cardiac responses and atrial fibrillation. J Physiol 2024; 602:569-596. [PMID: 38319954 DOI: 10.1113/jp285697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/08/2023] [Indexed: 02/08/2024] Open
Abstract
Atrial fibrillation (AF) is a supraventricular tachyarrhythmia that is strongly associated with cardiovascular (CV) disease and sedentary lifestyles. Despite the benefits of exercise on overall health, AF incidence in high-level endurance athletes rivals that of CV disease patients, suggesting a J-shaped relationship with AF. To investigate the dependence of AF vulnerability on exercise, we varied daily swim durations (120, 180 or 240 min day-1 ) in 7-week-old male CD1 mice. We assessed mice after performing equivalent amounts of cumulative work during swimming (i.e. ∼700 L O2 kg-1 ), as determined from O2 consumption rates (V ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ ). The meanV ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ during exercise increased progressively throughout the training period and was indistinguishable between the swim groups. Consistent with similar improvements in aerobic conditioning induced by swimming, skeletal muscle mitochondria content increased (P = 0.027) indistinguishably between exercise groups. Physiological ventricular remodelling, characterized by mild hypertrophy and left ventricular dilatation, was also similar between exercised mice without evidence of ventricular arrhythmia inducibility. By contrast, prolongation of daily swim durations caused progressive and vagal-dependent heart rate reductions (P = 0.008), as well as increased (P = 0.005) AF vulnerability. As expected, vagal inhibition prolonged (P = 0.013) atrial refractoriness, leading to reduced AF vulnerability, although still inducible in the 180 and 240 min swim groups. Accordingly, daily swim dose progressively increased atrial hypertrophy (P = 0.003), fibrosis (P < 0.001) and macrophage accumulation (P = 0.006) without differentially affecting the ventricular tissue properties. Thus, increasing daily exercise duration drives progressively adverse atrial-specific remodelling and vagal-dependent AF vulnerability despite robust and beneficial aerobic conditioning and physiological remodelling of ventricles and skeletal muscle. KEY POINTS: Previous studies have suggested that a J-shaped dose-response relationship exists between physical activity and cardiovascular health outcomes, with moderate exercise providing protection against many cardiovascular disease conditions, whereas chronic endurance exercise can promote atrial fibrillation (AF). We found that AF vulnerability increased alongside elevated atrial hypertrophy, fibrosis and inflammation as daily swim exercise durations in mice were prolonged (i.e. ≥180 min day-1 for 6 weeks). The MET-h week-1 (based on O2 measurements during swimming) needed to induce increased AF vulnerability mirrored the levels linked to AF in athletes. These adverse atria effects associated with excessive daily exercise occurred despite improved aerobic conditioning, skeletal muscle adaptation and physiological ventricular remodelling. We suggest that atrial-specific changes observed with exercise arise from excessive elevations in venous filling pressures during prolonged exercise bouts, which we argue has implications for all AF patients because elevated atrial pressures occur in most cardiovascular disease conditions as well as ageing which are linked to AF.
Collapse
Affiliation(s)
- Renée A Gorman
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Simona Yakobov
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre, York University, Toronto, ON, Canada
| | | | - Ryan Debi
- Department of Biology, York University, Toronto, ON, Canada
| | - Victoria C Sanfrancesco
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- Department of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - David A Hood
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- Department of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Robert Lakin
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
5
|
Mestrom EHJ, van der Stam JA, Nienhuijs SW, de Hingh IHJT, Boer AK, van Riel NAW, Scharnhorst V, Bouwman RA. Postoperative circadian patterns in wearable sensor measured heart rate: a prospective observational study. J Clin Monit Comput 2024; 38:147-156. [PMID: 37864755 PMCID: PMC10879217 DOI: 10.1007/s10877-023-01089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
PURPOSE This study aimed to describe the 24-hour cycle of wearable sensor-obtained heart rate in patients with deterioration-free recovery and to compare it with patients experiencing postoperative deterioration. METHODS A prospective observational trial was performed in patients following bariatric or major abdominal cancer surgery. A wireless accelerometer patch (Healthdot) continuously measured postoperative heart rate, both in the hospital and after discharge, for a period of 14 days. The circadian pattern, or diurnal rhythm, in the wearable sensor-obtained heart rate was described using peak, nadir and peak-nadir excursions. RESULTS The study population consisted of 137 bariatric and 100 major abdominal cancer surgery patients. In the latter group, 39 experienced postoperative deterioration. Both surgery types showed disrupted diurnal rhythm on the first postoperative days. Thereafter, the bariatric group had significantly lower peak heart rates (days 4, 7-12, 14), lower nadir heart rates (days 3-14) and larger peak-nadir excursions (days 2, 4-14). In cancer surgery patients, significantly higher nadir (days 2-5) and peak heart rates (days 2-3) were observed prior to deterioration. CONCLUSIONS The postoperative diurnal rhythm of heart rate is disturbed by different types of surgery. Both groups showed recovery of diurnal rhythm but in patients following cancer surgery, both peak and nadir heart rates were higher than in the bariatric surgery group. Especially nadir heart rate was identified as a potential prognostic marker for deterioration after cancer surgery.
Collapse
Affiliation(s)
- Eveline H J Mestrom
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Anesthesiology, Intensive Care & Pain Medicine, Catharina Hospital, Eindhoven, The Netherlands.
| | - Jonna A van der Stam
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Clinical laboratory, Catharina Hospital, Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
| | - Simon W Nienhuijs
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Ignace H J T de Hingh
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
- GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Arjen-Kars Boer
- Clinical laboratory, Catharina Hospital, Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Volkher Scharnhorst
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Clinical laboratory, Catharina Hospital, Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
| | - R Arthur Bouwman
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Anesthesiology, Intensive Care & Pain Medicine, Catharina Hospital, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Li P, Kim JK. Circadian regulation of sinoatrial nodal cell pacemaking function: Dissecting the roles of autonomic control, body temperature, and local circadian rhythmicity. PLoS Comput Biol 2024; 20:e1011907. [PMID: 38408116 PMCID: PMC10927146 DOI: 10.1371/journal.pcbi.1011907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Strong circadian (~24h) rhythms in heart rate (HR) are critical for flexible regulation of cardiac pacemaking function throughout the day. While this circadian flexibility in HR is sustained in diverse conditions, it declines with age, accompanied by reduced maximal HR performance. The intricate regulation of circadian HR involves the orchestration of the autonomic nervous system (ANS), circadian rhythms of body temperature (CRBT), and local circadian rhythmicity (LCR), which has not been fully understood. Here, we developed a mathematical model describing ANS, CRBT, and LCR in sinoatrial nodal cells (SANC) that accurately captures distinct circadian patterns in adult and aged mice. Our model underscores how the alliance among ANS, CRBT, and LCR achieves circadian flexibility to cover a wide range of firing rates in SANC, performance to achieve maximal firing rates, while preserving robustness to generate rhythmic firing patterns irrespective of external conditions. Specifically, while ANS dominates in promoting SANC flexibility and performance, CRBT and LCR act as primary and secondary boosters, respectively, to further enhance SANC flexibility and performance. Disruption of this alliance with age results in impaired SANC flexibility and performance, but not robustness. This unexpected outcome is primarily attributed to the age-related reduction in parasympathetic activities, which maintains SANC robustness while compromising flexibility. Our work sheds light on the critical alliance of ANS, CRBT, and LCR in regulating time-of-day cardiac pacemaking function and dysfunction, offering insights into novel therapeutic targets for the prevention and treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Pan Li
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Landi S, Giannetti F, Benzoni P, Campostrini G, Rossi G, Piantoni C, Bertoli G, Bonfanti C, Carnevali L, Bucchi A, Baruscotti M, Careccia G, Messina G, Barbuti A. Lack of the transcription factor Nfix causes tachycardia in mice sinus node and rats neonatal cardiomyocytes. Acta Physiol (Oxf) 2023; 239:e13981. [PMID: 37186371 DOI: 10.1111/apha.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023]
Abstract
AIMS Nfix is a transcription factor belonging to the Nuclear Factor I (NFI) family comprising four members (Nfia, b, c, x). Nfix plays important roles in the development and function of several organs. In muscle development, Nfix controls the switch from embryonic to fetal myogenesis by promoting fast twitching fibres. In the adult muscle, following injury, lack of Nfix impairs regeneration, inducing higher content of slow-twitching fibres. Nfix is expressed also in the heart, but its function has been never investigated before. We studied Nfix role in this organ. METHODS Using Nfix-null and wild type (WT) mice we analyzed: (1) the expression pattern of Nfix during development by qPCR and (2) the functional alterations caused by its absence, by in vivo telemetry and in vitro patch clamp analysis. RESULTS AND CONCLUSIONS Nfix expression start in the heart from E12.5. Adult hearts of Nfix-null mice show a hearts morphology and sarcomeric proteins expression similar to WT. However, Nfix-null animals show tachycardia that derives form an intrinsic higher beating rate of the sinus node (SAN). Molecular and functional analysis revealed that sinoatrial cells of Nfix-null mice express a significantly larger L-type calcium current (Cacna1d + Cacna1c). Interestingly, downregulation of Nfix by sh-RNA in primary cultures of neonatal rat ventricular cardiomyocytes induced a similar increase in their spontaneous beating rate and in ICaL current. In conclusion, our data provide the first demonstration of a role of Nfix that, increasing the L-type calcium current, modulates heart rate.
Collapse
Affiliation(s)
- Sara Landi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Benzoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giulia Campostrini
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giuliana Rossi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Piantoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgia Bertoli
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Luca Carnevali
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgia Careccia
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Caffeine suppresses high-fat diet-induced body weight gain in mice depending on feeding timing. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
10
|
Schroder EA, Ono M, Johnson SR, Rozmus ER, Burgess DE, Esser KA, Delisle BP. The role of the cardiomyocyte circadian clocks in ion channel regulation and cardiac electrophysiology. J Physiol 2022; 600:2037-2048. [PMID: 35301719 PMCID: PMC9980729 DOI: 10.1113/jp282402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Daily variations in cardiac electrophysiology and the incidence for different types of arrhythmias reflect ≈24 h changes in the environment, behaviour and internal circadian rhythms. This article focuses on studies that use animal models to separate the impact that circadian rhythms, as well as changes in the environment and behaviour, have on 24 h rhythms in heart rate and ventricular repolarization. Circadian rhythms are initiated at the cellular level by circadian clocks, transcription-translation feedback loops that cycle with a periodicity of 24 h. Several studies now show that the circadian clock in cardiomyocytes regulates the expression of cardiac ion channels by multiple mechanisms; underlies time-of-day changes in sinoatrial node excitability/intrinsic heart rate; and limits the duration of the ventricular action potential waveform. However, the 24 h rhythms in heart rate and ventricular repolarization are primarily driven by autonomic signalling. A functional role for the cardiomyocyte circadian clock appears to buffer the heart against perturbations. For example, the cardiomyocyte circadian clock limits QT-interval prolongation (especially at slower heart rates), and it may facilitate the realignment of the 24 h rhythm in heart rate to abrupt changes in the light cycle. Additional studies show that modifying rhythmic behaviours (including feeding behaviour) can dramatically impact the 24 h rhythms in heart rate and ventricular repolarization. If these mechanisms are conserved, these studies suggest that targeting endogenous circadian mechanisms in the heart, as well as modifying the timing of certain rhythmic behaviours, could emerge as therapeutic strategies to support heart function against perturbations and regulate 24 h rhythms in cardiac electrophysiology.
Collapse
Affiliation(s)
- Elizabeth A. Schroder
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298,Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, 740 S. Limestone Street, L543, Lexington, KY 40536-0284
| | - Makoto Ono
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Sidney R. Johnson
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Ezekiel R. Rozmus
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Don E. Burgess
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| |
Collapse
|