1
|
Fossali T, Locatelli M, Colombo R, Veronese A, Borghi B, Ballone E, Castelli A, Rech R, Catena E, Ottolina D. Awake pronation with helmet CPAP in early COVID-19 ARDS patients: effects on respiratory effort and distribution of ventilation assessed by EIT. Intern Emerg Med 2024; 19:2025-2034. [PMID: 38532048 DOI: 10.1007/s11739-024-03572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Prone positioning with continuous positive airway pressure (CPAP) is widely used for respiratory support in awake patients with COVID-19-associated acute respiratory failure. We aimed to assess the respiratory mechanics and distribution of ventilation in COVID-19-associated ARDS treated by CPAP in awake prone position. We studied 16 awake COVID-19 patients with moderate-to-severe ARDS. The study protocol consisted of a randomized sequence of supine and prone position with imposed positive end-expiratory pressure (PEEP) of 5 and 10 cmH2O delivered by helmet CPAP. Respiratory mechanics and distribution of ventilation were assessed through esophageal pressure (PES) and electrical impedance tomography (EIT). At the end of each 20-min phase, arterial blood gas analysis was performed, and PES swing and EIT tracings were recorded for the calculation of the respiratory mechanics and regional ventilation. The patient's position had no significant effects on respiratory mechanics. EIT analysis did not detect differences among global indices of ventilation. A significant proportion of pixels in the sternal region of interest showed an increase in compliance from the supine to prone position and PaO2/FIO2 increased accordingly. The best improvement of both PaO2/FIO2 and sternal compliance was obtained in the prone position with PEEP 10 cmH2O. In the studied subjects, prone positioning during CPAP treatment raised oxygenation without improvement of "protective" ventilation or global ventilatory inhomogeneity indices. Prone positioning with higher PEEP significantly increased the compliance of sternal regions.
Collapse
Affiliation(s)
- Tommaso Fossali
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Martina Locatelli
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Riccardo Colombo
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Alice Veronese
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Beatrice Borghi
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Elisabetta Ballone
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Antonio Castelli
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Roberto Rech
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Emanuele Catena
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Davide Ottolina
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy.
| |
Collapse
|
2
|
Arriagada R, Bachmann MC, San Martin C, Rauseo M, Battaglini D. Electrical impedance tomography: Usefulness for respiratory physiotherapy in critical illnesses. Med Intensiva 2024; 48:403-410. [PMID: 38538496 DOI: 10.1016/j.medine.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/26/2024] [Indexed: 07/05/2024]
Abstract
Respiratory physiotherapy, including the management of invasive mechanical ventilation (MV) and noninvasive mechanical ventilation (NIV), is a key supportive intervention for critically ill patients. MV has potential for inducing ventilator-induced lung injury (VILI) as well as long-term complications related to prolonged bed rest, such as post-intensive care syndrome and intensive care unit acquired weakness. Physical and respiratory therapy, developed by the critical care team, in a timely manner, has been shown to prevent these complications. In this pathway, real-time bedside monitoring of changes in pulmonary aeration and alveolar gas distribution associated with postural positioning, respiratory physiotherapy techniques and changes in MV strategies can be crucial in guiding these procedures, providing safe therapy and prevention of potential harm to the patient. Along this path, electrical impedance tomography (EIT) has emerged as a new key non-invasive bedside strategy free of radiation, to allow visualization of lung recruitment. This review article presents the main and potential applications of EIT in relation to physiotherapy techniques in the ICU setting.
Collapse
Affiliation(s)
- Ricardo Arriagada
- Unidad de Paciente Crítico Adulto, Hospital Las Higueras de Talcahuano, Chile; Escuela de Kinesiología Universidad San Sebastián, Sede Tres Pascualas, Concepción, Chile; Unidad de Paciente Crìtico, Clìnica Biobìo, Hualpén, Chile
| | - María Consuelo Bachmann
- Unidad de Paciente Crítico Adulto, Hospital Clínico Pontificia Universidad Católica de Chile, Escuela de Kinesiología, Universidad de Los Andes, Santiago, Chile
| | - Constanza San Martin
- Unidad de Paciente Crítico Adulto, Hospital Las Higueras de Talcahuano, Chile; Escuela de Kinesiología Universidad San Sebastián, Sede Tres Pascualas, Concepción, Chile
| | - Michela Rauseo
- Anesthesia and Intensive Care Medicine, University of Foggia, Policlinico Riuniti di Foggia, Foggia, Italy
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
3
|
Rosén J, Frykholm P, Jonsson Fagerlund M, Pellegrini M, Campoccia Jalde F, von Oelreich E, Fors D. Lung impedance changes during awake prone positioning in COVID-19. A non-randomized cross-over study. PLoS One 2024; 19:e0299199. [PMID: 38381730 PMCID: PMC10880988 DOI: 10.1371/journal.pone.0299199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The effects of awake prone positioning (APP) on respiratory mechanics in patients with COVID-19 are not well characterized. The aim of this study was to investigate changes of global and regional lung volumes during APP compared with the supine position using electrical lung impedance tomography (EIT) in patients with hypoxemic respiratory failure due to COVID-19. MATERIALS AND METHODS This exploratory non-randomized cross-over study was conducted at two university hospitals in Sweden between January and May 2021. Patients admitted to the intensive care unit with confirmed COVID-19, an arterial cannula in place, a PaO2/FiO2 ratio <26.6 kPa (<200 mmHg) and high-flow nasal oxygen or non-invasive ventilation were eligible for inclusion. EIT-data were recorded at supine baseline, at 30 and 60 minutes after APP-initiation, and 30 minutes after supine repositioning. The primary outcomes were changes in global and regional tidal impedance variation (TIV), center of ventilation (CoV), global and regional delta end-expiratory lung-impedance (dEELI) and global inhomogeneity (GI) index at the end of APP compared with supine baseline. Data were reported as median (IQR). RESULTS All patients (n = 10) were male and age was 64 (47-73) years. There were no changes in global or regional TIV, CoV or GI-index during the intervention. dEELI increased from supine reference value 0 to 1.51 (0.32-3.62) 60 minutes after APP (median difference 1.51 (95% CI 0.19-5.16), p = 0.04) and returned to near baseline values after supine repositioning. Seven patients (70%) showed an increase >0.20 in dEELI during APP. The other EIT-variables did not change during APP compared with baseline. CONCLUSION Awake prone positioning was associated with a transient lung recruiting effect without changes in ventilation distribution measured with EIT in patients with hypoxemic respiratory failure due to COVID-19.
Collapse
Affiliation(s)
- Jacob Rosén
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - Peter Frykholm
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - Malin Jonsson Fagerlund
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Solna, Sweden
- Section of Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Mariangela Pellegrini
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - Francesca Campoccia Jalde
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Solna, Sweden
- Section of Thoracic Anesthesiology and Intensive Care, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Erik von Oelreich
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Solna, Sweden
- Section of Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Diddi Fors
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Luján M, Sayas J. When hope meets reality: the challenges of awake proning in unmonitored settings. J Thorac Dis 2024; 16:810-815. [PMID: 38410573 PMCID: PMC10894434 DOI: 10.21037/jtd-23-1588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 02/28/2024]
Affiliation(s)
- Manel Luján
- Servei de Pneumologia, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Centro de Investigacion Biomédica en Red (CIBERES), Madrid, Spain
| | - Javier Sayas
- Pulmonology Service, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Heines SJH, Becher TH, van der Horst ICC, Bergmans DCJJ. Clinical Applicability of Electrical Impedance Tomography in Patient-Tailored Ventilation: A Narrative Review. Tomography 2023; 9:1903-1932. [PMID: 37888742 PMCID: PMC10611090 DOI: 10.3390/tomography9050150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Electrical Impedance Tomography (EIT) is a non-invasive bedside imaging technique that provides real-time lung ventilation information on critically ill patients. EIT can potentially become a valuable tool for optimising mechanical ventilation, especially in patients with acute respiratory distress syndrome (ARDS). In addition, EIT has been shown to improve the understanding of ventilation distribution and lung aeration, which can help tailor ventilatory strategies according to patient needs. Evidence from critically ill patients shows that EIT can reduce the duration of mechanical ventilation and prevent lung injury due to overdistension or collapse. EIT can also identify the presence of lung collapse or recruitment during a recruitment manoeuvre, which may guide further therapy. Despite its potential benefits, EIT has not yet been widely used in clinical practice. This may, in part, be due to the challenges associated with its implementation, including the need for specialised equipment and trained personnel and further validation of its usefulness in clinical settings. Nevertheless, ongoing research focuses on improving mechanical ventilation and clinical outcomes in critically ill patients.
Collapse
Affiliation(s)
- Serge J. H. Heines
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
| | - Tobias H. Becher
- Department of Anesthesiology and Intensive Care Medicine, Campus Kiel, University Medical Centre Schleswig-Holstein, 24118 Kiel, Germany;
| | - Iwan C. C. van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Dennis C. J. J. Bergmans
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
6
|
Li J, Ibarra-Estrada M, Guérin C. Prone Positioning for Patients With COVID-19-Induced Acute Hypoxemic Respiratory Failure: Flipping the Script. Respir Care 2023; 68:1449-1464. [PMID: 37722733 PMCID: PMC10506644 DOI: 10.4187/respcare.11227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
During the COVID-19 pandemic, prone positioning (PP) emerged as a widely used supportive therapy for patients with acute hypoxemic respiratory failure caused by COVID-19 infection. In particular, awake PP (APP)-the placement of non-intubated patients in the prone position-has gained popularity and hence is detailed first herein. This review discusses recent publications on the use of PP for non-intubated and intubated subjects with COVID-19, highlighting the physiological responses, clinical outcomes, influential factors affecting treatment success, and strategies to improve adherence with APP. The use of prolonged PP and the use of PP for patients undergoing extracorporeal membrane oxygenation are also presented.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois.
| | - Miguel Ibarra-Estrada
- Unidad de Terapia Intensiva, Hospital Civil Fray Antonio Alcalde Guadalajara, Universidad de Guadalajara, Jalisco, México; Grupo Internacional de Ventilación Mecánica WeVent; and Latin American Intensive Care Network (LIVEN)
| | - Claude Guérin
- Médecine Intensive Réanimation, Hôpital Édouard Herriot, Lyon, France; Université de Lyon, Lyon, France; and Institut Mondor de Recherches Biomédicales, INSERM 955 CNRS 7000, Créteil, France
| |
Collapse
|
7
|
Crimi C, Murphy P, Patout M, Sayas J, Winck JC. Lessons from COVID-19 in the management of acute respiratory failure. Breathe (Sheff) 2023; 19:230035. [PMID: 37378059 PMCID: PMC10292773 DOI: 10.1183/20734735.0035-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 06/29/2023] Open
Abstract
Accumulated evidence supports the efficacy of noninvasive respiratory support therapies in coronavirus disease 2019 (COVID-19)-related acute hypoxaemic respiratory failure, alleviating admissions to intensive care units. Noninvasive respiratory support strategies, including high-flow oxygen therapy, continuous positive airway pressure via mask or helmet and noninvasive ventilation, can be alternatives that may avoid the need for invasive ventilation. Alternating different noninvasive respiratory support therapies and introducing complementary interventions, like self-proning, may improve outcomes. Proper monitoring is warranted to ensure the efficacy of the techniques and to avoid complications while supporting transfer to the intensive care unit. This article reviews the latest evidence on noninvasive respiratory support therapies in COVID-19-related acute hypoxaemic respiratory failure.
Collapse
Affiliation(s)
- Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Respiratory Medicine Unit, Policlinico “G. Rodolico-San Marco” University Hospital, Catania, Italy
| | - Patrick Murphy
- Lane Fox Respiratory Service, Guy's and St Thomas’ Hospitals NHS Trust, London, UK
- Centre for Human and Applied Physiological Sciences (CHAPS), King's College London, London, UK
| | - Maxime Patout
- Service des Pathologies du Sommeil (Département R3S), Groupe Hospitalier Universitaire APHP-Sorbonne Université, Site Pitié-Salpêtrière, Paris, France
- UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, INSERM, Paris, France
| | - Javier Sayas
- Pulmonology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
- Facultad de Medicina Universidad Complutense de Madrid, Madrid, Spain
| | - Joao Carlos Winck
- Department of Medicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Centro De Reabilitação Do Norte, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova De Gaia, Portugal
| |
Collapse
|
8
|
Yarnell CJ, Angriman F, Ferreyro BL, Liu K, De Grooth HJ, Burry L, Munshi L, Mehta S, Celi L, Elbers P, Thoral P, Brochard L, Wunsch H, Fowler RA, Sung L, Tomlinson G. Oxygenation thresholds for invasive ventilation in hypoxemic respiratory failure: a target trial emulation in two cohorts. Crit Care 2023; 27:67. [PMID: 36814287 PMCID: PMC9944781 DOI: 10.1186/s13054-023-04307-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The optimal thresholds for the initiation of invasive ventilation in patients with hypoxemic respiratory failure are unknown. Using the saturation-to-inspired oxygen ratio (SF), we compared lower versus higher hypoxemia severity thresholds for initiating invasive ventilation. METHODS This target trial emulation included patients from the Medical Information Mart for Intensive Care (MIMIC-IV, 2008-2019) and the Amsterdam University Medical Centers (AmsterdamUMCdb, 2003-2016) databases admitted to intensive care and receiving inspired oxygen fraction ≥ 0.4 via non-rebreather mask, noninvasive ventilation, or high-flow nasal cannula. We compared the effect of using invasive ventilation initiation thresholds of SF < 110, < 98, and < 88 on 28-day mortality. MIMIC-IV was used for the primary analysis and AmsterdamUMCdb for the secondary analysis. We obtained posterior means and 95% credible intervals (CrI) with nonparametric Bayesian G-computation. RESULTS We studied 3,357 patients in the primary analysis. For invasive ventilation initiation thresholds SF < 110, SF < 98, and SF < 88, the predicted 28-day probabilities of invasive ventilation were 72%, 47%, and 19%. Predicted 28-day mortality was lowest with threshold SF < 110 (22.2%, CrI 19.2 to 25.0), compared to SF < 98 (absolute risk increase 1.6%, CrI 0.6 to 2.6) or SF < 88 (absolute risk increase 3.5%, CrI 1.4 to 5.4). In the secondary analysis (1,279 patients), the predicted 28-day probability of invasive ventilation was 50% for initiation threshold SF < 110, 28% for SF < 98, and 19% for SF < 88. In contrast with the primary analysis, predicted mortality was highest with threshold SF < 110 (14.6%, CrI 7.7 to 22.3), compared to SF < 98 (absolute risk decrease 0.5%, CrI 0.0 to 0.9) or SF < 88 (absolute risk decrease 1.9%, CrI 0.9 to 2.8). CONCLUSION Initiating invasive ventilation at lower hypoxemia severity will increase the rate of invasive ventilation, but this can either increase or decrease the expected mortality, with the direction of effect likely depending on baseline mortality risk and clinical context.
Collapse
Affiliation(s)
- Christopher J. Yarnell
- grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428Department of Medicine, Division of Respirology, University Health Network and Sinai Health System, Toronto, Canada ,grid.17063.330000 0001 2157 2938Institute of Health Policy, Management and Evaluation, University of Toronto, Medical-Surgical ICU, 10th floor, 585 University Avenue, Toronto, ON M5G 1X5 Canada
| | - Federico Angriman
- grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Institute of Health Policy, Management and Evaluation, University of Toronto, Medical-Surgical ICU, 10th floor, 585 University Avenue, Toronto, ON M5G 1X5 Canada ,grid.413104.30000 0000 9743 1587Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Bruno L. Ferreyro
- grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428Department of Medicine, Division of Respirology, University Health Network and Sinai Health System, Toronto, Canada ,grid.17063.330000 0001 2157 2938Institute of Health Policy, Management and Evaluation, University of Toronto, Medical-Surgical ICU, 10th floor, 585 University Avenue, Toronto, ON M5G 1X5 Canada
| | - Kuan Liu
- grid.17063.330000 0001 2157 2938Institute of Health Policy, Management and Evaluation, University of Toronto, Medical-Surgical ICU, 10th floor, 585 University Avenue, Toronto, ON M5G 1X5 Canada
| | - Harm Jan De Grooth
- grid.12380.380000 0004 1754 9227Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lisa Burry
- grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada ,grid.492573.e0000 0004 6477 6457Department of Pharmacy and Medicine, Sinai Health System, Toronto, Canada ,grid.17063.330000 0001 2157 2938Leslie Dan Faculty of Pharmacy and Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON Canada
| | - Laveena Munshi
- grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428Department of Medicine, Division of Respirology, University Health Network and Sinai Health System, Toronto, Canada
| | - Sangeeta Mehta
- grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428Department of Medicine, Division of Respirology, University Health Network and Sinai Health System, Toronto, Canada
| | - Leo Celi
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142 USA ,grid.239395.70000 0000 9011 8547Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Paul Elbers
- grid.12380.380000 0004 1754 9227Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Patrick Thoral
- grid.12380.380000 0004 1754 9227Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Laurent Brochard
- grid.415502.7Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Hannah Wunsch
- grid.418647.80000 0000 8849 1617Institute for Clinical Evaluative Sciences, Toronto, Canada ,grid.17063.330000 0001 2157 2938Institute of Health Policy, Management and Evaluation, University of Toronto, Medical-Surgical ICU, 10th floor, 585 University Avenue, Toronto, ON M5G 1X5 Canada ,grid.413104.30000 0000 9743 1587Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Robert A. Fowler
- grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medicine, University of Toronto, Toronto, Canada ,grid.418647.80000 0000 8849 1617Institute for Clinical Evaluative Sciences, Toronto, Canada ,grid.17063.330000 0001 2157 2938Institute of Health Policy, Management and Evaluation, University of Toronto, Medical-Surgical ICU, 10th floor, 585 University Avenue, Toronto, ON M5G 1X5 Canada ,grid.413104.30000 0000 9743 1587Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Lillian Sung
- grid.17063.330000 0001 2157 2938Institute of Health Policy, Management and Evaluation, University of Toronto, Medical-Surgical ICU, 10th floor, 585 University Avenue, Toronto, ON M5G 1X5 Canada ,grid.42327.300000 0004 0473 9646Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - George Tomlinson
- grid.231844.80000 0004 0474 0428Department of Medicine, University Health Network and Sinai Health System, Toronto, Canada ,grid.17063.330000 0001 2157 2938Institute of Health Policy, Management and Evaluation, University of Toronto, Medical-Surgical ICU, 10th floor, 585 University Avenue, Toronto, ON M5G 1X5 Canada
| |
Collapse
|
9
|
Brunelle T, Prud'homme E, Alphonsine JE, Baumstarck K, Sanz C, Salmi S, Peres N, Forel JM, Papazian L, Hraiech S, Roch A, Guervilly C. Awake prone position in COVID-19 acute respiratory failure: a randomized crossover study using electrical impedance tomography. ERJ Open Res 2023; 9:00509-2022. [PMID: 36994452 PMCID: PMC9922472 DOI: 10.1183/23120541.00509-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 02/05/2023] Open
Abstract
BackgroundThe goal of this study was to determine whether an awake prone position (aPP) reduces the global inhomogeneity (GI) index of ventilation measured by electrical impedance tomography (EIT) in COVID-19 patients with acute respiratory failure (ARF).MethodsThis prospective crossover study included COVID-19 patients with COVID-19 and ARF defined by PaO2:FiO2of 100–300 mmHg. After baseline evaluation and 30 min EIT recording in the supine position (SP), patients were randomized into one of two sequences: SP-aPP or aPP-SP. At the end of each 2 h step, oxygenation, respiratory rate, Borg scale, and 30 min EIT were recorded.ResultsTen patients were randomized in each group. The GI index did not change in the SP-aPP group (baseline 74±20%, end of SP 78±23% and end of aPP 72±20%, p=0.85) or in the aPP-SP group (baseline 59±14%, end of aPP 59±15% and end of SP 54±13%, p=0.67). In the whole cohort, PaO2:FiO2increased from 133±44 mmHg at baseline to 183±66 mmHg in aPP (p=0.003) and decreased to 129±49 mmHg in SP (p=0.03).ConclusionIn spontaneously breathing non-intubated COVID-19 patients with acute respiratory failure, aPP was not associated with a decrease of lung ventilation inhomogeneity assessed by EIT, despite an improvement in oxygenation.
Collapse
|
10
|
Maccagnano G, Maruccia F, Rauseo M, Noia G, Coviello M, Laneve A, Quitadamo AP, Trivellin G, Malavolta M, Pesce V. Direct Anterior versus Lateral Approach for Femoral Neck Fracture: Role in COVID-19 Disease. J Clin Med 2022; 11:jcm11164785. [PMID: 36013024 PMCID: PMC9410486 DOI: 10.3390/jcm11164785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/08/2023] Open
Abstract
Background: During the COVID-19 emergency, the incidence of fragility fractures in elderly patients remained unchanged. The management of these patients requires a multidisciplinary approach. The study aimed to assess the best surgical approach to treat COVID-19 patients with femoral neck fracture undergoing hemiarthroplasty (HA), comparing direct lateral (DL) versus direct anterior approach (DAA). Methods: A single-center, observational retrospective study including 50 patients affected by COVID-19 infection (30 males, 20 females) who underwent HA between April 2020 to April 2021 was performed. The patients were allocated into two groups according to the surgical approach used: lateral approach and anterior approach. For each patient, the data were recorded: age, sex, BMI, comorbidity, oxygen saturation (SpO2), fraction of the inspired oxygen (FiO2), type of ventilation invasive or non-invasive, HHb, P/F ratio (PaO2/FiO2), hemoglobin level the day of surgery and 1 day post operative, surgical time, Nottingham Hip Fractures Score (NHFS) and American Society of Anesthesiologists Score (ASA). The patients were observed from one hour before surgery until 48 h post-surgery of follow-up. The patients were stratified into five groups according to Alhazzani scores. A non-COVID-19 group of patients, as the control, was finally introduced. Results: A lateral position led to a better level of oxygenation (p < 0.01), compared to the supine anterior approach. We observed a better post-operative P/F ratio and a reduced need for invasive ventilation in patients lying in the lateral position. A statistically significant reduction in the surgical time emerged in patients treated with DAA (p < 0.01). Patients within the DAA group had a significantly lower blood loss compared to direct lateral approach. Conclusions: DL approach with lateral decubitus seems to preserved respiratory function in HA surgery. Thus, the lateral position may be associated with beneficial effects on gas exchange.
Collapse
Affiliation(s)
- Giuseppe Maccagnano
- Orthopaedics Unit, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Foggia, Policlinico Riuniti di Foggia, 71122 Foggia, Italy
| | - Francesco Maruccia
- Orthopaedics Unit, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Foggia, Policlinico Riuniti di Foggia, 71122 Foggia, Italy
| | - Michela Rauseo
- Department of Anesthesia and Intensive Care, University of Foggia, Policlinico Riuniti di Foggia, 71122 Foggia, Italy
| | - Giovanni Noia
- Orthopaedics Unit, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Foggia, Policlinico Riuniti di Foggia, 71122 Foggia, Italy
| | - Michele Coviello
- Orthopaedic & Trauma Unit, AOU Consorziale Policlinico. Department of Basic Medical Sciences, Neuroscience and Sense Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico. Piazza Giulio Cesare 11, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-3938165088
| | - Andrea Laneve
- Orthopaedics Unit, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Foggia, Policlinico Riuniti di Foggia, 71122 Foggia, Italy
| | - Alessandro Pio Quitadamo
- Orthopaedics Unit, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Foggia, Policlinico Riuniti di Foggia, 71122 Foggia, Italy
| | - Giacomo Trivellin
- Hip and Trauma Surgery Department, Piero Pederzoli Private Hospital, Peschiera del Garda, 37019 Verona, Italy
| | - Michele Malavolta
- Knee Surgery Department, Piero Pederzoli Private Hospital, Peschiera del Garda, 37019 Verona, Italy
| | - Vito Pesce
- Orthopaedics Unit, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Foggia, Policlinico Riuniti di Foggia, 71122 Foggia, Italy
| |
Collapse
|
11
|
Imaging the acute respiratory distress syndrome: past, present and future. Intensive Care Med 2022; 48:995-1008. [PMID: 35833958 PMCID: PMC9281340 DOI: 10.1007/s00134-022-06809-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
In patients with the acute respiratory distress syndrome (ARDS), lung imaging is a fundamental tool in the study of the morphological and mechanistic features of the lungs. Chest computed tomography studies led to major advances in the understanding of ARDS physiology. They allowed the in vivo study of the syndrome's lung features in relation with its impact on respiratory physiology and physiology, but also explored the lungs' response to mechanical ventilation, be it alveolar recruitment or ventilator-induced lung injuries. Coupled with positron emission tomography, morphological findings were put in relation with ventilation, perfusion or acute lung inflammation. Lung imaging has always been central in the care of patients with ARDS, with modern point-of-care tools such as electrical impedance tomography or lung ultrasounds guiding clinical reasoning beyond macro-respiratory mechanics. Finally, artificial intelligence and machine learning now assist imaging post-processing software, which allows real-time analysis of quantitative parameters that describe the syndrome's complexity. This narrative review aims to draw a didactic and comprehensive picture of how modern imaging techniques improved our understanding of the syndrome, and have the potential to help the clinician guide ventilatory treatment and refine patient prognostication.
Collapse
|
12
|
Rauseo M, Spinelli E, Sella N, Slobod D, Spadaro S, Longhini F, Giarratano A, Gilda C, Mauri T, Navalesi P. Expert opinion document: "Electrical impedance tomography: applications from the intensive care unit and beyond". JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE (ONLINE) 2022; 2:28. [PMID: 37386674 DOI: 10.1186/s44158-022-00055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 07/01/2023]
Abstract
Mechanical ventilation is a life-saving technology, but it can also inadvertently induce lung injury and increase morbidity and mortality. Currently, there is no easy method of assessing the impact that ventilator settings have on the degree of lung inssflation. Computed tomography (CT), the gold standard for visually monitoring lung function, can provide detailed regional information of the lung. Unfortunately, it necessitates moving critically ill patients to a special diagnostic room and involves exposure to radiation. A technique introduced in the 1980s, electrical impedance tomography (EIT) can non-invasively provide similar monitoring of lung function. However, while CT provides information on the air content, EIT monitors ventilation-related changes of lung volume and changes of end expiratory lung volume (EELV). Over the past several decades, EIT has moved from the research lab to commercially available devices that are used at the bedside. Being complementary to well-established radiological techniques and conventional pulmonary monitoring, EIT can be used to continuously visualize the lung function at the bedside and to instantly assess the effects of therapeutic maneuvers on regional ventilation distribution. EIT provides a means of visualizing the regional distribution of ventilation and changes of lung volume. This ability is particularly useful when therapy changes are intended to achieve a more homogenous gas distribution in mechanically ventilated patients. Besides the unique information provided by EIT, its convenience and safety contribute to the increasing perception expressed by various authors that EIT has the potential to be used as a valuable tool for optimizing PEEP and other ventilator settings, either in the operative room and in the intensive care unit. The effects of various therapeutic interventions and applications on ventilation distribution have already been assessed with the help of EIT, and this document gives an overview of the literature that has been published in this context.
Collapse
Affiliation(s)
- Michela Rauseo
- Department of Anesthesia and Intensive Care Medicine, University of Foggia, Policlinico Riuniti di Foggia, Foggia, Italy.
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico Milan, Milano, Italy
| | - Nicolò Sella
- Instiute of Anesthesia and Intensive Care, Padua University Hospital, Padova, Italy
| | - Douglas Slobod
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico Milan, Milano, Italy
- Department of Critical Care Medicine, McGill University, Montreal, Quebec, Canada
| | - Savino Spadaro
- Anesthesia and Intensive Care Unit, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" University Hospital, Catanzaro, Italy
| | - Antonino Giarratano
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), Section of Anaesthesia, Analgesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Cinnella Gilda
- Department of Anesthesia and Intensive Care Medicine, University of Foggia, Policlinico Riuniti di Foggia, Foggia, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico Milan, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Navalesi
- Instiute of Anesthesia and Intensive Care, Padua University Hospital, Padova, Italy
- Department of Medicine - DIMED, University of Padua, Padova, Italy
| |
Collapse
|
13
|
Electrical impedance tomography in the adult intensive care unit. Curr Opin Crit Care 2022; 28:292-301. [DOI: 10.1097/mcc.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|