1
|
Wabina RS, Silpasuwanchai C. Neural stochastic differential equations network as uncertainty quantification method for EEG source localization. Biomed Phys Eng Express 2023; 9. [PMID: 36368029 DOI: 10.1088/2057-1976/aca20b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
EEG source localization remains a challenging problem given the uncertain conductivity values of the volume conductor models (VCMs). As uncertain conductivities vary across people, they may considerably impact the forward and inverse solutions of the EEG, leading to an increase in localization mistakes and misdiagnoses of brain disorders. Calibration of conductivity values using uncertainty quantification (UQ) techniques is a promising approach to reduce localization errors. The widely-known UQ methods involve Bayesian approaches, which utilize prior conductivity values to derive their posterior inference and estimate their optimal calibration. However, these approaches have two significant drawbacks: solving for posterior inference is intractable, and choosing inappropriate priors may lead to increased localization mistakes. This study used the Neural Stochastic Differential equations Network (SDE-Net), a combination of dynamical systems and deep learning techniques that utilizes the Wiener process to minimize conductivity uncertainties in the VCM and improve the inverse problem. Results revealed that SDE-Net generated a lower localization error rate in the inverse problem compared to Bayesian techniques. Future studies may employ new stochastic dynamical systems-based techniques as a UQ technique to address further uncertainties in the EEG Source Localization problem. Our code can be found here:https://github.com/rrwabina/SDENet-UQ-ESL.
Collapse
Affiliation(s)
- R S Wabina
- Center for Health and Wellness Technology, Asian Institute of Technology (AIT), Khlong Luang, Pathum Thani, Thailand
| | - C Silpasuwanchai
- Center for Health and Wellness Technology, Asian Institute of Technology (AIT), Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
2
|
Nieto Ramos A, Fenton FH, Cherry EM. Bayesian inference for fitting cardiac models to experiments: estimating parameter distributions using Hamiltonian Monte Carlo and approximate Bayesian computation. Med Biol Eng Comput 2023; 61:75-95. [PMID: 36322242 DOI: 10.1007/s11517-022-02685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/02/2022] [Indexed: 01/07/2023]
Abstract
Customization of cardiac action potential models has become increasingly important with the recognition of patient-specific models and virtual patient cohorts as valuable predictive tools. Nevertheless, developing customized models by fitting parameters to data poses technical and methodological challenges: despite noise and variability associated with real-world datasets, traditional optimization methods produce a single "best-fit" set of parameter values. Bayesian estimation methods seek distributions of parameter values given the data by obtaining samples from the target distribution, but in practice widely known Bayesian algorithms like Markov chain Monte Carlo tend to be computationally inefficient and scale poorly with the dimensionality of parameter space. In this paper, we consider two computationally efficient Bayesian approaches: the Hamiltonian Monte Carlo (HMC) algorithm and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) algorithm. We find that both methods successfully identify distributions of model parameters for two cardiac action potential models using model-derived synthetic data and an experimental dataset from a zebrafish heart. Although both methods appear to converge to the same distribution family and are computationally efficient, HMC generally finds narrower marginal distributions, while ABC-SMC is less sensitive to the algorithmic settings including the prior distribution.
Collapse
Affiliation(s)
- Alejandro Nieto Ramos
- School of Mathematical Sciences, Rochester Institute of Technology, 1 Lomb Memorial Drive, 14623, Rochester, NY, USA.,Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, 837 State Street NW, 30332, Atlanta, GA, USA
| | - Elizabeth M Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, 756 West Peachtree Street, 30308, Atlanta, GA, USA.
| |
Collapse
|
3
|
Karabelas E, Longobardi S, Fuchsberger J, Razeghi O, Rodero C, Strocchi M, Rajani R, Haase G, Plank G, Niederer S. Global Sensitivity Analysis of Four Chamber Heart Hemodynamics Using Surrogate Models. IEEE Trans Biomed Eng 2022; 69:3216-3223. [PMID: 35353691 PMCID: PMC9491017 DOI: 10.1109/tbme.2022.3163428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/19/2022] [Indexed: 11/15/2022]
Abstract
Computational Fluid Dynamics (CFD) is used to assist in designing artificial valves and planning procedures, focusing on local flow features. However, assessing the impact on overall cardiovascular function or predicting longer-term outcomes may requires more comprehensive whole heart CFD models. Fitting such models to patient data requires numerous computationally expensive simulations, and depends on specific clinical measurements to constrain model parameters, hampering clinical adoption. Surrogate models can help to accelerate the fitting process while accounting for the added uncertainty. We create a validated patient-specific four-chamber heart CFD model based on the Navier-Stokes-Brinkman (NSB) equations and test Gaussian Process Emulators (GPEs) as a surrogate model for performing a variance-based global sensitivity analysis (GSA). GSA identified preload as the dominant driver of flow in both the right and left side of the heart, respectively. Left-right differences were seen in terms of vascular outflow resistances, with pulmonary artery resistance having a much larger impact on flow than aortic resistance. Our results suggest that GPEs can be used to identify parameters in personalized whole heart CFD models, and highlight the importance of accurate preload measurements.
Collapse
Affiliation(s)
- Elias Karabelas
- Institute of Mathematics and Scientific ComputingUniversity of GrazAustria
| | - Stefano Longobardi
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging SciencesKing’s College LondonU.K.
| | - Jana Fuchsberger
- Institute of Mathematics and Scientific ComputingUniversity of GrazAustria
| | - Orod Razeghi
- Research IT Services DepartmentUniversity College LondonU.K.
| | - Cristobal Rodero
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging SciencesKing’s College LondonU.K.
| | - Marina Strocchi
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging SciencesKing’s College LondonU.K.
| | - Ronak Rajani
- Department of Adult EchocardiographyGuy’s and St Thomas’ Hospitals NHS Foundation TrustU.K.
| | - Gundolf Haase
- Institute of Mathematics and Scientific ComputingUniversity of GrazAustria
| | - Gernot Plank
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Division BiophysicsMedical University of GrazAustria
| | - Steven Niederer
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging SciencesKing’s College LondonSE1 7EHLondonU.K.
| |
Collapse
|
4
|
Molinari L, Zaltieri M, Massaroni C, Filippi S, Gizzi A, Schena E. Multiscale and Multiphysics Modeling of Anisotropic Cardiac RFCA: Experimental-Based Model Calibration via Multi-Point Temperature Measurements. Front Physiol 2022; 13:845896. [PMID: 35514332 PMCID: PMC9062295 DOI: 10.3389/fphys.2022.845896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Radiofrequency catheter ablation (RFCA) is the mainstream treatment for drug-refractory cardiac fibrillation. Multiple studies demonstrated that incorrect dosage of radiofrequency energy to the myocardium could lead to uncontrolled tissue damage or treatment failure, with the consequent need for unplanned reoperations. Monitoring tissue temperature during thermal therapy and predicting the extent of lesions may improve treatment efficacy. Cardiac computational modeling represents a viable tool for identifying optimal RFCA settings, though predictability issues still limit a widespread usage of such a technology in clinical scenarios. We aim to fill this gap by assessing the influence of the intrinsic myocardial microstructure on the thermo-electric behavior at the tissue level. By performing multi-point temperature measurements on ex-vivo swine cardiac tissue samples, the experimental characterization of myocardial thermal anisotropy allowed us to assemble a fine-tuned thermo-electric material model of the cardiac tissue. We implemented a multiphysics and multiscale computational framework, encompassing thermo-electric anisotropic conduction, phase-lagging for heat transfer, and a three-state dynamical system for cellular death and lesion estimation. Our analysis resulted in a remarkable agreement between ex-vivo measurements and numerical results. Accordingly, we identified myocardium anisotropy as the driving effect on the outcomes of hyperthermic treatments. Furthermore, we characterized the complex nonlinear couplings regulating tissue behavior during RFCA, discussing model calibration, limitations, and perspectives.
Collapse
Affiliation(s)
- Leonardo Molinari
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, United States
| | - Martina Zaltieri
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Carlo Massaroni
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Simonetta Filippi
- Nonlinear Physics and Mathematical Modeling Lab, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Alessio Gizzi
- Nonlinear Physics and Mathematical Modeling Lab, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Emiliano Schena
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| |
Collapse
|
5
|
Gander L, Pezzuto S, Gharaviri A, Krause R, Perdikaris P, Sahli Costabal F. Fast Characterization of Inducible Regions of Atrial Fibrillation Models With Multi-Fidelity Gaussian Process Classification. Front Physiol 2022; 13:757159. [PMID: 35330935 PMCID: PMC8940533 DOI: 10.3389/fphys.2022.757159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Computational models of atrial fibrillation have successfully been used to predict optimal ablation sites. A critical step to assess the effect of an ablation pattern is to pace the model from different, potentially random, locations to determine whether arrhythmias can be induced in the atria. In this work, we propose to use multi-fidelity Gaussian process classification on Riemannian manifolds to efficiently determine the regions in the atria where arrhythmias are inducible. We build a probabilistic classifier that operates directly on the atrial surface. We take advantage of lower resolution models to explore the atrial surface and combine seamlessly with high-resolution models to identify regions of inducibility. We test our methodology in 9 different cases, with different levels of fibrosis and ablation treatments, totalling 1,800 high resolution and 900 low resolution simulations of atrial fibrillation. When trained with 40 samples, our multi-fidelity classifier that combines low and high resolution models, shows a balanced accuracy that is, on average, 5.7% higher than a nearest neighbor classifier. We hope that this new technique will allow faster and more precise clinical applications of computational models for atrial fibrillation. All data and code accompanying this manuscript will be made publicly available at: https://github.com/fsahli/AtrialMFclass.
Collapse
Affiliation(s)
- Lia Gander
- Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
| | - Simone Pezzuto
- Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
| | - Ali Gharaviri
- Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
| | - Rolf Krause
- Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
| | - Paris Perdikaris
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States
| | - Francisco Sahli Costabal
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
| |
Collapse
|