1
|
Wang B, Huang H. Effects of various exercise interventions on motor function in cerebral palsy patients: a systematic review and network meta-analysis. Neurol Sci 2024:10.1007/s10072-024-07741-z. [PMID: 39190170 DOI: 10.1007/s10072-024-07741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE A network meta-analysis was utilized to compare the rehabilitative effectiveness of different exercise interventions on motor function in cerebral palsy(CP) patients. METHODS Computer searches were conducted across 9 databases, including PubMed, Cochrane Library, Scopus, Web of Science, Embase, and others, to identify randomized controlled trials focusing on different exercise interventions aimed at enhancing motor function in CP patients. The search spanned from the inception of the databases to January 31, 2024. RESULTS 20 articles, encompassing 570 patients and evaluating three types of exercise interventions, were included in the analysis. Results showed that aerobic training, resistance training, and mixed training exhibited superior outcomes compared to the control group, as evidenced by improvements in Gross Motor Function Measure scores, muscle strength, gait speed, and 10-Meter Walk Test scores (P < 0.05). Furthermore, the network meta-analysis revealed that resistance training ranked highest in enhancing gross motor function and gait speed among CP patients, while mixed training was deemed most effective in improving muscle strength and 10-Meter Walk Test scores. CONCLUSION Exercise interventions have been shown to significantly improve motor function in CP patients. Among these, resistance training and mixed training stand out for their effectiveness in enhancing walking capabilities. Resistance training is specifically aimed at improving gross motor function, while mixed training focuses on increasing muscle strength.
Collapse
Affiliation(s)
- Bingjie Wang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Guyunhu Street, Changqing District, Jinan City, Shandong Province, 250355, China
| | - Hailiang Huang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Guyunhu Street, Changqing District, Jinan City, Shandong Province, 250355, China.
| |
Collapse
|
2
|
Zhou K, Shang Z, Yuan C, Guo Z, Wang Y, Bao D, Zhou J. Can molecular hydrogen supplementation enhance physical performance in healthy adults? A systematic review and meta-analysis. Front Nutr 2024; 11:1387657. [PMID: 38903627 PMCID: PMC11188335 DOI: 10.3389/fnut.2024.1387657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Background Physical exertion during exercise often leads to increased oxidative stress and inflammatory responses, significantly affecting physical performance. Current strategies to mitigate these effects are limited by their effectiveness and potential side effects. Molecular hydrogen (H₂) has gained attention for its antioxidant and anti-inflammatory properties. Studies have suggested that H2 supplementation contributes to antioxidant potential and anti-fatigue during exercise, but the variance in the observations and study protocols is presented across those studies. Objective This systematic review and meta-analysis aimed to comprehensively characterize the effects of H₂ supplementation on physical performance (i.e., endurance, muscular strength, and explosive power), providing knowledge that can inform strategies using H2 for enhancing physical performance. Methods We conducted a literature search of six databases (PubMed, Web of Science, Medline, Sport-Discus, Embase, and PsycINFO) according to the PRISMA guidelines. The data were extracted from the included studies and converted into the standardized mean difference (SMD). After that, we performed random-effects meta-analyses and used the I 2 statistic to evaluate heterogeneity. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to assess the quality of the evidence obtained from this meta-analysis. Results In total, 27 publications consisting of 597 participants were included. The search finally included aerobic endurance, anaerobic endurance, muscular strength, lower limb explosive power, rating of perceived exertion (RPE), blood lactate (BLA), and average heart rate (HRavg) in the effect size (ES) synthesis. The ES of H2 on aerobic endurance, including V̇O2max (SMD = 0.09, p = 0.394; I 2 = 0%) and aerobic endurance exercise (SMD = 0.04, p = 0.687; I 2 = 0%), were not significant and trivial; the ES of H2 on 30 s maximal anaerobic endurance (SMD = 0.19, p = 0.239; I 2 = 0%) was not significant and trivial; the ES of H2 on muscular strength (SMD = 0.19, p = 0.265; I 2 = 0%) was not significant and trivial; but the ES of H2 on lower limb explosive power (SMD = 0.30, p = 0.018; I 2 = 0%) was significant and small. In addition, H2 reduces RPE (SMD = -0.37, p = 0.009; I 2 = 58.0%) and BLA (SMD = -0.37, p = 0.001; I 2 = 22.0%) during exercise, but not HRavg (SMD = -0.27, p = 0.094; I 2 = 0%). Conclusion These findings suggest that H2 supplementation is favorable in healthy adults to improve lower limb explosive power, alleviate fatigue, and boost BLA clearance, but may not be effectively improving aerobic and anaerobic endurance and muscular strength. Future studies with more rigorous designs are thus needed to examine and confirm the effects of H2 on these important functionalities in humans. Systematic review registration http://www.crd.york.ac.uk/PROSPERO.
Collapse
Affiliation(s)
- Kaixiang Zhou
- College of Physical Education and Health Science, Chongqing Normal University, Chongqing, China
| | - Zhangyuting Shang
- College of Physical Education and Health Management, Chongqing University of Education, Chongqing, China
| | - Chaoqun Yuan
- College of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenxiang Guo
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Yubo Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Meng Q, Su CH. The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. Antioxidants (Basel) 2024; 13:573. [PMID: 38790678 PMCID: PMC11118032 DOI: 10.3390/antiox13050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
This review comprehensively evaluates the effects of physical exercise on oxidative and nitrosative stress, mainly focusing on the role of antioxidants. Using a narrative synthesis approach, data from empirical studies, reviews, systematic reviews, and meta-analyses published between 2004 and 2024 were collated from databases like PubMed, EBSCO (EDS), and Google Scholar, culminating in the inclusion of 41 studies. The quality of these studies was rigorously assessed to ensure the clarity of objectives, coherence in arguments, comprehensive literature coverage, and depth of critical analysis. Findings revealed that moderate exercise enhances antioxidant defenses through hormesis, while excessive exercise may exacerbate oxidative stress. The review also highlights that while natural dietary antioxidants are beneficial, high-dose supplements could impede the positive adaptations to exercise. In conclusion, the review calls for more focused research on tailored exercise and nutrition plans to further understand these complex interactions and optimize the health outcomes for athletes and the general population.
Collapse
Affiliation(s)
- Qing Meng
- School of Physical Education, Huaqiao University, Xiamen 361021, China;
- Sport and Health Research Center, Huaqiao University, Xiamen 361021, China
| | - Chun-Hsien Su
- Department of Exercise and Health Promotion, Chinese Culture University, Taipei 111369, Taiwan
- College of Kinesiology and Health, Chinese Culture University, Taipei 111369, Taiwan
| |
Collapse
|
4
|
Peinado BRR, Frazão DR, Chemelo VS, Matos-Souza JM, Ferreira RDO, Bittencourt LO, Balbinot GDS, Collares FM, Fernandes LMP, Maia CSF, Lima RR. Physical training mitigates alveolar bone and blood enzymatic antioxidants defense impairment induced by binge ethanol consumption in rats. Biomed Pharmacother 2024; 174:116554. [PMID: 38636401 DOI: 10.1016/j.biopha.2024.116554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
We aimed to investigate the effectiveness of physical training as a protective strategy to mitigate alveolar bone damage and blood antioxidant defense caused by ethanol (EtOH) consumption in a binge-drinking pattern. Male Wistar rats aged approximately 90 days were divided into four groups: control, training, EtOH, and training + EtOH. The physical training protocol was conducted on a treadmill for four consecutive weeks, while the animals in the EtOH group were administered EtOH via orogastric gavage for three consecutive days each week, following the binge drink pattern. After the training period, blood and mandibles were collected for plasma oxidative biochemistry analysis, and the alveolar bone was subjected to physicochemical composition analysis, tissue evaluation, and microtomography evaluation. Our results showed that EtOH induced oxidative stress and physical exercise promoted the recovery of antioxidant action. Physical training minimized the damage to the mineral/matrix composition of the alveolar bone due to EtOH consumption and increased the density of osteocytes in the trained group treated with EtOH than in those exposed only to EtOH. Furthermore, physical training reduced damage to the alveolar bone caused by EtOH consumption. Our findings suggest that physical training can serve as an effective strategy to reduce systemic enzymatic oxidative response damage and alleviate alveolar bone damage resulting from alcohol consumption. Further investigations are warranted to elucidate the underlying mechanisms and explore, in addition to physical training, the potential effects of other activities with varying intensities on managing alcohol-induced bone damage.
Collapse
Affiliation(s)
| | - Deborah Ribeiro Frazão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Victória Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - José Mario Matos-Souza
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Railson de Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Gabriela de Souza Balbinot
- Dental Material Laboratory, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabrício Mezzomo Collares
- Dental Material Laboratory, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratory of Neuropharmacology and Behavior, Center of Sciences Biological and Health, State University of Pará, Belém, PA, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil.
| |
Collapse
|
5
|
Rami M, Ahmadi Hekmatikar A, Rahdar S, Marashi SS, Daud DMA. Highlighting the effects of high-intensity interval training on the changes associated with hypertrophy, apoptosis, and histological proteins of the heart of old rats with type 2 diabetes. Sci Rep 2024; 14:7133. [PMID: 38531890 DOI: 10.1038/s41598-024-57119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
T2DM is known to cause disturbances in glucose homeostasis and negative changes in the heart muscle, while aging and diabetes are recognized risk factors for CVD. Given this, our study aims to investigate a method for controlling and managing CVDs induced by T2DM in elderly populations. To achieve this, we categorized 40 rats into 5 groups, including HAD (n = 8), HA (n = 8), AD (n = 8), AHT (n = 8), and ADT (n = 8). The exercise protocol consisted of eight weeks of HIIT (three sessions per week) performed at 90-95% of maximal speed. Following cardiac tissue extraction, we assessed the levels of IGF-1, PI3K, and AKT proteins using Western blot technique, and analyzed the histopathological variations of the heart tissue using H&E, Sudan Black, and Masson's trichrome tissue staining. The histological findings from our study demonstrated that T2DM had a significant impact on the development of pathological hypertrophy and fibrosis in the heart tissue of elderly individuals. However, HIIT not only effectively controlled pathological hypertrophy and fibrosis, but also induced physiological hypertrophy in the AHT and ADT groups compared to the HA and AD groups. Results from Sudan Black staining indicated that there was an increase in lipid droplet accumulation in the cytoplasm of cardiomyocytes and their nuclei in the HA and AD groups, while the accumulation of lipid droplets decreased significantly in the AHT and ADT groups. In both the AHT group and the ADT group, a single HIIT session led to a reduction in collagen fiber accumulation and fibrotic frameworks. Our research also revealed that diabetes caused a significant elevation in the levels of IGF-1, PI3K, and AKT proteins, but after eight weeks of HIIT, the levels of these proteins decreased significantly in the training groups. Overall, our findings suggest that HIIT may be a suitable non-pharmacological approach for improving histological and physiological changes in elderly individuals with T2DM. However, we recommend further research to examine the impact of HIIT training on both healthy and diseased elderly populations.
Collapse
Affiliation(s)
- Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Amirhossein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 10600, Iran
| | - Samaneh Rahdar
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sayed Shafa Marashi
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - D Maryama Awang Daud
- Health Through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88450, Sabah, Malaysia.
| |
Collapse
|
6
|
Li Y, Bing R, Liu M, Shang Z, Huang Y, Zhou K, Bao D, Zhou J. Can molecular hydrogen supplementation reduce exercise-induced oxidative stress in healthy adults? A systematic review and meta-analysis. Front Nutr 2024; 11:1328705. [PMID: 38590828 PMCID: PMC10999621 DOI: 10.3389/fnut.2024.1328705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Objective Exercise-induced oxidative stress affects multiple neurophysiological processes, diminishing the exercise performance. Hydrogen (H2) can selectively reduce excessive free radicals, but studies observed its "dual effects" on exercise-induced oxidative stress, that is, increasing or decreasing the oxidative stress. Therefore, we here conducted a systematic review and meta-analysis to quantitatively assess the influence of H2 on exercise-induced oxidative stress in healthy adults. Methods We conducted a systematic review of publications across five databases. The following keywords were used for search strategy: ["hydrogen"[Mesh] or "molecular hydrogen" or "hydrogen rich water" or "hydrogen-rich water" or "hydrogen rich saline"] and ["Oxidative Stress"[Mesh] or "Antioxidative Stress" or "Oxidative Damage" or "Oxidative Injury" or "Oxidative Cleavage"] and ["randomized controlled trial"[Mesh] or "randomized" or "RCT"]. We included trials reporting the effects of H2 on exercise-induced oxidative stress and potential antioxidant capacity post-exercise in healthy adults. Additionally, subgroup analyses were conducted to explore how various elements of the intervention design affected those outcomes. Results Six studies, encompassing seven experiments with a total of 76 participants, were included in our analysis. Among these studies, hydrogen-rich water, hydrogen bathing, and hydrogen-rich gas were three forms used in H2 administration. The H2 was applied in different timing, including before, during, or after exercise only, both before and after exercise, and repeatedly over days. Single-dose, multi-dose within 1 day and/or multiple-dose over days were implemented. It was observed that compared to placebo, the effects of H2 on oxidative stress (diacron-reactive oxygen metabolites, d-ROMs) was not significant (SMD = -0.01, 95%CI-0.42 to 0.39, p = 0.94). However, H2 induced greater improvement in antioxidant potential capacity (Biological Antioxidant Potential, BAP) (SMD = 0.29, 95% CI 0.04 to 0.54, p = 0.03) as compared to placebo. Subgroup analyses revealed that H2 supplementation showed greater improvement (SMD = 0.52, 95%CI 0.16 to 0.87, p = 0.02) in the antioxidant potential capacity of intermittent exercises than continuous exercise. Conclusion H2 supplementation can help enhance antioxidant potential capacity in healthy adults, especially in intermittent exercise, but not directly diminish the levels of exercise-induced oxidative stress. Future studies with more rigorous design are needed to examine and confirm these findings. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=364123, Identifier CRD42022364123.
Collapse
Affiliation(s)
- Yiting Li
- College of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Renjie Bing
- College of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Meng Liu
- College of Sports Coaching, Beijing Sport University, Beijing, China
| | - Zhangyuting Shang
- College of Physical Education and Health Management, Chongqing University of Education, Chongqing, China
| | - Yan Huang
- Shichahai Sports School, Beijing, China
| | - Kaixiang Zhou
- College of Physical Education and Health Science, Chongqing Normal University, Chongqing, China
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Wang C, Xu Y, Zhang L, Fan W, Liu Z, Yong M, Wu L. Comparative efficacy of different exercise methods to improve cardiopulmonary function in stroke patients: a network meta-analysis of randomized controlled trials. Front Neurol 2024; 15:1288032. [PMID: 38313560 PMCID: PMC10836840 DOI: 10.3389/fneur.2024.1288032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Background Although some studies have shown that exercise has a good effect on improving the cardiopulmonary function of stroke patients, it still needs to be determined which exercise method does this more effectively. We, therefore, aimed to evaluate the effectiveness of different exercise methods in improving cardiovascular function in stroke patients through a network meta-analysis (NMA), providing a basis to select the best treatment plan for stroke patients. Methods We systematically searched CNKI, WanFang, VIP, CBM, PubMed, Embase, Web of Science, and The Cochrane Library databases from establishment to 30 April 2023. Randomized controlled trials (RCTS) on exercise improving cardiopulmonary function in stroke patients were included, and we screened the included articles and extracted the relevant data. RevMan (version 5.4) and Stata (version 17.0) were used for data analysis. Results We included 35 RCTs and a total of 2,008 subjects. Intervention measures included high-intensity interval training (HIIT), aerobic training (AT), resistance training (RT), combined aerobic and resistance exercise (CE), and conventional therapy (CT). In the network meta-analysis, the surface under the cumulative ranking area (SUCRA) ranking result indicated that HIIT improved peak oxygen uptake (VO2peak) and 6 mins walking distance (6MWD) optimally, with rankings of HIIT (100.0%) > CE (70.5%) > AT (50.2%) > RT (27.7%) > CT (1.6%), and HIIT (90.9%) > RT (60.6%) > AT (48.9%) > RT (48.1%) > CT (1.5%), respectively. The SUCRA ranking result showed that CE improved systolic blood pressure (SBP) and diastolic blood pressure (DBP) optimally, with rankings of CE (82.1%) > HIIT (49.8%) > AT (35.3%) > CT (32.8%), and CE (86.7%) > AT (45.0%) > HIIT (39.5%) > CT (28.8%), respectively. Conclusion We showed that exercise can effectively improve the cardiopulmonary function of stroke patients. HIIT was the most effective in improving VO2peak and 6MWD in stroke patients. CE was the most effective in improving SBP and DBP in stroke patients. However, due to the limitations of existing clinical studies and evidence, larger sample size, multi-center, and high-quality RCTs are needed to verify the above conclusions in the future. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier [CRD42023436773].
Collapse
Affiliation(s)
- Chengshuo Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Yanan Xu
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Linli Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Weijiao Fan
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Zejian Liu
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Mingjin Yong
- Department of Rehabilitation, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Liang Wu
- Beijing Xiaotangshan Hospital, Beijing, China
| |
Collapse
|
8
|
Whitney AJ, Lindeque Z, Kruger R, Steyn SF. Running from depression: the antidepressant-like potential of prenatal and pre-pubertal exercise in adolescent FSL rats exposed to an early-life stressor. Acta Neuropsychiatr 2023:1-15. [PMID: 37969008 DOI: 10.1017/neu.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
OBJECTIVE We aimed to answer the questions of whether early-life (perinatal and/or juvenile) exercise can induce antidepressant-like effects in a validated rodent model of depression, and whether such early-life intervention could prevent or reverse the adverse effects of early-life stress in their offspring. METHODS Male and female Flinders sensitive line rats born to a dam that exercised during gestation, or not, were either maternally separated between PND02 and 16 and weaned on PND17 or not. Half of these animals then underwent a fourteen-day low-intensity exercise regimen from PND22. Baseline depressive-like behaviour was assessed on PND21 and then reassessed on PND36, whereafter hippocampal monoamine levels, redox state markers and metabolic markers relevant to mitochondrial function were measured. RESULTS Pre-pubertal exercise was identified as the largest contributing factor to the observed effects, where it decreased immobility time in the FST by 6%, increased time spent in the open arms of the EPM by 9%. Hippocampal serotonin and norepinephrine levels were also increased by 35% and 26%, respectively, whilst nicotinic acid was significantly decreased. CONCLUSION These findings suggest that pre-pubertal low-intensity exercise induces beneficial biological alterations that could translate into antidepressant behaviour in genetically susceptible individuals.
Collapse
Affiliation(s)
- Ashleigh J Whitney
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Ruan Kruger
- Hypertension in African Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Rami M, Rahdar S, Ahmadi Hekmatikar A, Awang Daud DM. Highlighting the novel effects of high-intensity interval training on some histopathological and molecular indices in the heart of type 2 diabetic rats. Front Endocrinol (Lausanne) 2023; 14:1175585. [PMID: 37274326 PMCID: PMC10235768 DOI: 10.3389/fendo.2023.1175585] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Background Type 2 diabetes is one of the most common metabolic diseases in recent years and has become an important risk factor for cardiovascular disorders. The first goal is to reduce type 2 diabetes, and in the case of cardiovascular disease, the second goal is to reduce and manage that disorder. Materials and methods The rats were divided into 4 groups: Healthy Control (n=8), Diabetes Control (n=8), Diabetes Training (n=8), and Healthy Training (n=8). The protocol consisted of 8 weeks of High-intensity interval (5 sessions per week), where the training started with 80% of the peak speed in the first week, and 10% was added to this speed every week. To measure the level of B-catenin, c-MYC, GSK3B, and Bcl-2 proteins using the western blot method, cardiac pathological changes were measured using hematoxylin and eosin staining, Masson's trichrome and PAS staining and apoptosis using the TUNEL method. Findings Histological results showed that diabetes causes significant pathological hypertrophy, fibrosis, and severe apoptosis in heart tissue. HIIT training significantly reduced pathological hypertrophy and fibrosis in heart tissue, and the rate of cardiomyocyte apoptosis was greatly reduced. This research showed that diabetes disorder increases the levels of B-catenin and c-Myc proteins and causes a decrease in the expression of GSK3B and Bcl-2 proteins. After eight weeks of HIIT training, the levels of B-catenin and c-Myc proteins decreased significantly, and the levels of GSK3B and Bcl-2 proteins increased. Conclusion This study showed that HIIT could be a suitable strategy to reduce cardiomyopathy in type 2 diabetic rats. However, it is suggested that in future studies, researchers should perform different intensities and exercises to promote exercise goals in type 2 diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Samane Rahdar
- Department of Basic Sciences, Histology section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amirhoseein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - D. Maryama Awang Daud
- Health Through Exercise and Active Living (HEAL) Research Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
10
|
Ni C, Ji Y, Hu K, Xing K, Xu Y, Gao Y. Effect of exercise and antioxidant supplementation on cellular lipid peroxidation in elderly individuals: Systematic review and network meta-analysis. Front Physiol 2023; 14:1113270. [PMID: 36866175 PMCID: PMC9971974 DOI: 10.3389/fphys.2023.1113270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Background: The viewpoints of previous studies on the correlation between exercise and cellular lipid peroxidation are contradictory from many perspectives and lack evidence for elder individuals. A new systematic review with network meta-analysis is necessary and will have significant practical value to provide high-quality evidence in the development of exercise protocols and an evidence-based guide for antioxidant supplementation for the elderly. Aims: To identify the cellular lipid peroxidation induced by different types of exercise, with or without antioxidant supplementation, in elderly individuals. Methods: Randomized controlled trials that recruited elderly participants and reported cellular lipid peroxidation indicators and were published in peer-reviewed journals in English were searched by a Boolean logic search strategy and screened in the databases PubMed, Medline, Embase, and Web of Science. The outcome measures were the biomarkers of oxidative stress in cell lipids in urine and blood, namely F2-isoprostanes, hydrogen peroxide (LOOH, PEROX, or LIPOX), malondialdehyde (MDA), and thiobarbituric acid reactive substances (TBARS). Result: 7 trials were included. A combination program of aerobic exercise (AE), low-intensity resistance training (LIRT), and a placebo intake (Placebo) and a combination program of aerobic exercise, low-intensity resistance training, and antioxidant supplementation (S) had the most and sub-most potential to dampen cellular lipid peroxidation (AE + LIRT + Placebo: 0.31 in Rank 1 and 0.2 in Rank 2; AE + LIRT + S: 0.19 in Rank 1 and 0.20 in Rank 2); A placebo intake (Placebo) and a blank intervention without exercise (NE) had the most and sub-most potential to induce an enhancement of cellular lipid peroxidation (Placebo: 0.51 in Rank 9 and 0.16 in Rank 8; NE: 0.16 in Rank 9 and 0.28 in Rank 8). All included studies had an unclear risk of selecting reporting. There were no high confidence ratings in all the direct and indirect comparisons, 4 comparisons in the direct evidence structure and 7 comparisons in the indirect evidence structure had moderate confidence. Conclusion: A combined protocol consisting of aerobic exercise and low-intensity resistance training is recommended to dampen cellular lipid peroxidation. Extra antioxidant supplementation might be unnecessary if an elderly individual has enough aerobic and resistance exercise. Systematic Review Registration: CRD42022367430.
Collapse
Affiliation(s)
- Chunxia Ni
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yiyi Ji
- College of Music, Ningbo University, Ningbo, China
| | - Keke Hu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Kai Xing
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yining Xu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yanan Gao
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
KHANTHONG PHAKSACHIPHON, DECHAKHAMPHU ANANYA, SRIYAKUL KUSUMA, KRAJARNG AUNGKANA, KAMALASHIRAN CHUNTIDA, TUNGSUKRUTHAI PARUNKUL. Effects of Oxidative Damage during Ruesi Dadton Exercise in Mild Cognitive Impairment: Randomized Controlled Trial. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2022; 15:1528-1537. [PMID: 36618334 PMCID: PMC9797009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study aimed to investigate the effect of biomarkers of oxidative stress (OS) in 8-isoprostane (8-iso) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) on mild cognitive impairment (MCI) during a 12-week Ruesi Dadton (RD) exercise. A total of 274 enrolled participants were classified into blocks based on age and formal educational years, and randomly assigned into two groups: RD and control (CON). The participants' cognitive functions were tested using Mini-Mental State Examination and Montreal Cognitive Assessment (MoCA) scores to screen for MCI. Urine samples of approximately 30 mL were collected from both groups pre- and post-intervention. All participants signed consent forms before participating in the program. Participants in the RD group were instructed to perform 15 postures of RD exercise in 60 min, three times a week for 12 weeks. A 2 × 2 (group × time) repeated multivariate analysis, with MoCA score, 8-iso, and 8-OH-dG as covariates, was performed to analyze the between-subject differences across group [V = 0.143, F(2,60) = 5.020, p = 0.010, d = 0.209] and within-subject differences across interaction between group [V = 0.143, F(2,60) = 5.020, p = 0.010, d = 0.408]. There were significant differences from univariate data regarding both 8-iso (F1,61 = 10.081, P = 0.002, d = 0.406) and 8-OH-dG (F(1,61) = 5.965, P = 0.018, d = 0.312) levels. Moreover, results from both biomarkers in the RD group revealed significant improvements in 8-iso (p < 0.001) and 8-OH-dG (p = 0.003), whereas there were no improvements in the CON group. In conclusion, RD decreased biomarkers of OS during 12 weeks of RD exercise in MCI. These results indicate that in MCI, RD could improve lipid peroxidation and DNA oxidation by 8-iso and 8-OH-dG, respectively.
Collapse
Affiliation(s)
| | - ANANYA DECHAKHAMPHU
- Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, THAILAND
| | - KUSUMA SRIYAKUL
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, THAILAND
| | - AUNGKANA KRAJARNG
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, THAILAND
| | - CHUNTIDA KAMALASHIRAN
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, THAILAND
| | - PARUNKUL TUNGSUKRUTHAI
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, THAILAND
| |
Collapse
|
12
|
Swimming exercise activates peroxisome proliferator-activated receptor-alpha and mitigates age-related renal fibrosis in rats. Mol Cell Biochem 2022; 478:1109-1116. [PMID: 36219352 DOI: 10.1007/s11010-022-04581-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022]
Abstract
Aging results in progressive decline of renal function as well as histological alterations including glomerulosclerosis and interstitial fibrosis. The objective of current study was to test the benefits of moderate swimming exercise in aged rats on renal function and structure and investigate its molecular mechanisms. Aged rats of 21-months old were given moderate swimming exercise for 12 weeks. Swimming exercise in aged rats led to reduced plasma levels of creatinine and blood urea nitrogen. Periodic acid-Schiff staining results revealed reduced renal injury scores in aged rats after swimming exercise. Swimming exercise in aged rats mitigated renal fibrosis and downregulated the mRNA expression of Acta2, Fn, Col1a, Col4a, and Tgfb1 in kidneys. Swimming exercise in aged rats attenuated lipid accumulation and reduced levels of triglyceride in kidneys. Swimming exercise in aged rats abated oxidative stress, evidenced by reduced MDA levels and increased MnSOD activities in kidneys. Swimming exercise in aged rats inhibited NF-κB activities and reduced renal expression of pro-inflammatory cytokines including MCP-1, IL-1β and IL-6. Mechanistically, swimming exercise restored mRNA and protein expression of PPAR-α in kidney of aged rats. Furthermore, swimming exercise in aged rats increased expression of PPAR-α-targeting microRNAs including miR-21 and miR-34a. Collectively, swimming exercise activated PPAR-α, which partly explained the benefits of moderate swimming exercise in aging kidneys.
Collapse
|
13
|
Chen D, Zhao G, Fu J, Sun S, Huang X, Su L, He Z, Huang T, Chen R, Hu X, Jiang T, Quan M. Effects of Traditional Chinese Exercise on Oxidative Stress in Middle-Aged and Older Adults: A Network Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148276. [PMID: 35886128 PMCID: PMC9321657 DOI: 10.3390/ijerph19148276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 12/27/2022]
Abstract
Objective: To evaluate the best option among traditional Chinese exercises for reducing oxidative stress in middle-aged and older adults, using a network meta-analysis. Methods: PubMed, Web of Science, and CNKI databases were used. We searched randomized controlled trials (RCTs) on middle-aged and older adults to influence oxidative stress by any traditional Chinese exercises from the beginning to 20 January 2022. A network meta-analysis of randomized control trials was performed comparing the changes in the concentration of glutathione peroxidase (GPX), malondialdehyde (MDA), and superoxide dismutase (SOD) as primary outcomes, following different therapeutic interventions with traditional Chinese exercises in middle-aged and older adults over 30 years old. Standardized mean differences (SMD) and 95% confidence intervals (CI) were used to assess the correlation between each group of interventions, and surface under the cumulative ranking (SUCRA) was used to rank the best interventions. Results: The meta-analysis comprised 15 trials with a total of 927 participants and six interventions: (Wuqinxi (WQX), Baduanjin (BDJ), Tai Ji Quan (TJQ), Yijinjing (YJJ), Mawangdui Daoyin (MWD), and no exercise intervention (NEI)). Regarding GPX: WQX [SMD = 2.79 (1.75, 3.83)], TJQ [SMD = 0.47 (0.23, 0.70)], YJJ [SMD = 1.78 (1.18, 2.37)], MWD [SMD = 1.89 (1.36, 2.43)] were superior in increasing GPX relative to NEI. Regarding MDA: WQX [SMD = 1.68 (0.94, 2.42)], YJJ [SMD = 0.99 (0.28, 1.69)] were superior in reducing MDA relative to NEI. Regarding SOD: WQX [SMD = 1.05 (0.10, 2.01)] were superior in increasing SOD relative to NEI. WQX topped the SUCRA with GPX: 0.97, MDA: 0.91, and SOD: 0.94. Furthermore, WQX was more effective than TJQ in interfering with GPX [SMD = 2.32 (1.26, 3.39)] and MDA [SMD = 1.47 (0.26, 2.67)], and a significantly better intervention effect on SOD than YJJ [SMD = 1.52 (0.80, 2.24)] and MWD [SMD = 0.89 (0.03, 1.75)]. Conclusion: Traditional Chinese exercise can help middle-aged and older adults reduce oxidative stress. WQX may be the best traditional Chinese exercise of the exercises evaluated for reducing oxidative stress in middle-aged and older adults.
Collapse
Affiliation(s)
- Delong Chen
- School of Physical Education, Nanchang University, Nanchang 330031, China; (D.C.); (X.H.); (T.H.); (R.C.); (X.H.); (T.J.)
| | - Guanggao Zhao
- School of Physical Education, Nanchang University, Nanchang 330031, China; (D.C.); (X.H.); (T.H.); (R.C.); (X.H.); (T.J.)
- Correspondence: (G.Z.); (M.Q.)
| | - Jingmei Fu
- Jiangxi Sports Science Medicine Center, Nanchang 330006, China; (J.F.); (S.S.)
| | - Shunli Sun
- Jiangxi Sports Science Medicine Center, Nanchang 330006, China; (J.F.); (S.S.)
| | - Xiaoxiao Huang
- School of Physical Education, Nanchang University, Nanchang 330031, China; (D.C.); (X.H.); (T.H.); (R.C.); (X.H.); (T.J.)
| | - Liqiang Su
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China;
| | - Zihao He
- School of Sports and Human Sciences, Beijing Sport University, Beijing 100091, China;
| | - Ting Huang
- School of Physical Education, Nanchang University, Nanchang 330031, China; (D.C.); (X.H.); (T.H.); (R.C.); (X.H.); (T.J.)
| | - Ruiming Chen
- School of Physical Education, Nanchang University, Nanchang 330031, China; (D.C.); (X.H.); (T.H.); (R.C.); (X.H.); (T.J.)
| | - Xuewen Hu
- School of Physical Education, Nanchang University, Nanchang 330031, China; (D.C.); (X.H.); (T.H.); (R.C.); (X.H.); (T.J.)
| | - Tianle Jiang
- School of Physical Education, Nanchang University, Nanchang 330031, China; (D.C.); (X.H.); (T.H.); (R.C.); (X.H.); (T.J.)
| | - Minghui Quan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Correspondence: (G.Z.); (M.Q.)
| |
Collapse
|
14
|
de França E, dos Santos RVT, Baptista LC, Da Silva MAR, Fukushima AR, Hirota VB, Martins RA, Caperuto EC. Potential Role of Chronic Physical Exercise as a Treatment in the Development of Vitiligo. Front Physiol 2022; 13:843784. [PMID: 35360245 PMCID: PMC8960951 DOI: 10.3389/fphys.2022.843784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Vitiligo is an autoimmune disease characterized by progressive skin depigmentation and the appearance of white patches throughout the body caused by significant apoptosis of epidermal melanocytes. Despite not causing any physical pain, vitiligo can originate several psychosocial disorders, drastically reducing patients' quality of life. Emerging evidence has shown that vitiligo is associated with several genetic polymorphisms related to auto-reactivity from the immune system to melanocytes. Melanocytes from vitiligo patients suffer from excess reactive oxygen species (ROS) produced by defective mitochondria besides a poor endogenous antioxidant system (EAS). This redox imbalance results in dramatic melanocyte oxidative stress (OS), causing significant damage in proteins, lipid membranes, and DNA. The damaged melanocytes secret damage-associated molecular pattern (DAMPs), inducing and increasing inflammatory gene expression response that ultimately leads to melanocytes apoptosis. Vitiligo severity has been also associated with increasing the prevalence and incidence of metabolic syndrome (MetS) or associated disorders such as insulin resistance and hypercholesterolemia. Thus, suggesting that in genetically predisposed individuals, the environmental context that triggers MetS (i.e., sedentary lifestyle) may also be an important trigger for the development and severity of vitiligo disease. This paper will discuss the relationship between the immune system and epidermal melanocytes and their interplay with the redox system. Based on state-of-the-art evidence from the vitiligo research, physical exercise (PE) immunology, and redox system literature, we will also propose chronic PE as a potential therapeutic strategy to treat and prevent vitiligo disease progression. We will present evidence that chronic PE can change the balance of inflammatory to an anti-inflammatory state, improve both EAS and the mitochondrial structure and function (resulting in the decrease of OS). Finally, we will highlight clinically relevant markers that can be analyzed in a new research avenue to test the potential applicability of chronic PE in vitiligo disease.
Collapse
Affiliation(s)
- Elias de França
- Human Movement Laboratory, São Judas University, São Paulo, Brazil
- Departamento de Biociências, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Liliana C. Baptista
- Faculty of Sport, Research Centre in Physical Activity, Health and Leisure, University of Porto, Porto, Portugal
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL United States
- Targeted Exercise, Microbiome and Aging Laboratory, University of Alabama, Birmingham, AL United States
| | - Marco A. R. Da Silva
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
- Department of Physical Education, Universidade da Amazônia, Belém, Brazil
| | - André R. Fukushima
- Centro Universitário das Américas – FAM, São Paulo, Brazil
- Faculdade de Ciências da Saúde – IGESP – FASIG, São Paulo, Brazil
| | | | - Raul A. Martins
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
15
|
Dose- and Intensity-Response Associations Between Leisure-Time Physical Activity and Markers of Inflammation and Oxidative Stress in Older Adults. J Aging Phys Act 2022; 30:950-962. [PMID: 35203054 DOI: 10.1123/japa.2021-0219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/06/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the dose- and intensity-response associations between leisure-time physical activity (LTPA) and markers of inflammation and oxidative stress in older adults. Multivariable linear regression was performed to evaluate the associations among 3,559 older adults in 2015-2018 National Health and Nutrition Examination Survey. LTPA was negatively associated with inflammatory markers including C-reactive protein, segmented neutrophil count and alkaline phosphatase, and positively associated with one marker of antioxidants albumin in older adults. Compared with vigorous LTPA, moderate LTPA could provide more benefits through further decreasing white blood cell count and alkaline phosphatase, and increasing serum bilirubin and albumin. The effects of LTPA on C-reactive protein and albumin were more significant in participants with chronic diseases including diabetes, hypertension, and cancer. In conclusion, this study demonstrates the dose- and intensity-response effects of LTPA on inflammation and oxidative stress and provides exercise prescription recommendations for older adults.
Collapse
|
16
|
Lu Z, Song Y, Chen H, Li S, Teo EC, Gu Y. A Mixed Comparisons of Aerobic Training With Different Volumes and Intensities of Physical Exercise in Patients With Hypertension: A Systematic Review and Network Meta-Analysis. Front Cardiovasc Med 2022; 8:770975. [PMID: 35127851 PMCID: PMC8813975 DOI: 10.3389/fcvm.2021.770975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/16/2021] [Indexed: 01/01/2023] Open
Abstract
It is essential for patients with hypertension to effectively reduce and maintain appropriate blood pressure levels. As one of the non-pharmacological and invasive methods, physical exercise seems to improve blood pressure of the patients with hypertension. However, different volumes and intensities of physical exercise on the improvement of hypertension are different. To understand the effects of the type of exercise training on blood pressure and the other health status of patients with hypertension, a network meta-analysis was used to compare the mixed effects of different types of exercise training. This systematic review includes all eligible randomized controlled trials of PubMed, Medline, Cochrane Library, and CINAHL. Twelve studies met the inclusion criteria (n = 846 participants at the end of the study). The results show that a medium-intensity training (MIT) is best in improving the blood pressure of patients with hypertension, while a high-volume high-intensity interval training (HVHIIT) is better in reducing body mass and resting heart rate. In addition, the analysis of the exercise capacity shows that HVHIIT has a better effect on the improvement of patients with hypertension. Noticeably, long-term high-volume and appropriate intensity exercise can effectively improve the health status of patients with hypertension. In short, for patients with high blood pressure, MIT seems to be better at lowering blood pressure, while HVHIIT can better improve exercise ability and physical fitness. However, larger randomized controlled trials with a longer duration than those included in this meta-analysis are needed to confirm these results.
Collapse
Affiliation(s)
- Zhenghui Lu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yang Song
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Doctoral School on Safety and Security Sciences, Óbuda University, Budapest, Hungary
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Hairong Chen
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Shudong Li
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ee-Chon Teo
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Yang Y, Zhao S, Yang X, Li W, Si J, Yang X. The antidepressant potential of lactobacillus casei in the postpartum depression rat model mediated by the microbiota-gut-brain axis. Neurosci Lett 2022; 774:136474. [DOI: 10.1016/j.neulet.2022.136474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/22/2022]
|
18
|
Lu Z, Sun D, Xu D, Li X, Baker JS, Gu Y. Gait Characteristics and Fatigue Profiles When Standing on Surfaces with Different Hardness: Gait Analysis and Machine Learning Algorithms. BIOLOGY 2021; 10:biology10111083. [PMID: 34827076 PMCID: PMC8615158 DOI: 10.3390/biology10111083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
Simple Summary The purpose of this study was to explore if an anti-fatigue soft mat could improve the gait performance after standing for long periods and to examine if a machine-learning algorithm could evaluate fatigue state objectively. Compared with standing directly on the hard ground, using an anti-fatigue mat could reduce the negative effect of standing for a long time (4 h). The machine-learning algorithm demonstrated moderate accuracy in measuring fatigue. The accuracy of gait parameters used to consider a non-fatigued state following the use of an anti-fatigue mat was higher than that of the fatigue state. The results may indicate that it is beneficial to use anti-fatigue mats when standing for long periods, and it is feasible to use gait parameters and machine-learning algorithms to detect fatigue. Abstract Background: Longtime standing may cause fatigue and discomfort in the lower extremities, leading to an increased risk of falls and related musculoskeletal diseases. Therefore, preventive interventions and fatigue detection are crucial. This study aims to explore whether anti-fatigue mats can improve gait parameters following long periods of standing and try to use machine learning algorithms to identify the fatigue states of standing workers objectively. Methods: Eighteen healthy young subjects were recruited to stand on anti-fatigue mats and hard ground to work 4 h, including 10 min rest. The portable gait analyzer collected walking speed, stride length, gait frequency, single support time/double support time, swing work, and leg fall intensity. A Paired sample t-test was used to compare the difference of gait parameters without standing intervention and standing on two different hardness planes for 4 h. An independent sample t-test was used to analyze the difference between males and females. The K-nearest neighbor (KNN) classification algorithm was performed, the subject’s gait characteristics were divided into non-fatigued and fatigue groups. The gait parameters selection and the error rate of fatigue detection were analyzed. Results: When gender differences were not considered, the intensity of leg falling after standing on the hard ground for 4 h was significantly lower than prior to the intervention (p < 0.05). When considering the gender, the stride length and leg falling strength of female subjects standing on the ground for 4 h were significantly lower than those before the intervention (p < 0.05), and the leg falling strength after standing on the mat for 4 h was significantly lower than that recorded before the standing intervention (p < 0.05). The leg falling strength of male subjects standing on the ground for 4 h was significantly lower than before the intervention (p < 0.05). After standing on the ground for 4 h, female subjects’ walking speed and stride length were significantly lower than those of male subjects (p < 0.05). In addition, the accuracy of testing gait parameters to predict fatigue was medium (75%). After standing on the mat was divided into fatigue, the correct rate was 38.9%, and when it was divided into the non-intervention state, the correct rate was 44.4%. Conclusion: The results show that the discomfort and fatigue caused by standing for 4 h could lead to the gait parameters variation, especially in females. The use of anti-fatigue mats may improve the negative influence caused by standing for a long period. The results of the KNN classification algorithm showed that gait parameters could be identified after fatigue, and the use of an anti-fatigue mat could improve the negative effect of standing for a long time. The accuracy of the prediction results in this study was moderate. For future studies, researchers need to optimize the algorithm and include more factors to improve the prediction accuracy.
Collapse
Affiliation(s)
- Zhenghui Lu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Z.L.); (D.X.); (X.L.)
| | - Dong Sun
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Z.L.); (D.X.); (X.L.)
- Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary
- Correspondence: (D.S.); (Y.G.)
| | - Datao Xu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Z.L.); (D.X.); (X.L.)
| | - Xin Li
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Z.L.); (D.X.); (X.L.)
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Department of Sport and Physical Education, Hong Kong Baptist University, Hong Kong 999077, China;
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Z.L.); (D.X.); (X.L.)
- Correspondence: (D.S.); (Y.G.)
| |
Collapse
|