1
|
Yun S, Kiffer FC, Bancroft GL, Guzman CS, Soler I, Haas HA, Shi R, Patel R, Lara-Jiménez J, Kumar PL, Tran FH, Ahn KJ, Rong Y, Luitel K, Shay JW, Eisch AJ. The longitudinal behavioral effects of acute exposure to galactic cosmic radiation in female C57BL/6J mice: Implications for deep space missions, female crews, and potential antioxidant countermeasures. J Neurochem 2025; 169:e16225. [PMID: 39318241 DOI: 10.1111/jnc.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Galactic cosmic radiation (GCR) is an unavoidable risk to astronauts that may affect mission success. Male rodents exposed to 33-beam-GCR (33-GCR) show short-term cognitive deficits but reports on female rodents and long-term assessment are lacking. We asked: What are the longitudinal behavioral effects of 33-GCR on female mice? Also, can an antioxidant/anti-inflammatory compound (CDDO-EA) mitigate the impact of 33-GCR? Mature (6-month-old) C57BL/6J female mice received CDDO-EA (400 μg/g of food) or a control diet (vehicle, Veh) for 5 days and Sham-irradiation (IRR) or whole-body 33-GCR (0.75Gy) on the 4th day. Three-months post-IRR, mice underwent two touchscreen-platform tests: (1) location discrimination reversal (tests behavior pattern separation and cognitive flexibility, abilities reliant on the dentate gyrus) and (2) stimulus-response learning/extinction. Mice then underwent arena-based behavior tests (e.g. open field, 3-chamber social interaction). At the experiment's end (14.25-month post-IRR), an index relevant to neurogenesis was quantified (doublecortin-immunoreactive [DCX+] dentate gyrus immature neurons). Female mice exposed to Veh/Sham vs. Veh/33-GCR had similar pattern separation (% correct to 1st reversal). There were two effects of diet: CDDO-EA/Sham and CDDO-EA/33-GCR mice had better pattern separation vs. their respective control groups (Veh/Sham, Veh/33-GCR), and CDDO-EA/33-GCR mice had better cognitive flexibility (reversal number) vs. Veh/33-GCR mice. One radiation effect/CDDO-EA countereffect also emerged: Veh/33-GCR mice had slower stimulus-response learning (days to completion) vs. all other groups, including CDDO-EA/33-GCR mice. In general, all mice showed normal anxiety-like behavior, exploration, and habituation to novel environments. There was also a change relevant to neurogenesis: Veh/33-GCR mice had fewer DCX+ dentate gyrus immature neurons vs. Veh/Sham mice. Our study implies space radiation is a risk to a female crew's longitudinal mission-relevant cognitive processes and CDDO-EA is a potential dietary countermeasure for space-radiation CNS risks.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederico C Kiffer
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grace L Bancroft
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Caterina S Guzman
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Harley A Haas
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymon Shi
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Riya Patel
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Jaysen Lara-Jiménez
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Priya L Kumar
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Kyung Jin Ahn
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Yuying Rong
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Krishna Luitel
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Aksoyalp ZŞ, Temel A, Karpuz M. Pharmacological Innovations in Space: Challenges and Future Perspectives. Pharm Res 2024; 41:2095-2120. [PMID: 39532779 DOI: 10.1007/s11095-024-03788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Since the first human experience in space, the interest in space research and medicine to explore universe is growing day by day. The extreme space conditions mainly radiation and microgravity effects on human physiology, antimicrobial susceptibility, and efficacy, safety, and stability of drugs. Therefore, the aim of this review is to address the impact of extreme space conditions, mainly microgravity and radiation, on human physiology and highlights the need for future approaches by evaluating the effectiveness of strategies to prevent or mitigate health problems. METHODS Published papers and NASA technical documents were searched in Pubmed and Google Scholar databases using the keywords ''antimicrobial susceptibility or drug resistance or drug stability or innovations or pharmacokinetic or pharmacodynamics'' and ''radiation or microgravity or space environments or space medicine or space pharmacy'' to prepare this review. RESULTS In this review, the challenges regarding physiological effects and drug-related problems are examined through the evaluation of extreme conditions in space. Medications used in spaceflight are summarized, and the role of pharmacists specializing in space medicine is briefly explained. Last but not least, to overcome the aforementioned issues, novel approaches have been addressed, such as personalised treatments, development of space-resistant formulations and various microbial applications. CONCLUSIONS Further research in the space medicine is required to facilitate the safe and healthy travel of humans to the Moon, Mars and other extraterrestrial destinations. One bear in mind that space research will contribute not only to the exploration of the universe, but also to the advancement of health and technological discoveries on Earth.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye.
| |
Collapse
|
3
|
Hedlich-Dwyer J, Allard JS, Mulgrave VE, Kisby GE, Raber J, Gassman NR. Novel Techniques for Mapping DNA Damage and Repair in the Brain. Int J Mol Sci 2024; 25:7021. [PMID: 39000135 PMCID: PMC11241736 DOI: 10.3390/ijms25137021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
DNA damage in the brain is influenced by endogenous processes and metabolism along with exogenous exposures. Accumulation of DNA damage in the brain can contribute to various neurological disorders, including neurodegenerative diseases and neuropsychiatric disorders. Traditional methods for assessing DNA damage in the brain, such as immunohistochemistry and mass spectrometry, have provided valuable insights but are limited by their inability to map specific DNA adducts and regional distributions within the brain or genome. Recent advancements in DNA damage detection methods offer new opportunities to address these limitations and further our understanding of DNA damage and repair in the brain. Here, we review emerging techniques offering more precise and sensitive ways to detect and quantify DNA lesions in the brain or neural cells. We highlight the advancements and applications of these techniques and discuss their potential for determining the role of DNA damage in neurological disease.
Collapse
Affiliation(s)
- Jenna Hedlich-Dwyer
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joanne S Allard
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Veronica E Mulgrave
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Glen E Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Yun S, Kiffer FC, Bancroft GL, Guzman CS, Soler I, Haas HA, Shi R, Patel R, Lara-Jiménez J, Kumar PL, Tran FH, Ahn KJ, Rong Y, Luitel K, Shay JW, Eisch AJ. The longitudinal behavioral effects of acute exposure to galactic cosmic radiation in female C57BL/6J mice: implications for deep space missions, female crews, and potential antioxidant countermeasures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588768. [PMID: 38659963 PMCID: PMC11042186 DOI: 10.1101/2024.04.12.588768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Galactic cosmic radiation (GCR) is an unavoidable risk to astronauts that may affect mission success. Male rodents exposed to 33-beam-GCR (33-GCR) show short-term cognitive deficits but reports on female rodents and long-term assessment is lacking. Here we asked: What are the longitudinal behavioral effects of 33-GCR on female mice? Also, can an antioxidant/anti-inflammatory compound mitigate the impact of 33-GCR? Mature (6-month-old) C57BL/6J female mice received the antioxidant CDDO-EA (400 µg/g of food) or a control diet (vehicle, Veh) for 5 days and either Sham-irradiation (IRR) or whole-body 33-GCR (0.75Gy) on the 4th day. Three-months post-IRR, mice underwent two touchscreen-platform tests: 1) location discrimination reversal (which tests behavior pattern separation and cognitive flexibility, two abilities reliant on the dentate gyrus) and 2) stimulus-response learning/extinction. Mice then underwent arena-based behavior tests (e.g. open field, 3-chamber social interaction). At the experiment end (14.25-month post-IRR), neurogenesis was assessed (doublecortin-immunoreactive [DCX+] dentate gyrus neurons). Female mice exposed to Veh/Sham vs. Veh/33-GCR had similar pattern separation (% correct to 1st reversal). There were two effects of diet: CDDO-EA/Sham and CDDO-EA/33-GCR mice had better pattern separation vs. their respective control groups (Veh/Sham, Veh/33-GCR), and CDDO-EA/33-GCR mice had better cognitive flexibility (reversal number) vs. Veh/33-GCR mice. Notably, one radiation effect/CDDO-EA countereffect also emerged: Veh/33-GCR mice had worse stimulus-response learning (days to completion) vs. all other groups, including CDDO-EA/33-GCR mice. In general, all mice show normal anxiety-like behavior, exploration, and habituation to novel environments. There was also a change in neurogenesis: Veh/33-GCR mice had fewer DCX+ dentate gyrus immature neurons vs. Veh/Sham mice. Our study implies space radiation is a risk to a female crew's longitudinal mission-relevant cognitive processes and CDDO-EA is a potential dietary countermeasure for space-radiation CNS risks.
Collapse
|
5
|
Aghajanshakeri S, Salmanmahiny A, Aghajanshakeri S, Babaei A, Alishahi F, Babayani E, Shokrzadeh M. Modulatory effect of amifostine (WR-1065) against genotoxicity and oxidative stress induced by methotrexate in human umbilical vein endothelial cells (HUVECs). Toxicol Mech Methods 2023; 33:755-765. [PMID: 37537746 DOI: 10.1080/15376516.2023.2238069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
Amifostine is used in chemotherapy and radiotherapy as a cytoprotective adjuvant alongside DNA-binding chemotherapeutic agents. It functions by reducing free radicals and detoxifying harmful metabolites. Methotrexate, as an antimetabolite drug has been considered for treating various cancers and autoimmune diseases. However, the cytotoxic effects of methotrexate extend beyond tumor cells to crucial organs, including the heart. This study applied the HUVEC cell line as a reference in vitro model for researching the characteristics of vascular endothelium and cardiotoxicity. The current study aimed to assess amifostine's potential cytoprotective properties against methotrexate-induced cellular damage. Cytotoxicity was measured using the MTT assay. Apoptotic rates were evaluated by Annexin V-FITC/PI staining via flow cytometry. The genoprotective effect of amifostine was determined using the comet assay. Cells were exposed to various amifostine doses (10-200 μg/mL) and methotrexate (2.5 μM) in pretreatment culture condition. Methotrexate at 2.5 μM revealed cytotoxicity, apoptosis, oxidative stress and genotoxicity while highlighting amifostine's cyto/geno protective properties on HUVECs. Amifostine significantly decreased the levels of ROS and LPO while preserving the status of GSH and SOD activity. Furthermore, it inhibited genotoxicity (tail length, %DNA in tail, and tail moment) in the comet assay. Amifostine markedly attenuated methotrexate-induced apoptotic cell death (early and late apoptotic rates). These findings convey that amifostine can operate as a cytoprotectant agent.
Collapse
Affiliation(s)
- Shaghayegh Aghajanshakeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Salmanmahiny
- Department of Toxicology and Pharmacology, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahin Aghajanshakeri
- Biological Oncology (Orchid Pharmed) Department, CinnaGen Pharmaceutical Company, Tehran, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farhad Alishahi
- Department of Toxicology and Pharmacology, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Erfan Babayani
- Department of Toxicology and Pharmacology, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Boutros SW, Zimmerman B, Nagy SC, Unni VK, Raber J. Age, sex, and apolipoprotein E isoform alter contextual fear learning, neuronal activation, and baseline DNA damage in the hippocampus. Mol Psychiatry 2023; 28:3343-3354. [PMID: 36732588 PMCID: PMC10618101 DOI: 10.1038/s41380-023-01966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
Age, female sex, and apolipoprotein E4 (E4) are risk factors to develop Alzheimer's disease (AD). There are three major human apoE isoforms: E2, E3, and E4. Compared to E3, E4 increases while E2 decreases AD risk. However, E2 is associated with increased risk and severity of post-traumatic stress disorder (PTSD). In cognitively healthy adults, E4 carriers have greater brain activation during learning and memory tasks in the absence of behavioral differences. Human apoE targeted replacement (TR) mice display differences in fear extinction that parallel human data: E2 mice show impaired extinction, mirroring heightened PTSD symptoms in E2 combat veterans. Recently, an adaptive role of DNA double strand breaks (DSBs) in immediate early gene expression (IEG) has been described. Age and disease synergistically increase DNA damage and decrease DNA repair. As the mechanisms underlying the relative risks of apoE, sex, and their interactions in aging are unclear, we used young (3 months) and middle-aged (12 months) male and female TR mice to investigate the influence of these factors on DSBs and IEGs at baseline and following contextual fear conditioning. We assessed brain-wide changes in neural activation following fear conditioning using whole-brain cFos imaging in young female TR mice. E4 mice froze more during fear conditioning and had lower cFos immunoreactivity across regions important for somatosensation and contextual encoding compared to E2 mice. E4 mice also showed altered co-activation compared to E3 mice, corresponding to human MRI and cognitive data, and indicating that there are differences in brain activity and connectivity at young ages independent of fear learning. There were increased DSB markers in middle-aged animals and alterations to cFos levels dependent on sex and isoform, as well. The increase in hippocampal DSB markers in middle-aged animals and female E4 mice may play a role in the risk for developing AD.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Psychological Sciences, Boise State University, 2133 W Cesar Chavez Ln, Boise, ID, 83725, USA
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Advanced Imaging Research Center, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Helfgott Research Institute, NUNM, 2201 SW First Avenue, Portland, OR, 97201, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N, Matthews Avenue, Urbana, IL 61801, USA
| | - Sydney C Nagy
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Vivek K Unni
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Jungers Center for Neurosciences Research, OHSU; and OHSU Parkinson Center, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Departments of Psychiatry and Radiation Medicine, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Division of Neuroscience, ONPRC, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| |
Collapse
|
7
|
Miller KB, Mi KL, Nelson GA, Norman RB, Patel ZS, Huff JL. Ionizing radiation, cerebrovascular disease, and consequent dementia: A review and proposed framework relevant to space radiation exposure. Front Physiol 2022; 13:1008640. [PMID: 36388106 PMCID: PMC9640983 DOI: 10.3389/fphys.2022.1008640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 09/05/2023] Open
Abstract
Space exploration requires the characterization and management or mitigation of a variety of human health risks. Exposure to space radiation is one of the main health concerns because it has the potential to increase the risk of cancer, cardiovascular disease, and both acute and late neurodegeneration. Space radiation-induced decrements to the vascular system may impact the risk for cerebrovascular disease and consequent dementia. These risks may be independent or synergistic with direct damage to central nervous system tissues. The purpose of this work is to review epidemiological and experimental data regarding the impact of low-to-moderate dose ionizing radiation on the central nervous system and the cerebrovascular system. A proposed framework outlines how space radiation-induced effects on the vasculature may increase risk for both cerebrovascular dysfunction and neural and cognitive adverse outcomes. The results of this work suggest that there are multiple processes by which ionizing radiation exposure may impact cerebrovascular function including increases in oxidative stress, neuroinflammation, endothelial cell dysfunction, arterial stiffening, atherosclerosis, and cerebral amyloid angiopathy. Cerebrovascular adverse outcomes may also promote neural and cognitive adverse outcomes. However, there are many gaps in both the human and preclinical evidence base regarding the long-term impact of ionizing radiation exposure on brain health due to heterogeneity in both exposures and outcomes. The unique composition of the space radiation environment makes the translation of the evidence base from terrestrial exposures to space exposures difficult. Additional investigation and understanding of the impact of low-to-moderate doses of ionizing radiation including high (H) atomic number (Z) and energy (E) (HZE) ions on the cerebrovascular system is needed. Furthermore, investigation of how decrements in vascular systems may contribute to development of neurodegenerative diseases in independent or synergistic pathways is important for protecting the long-term health of astronauts.
Collapse
Affiliation(s)
| | | | - Gregory A. Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Ryan B. Norman
- NASA Langley Research Center, Hampton, VA, United States
| | - Zarana S. Patel
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Janice L. Huff
- NASA Langley Research Center, Hampton, VA, United States
| |
Collapse
|
8
|
Nian Y, Hu X, Zhang R, Feng J, Du J, Li F, Bu L, Zhang Y, Chen Y, Tao C. Mining on Alzheimer's diseases related knowledge graph to identity potential AD-related semantic triples for drug repurposing. BMC Bioinformatics 2022; 23:407. [PMID: 36180861 PMCID: PMC9523633 DOI: 10.1186/s12859-022-04934-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, there are no effective treatments for most neurodegenerative diseases. Knowledge graphs can provide comprehensive and semantic representation for heterogeneous data, and have been successfully leveraged in many biomedical applications including drug repurposing. Our objective is to construct a knowledge graph from literature to study the relations between Alzheimer's disease (AD) and chemicals, drugs and dietary supplements in order to identify opportunities to prevent or delay neurodegenerative progression. We collected biomedical annotations and extracted their relations using SemRep via SemMedDB. We used both a BERT-based classifier and rule-based methods during data preprocessing to exclude noise while preserving most AD-related semantic triples. The 1,672,110 filtered triples were used to train with knowledge graph completion algorithms (i.e., TransE, DistMult, and ComplEx) to predict candidates that might be helpful for AD treatment or prevention. RESULTS Among three knowledge graph completion models, TransE outperformed the other two (MR = 10.53, Hits@1 = 0.28). We leveraged the time-slicing technique to further evaluate the prediction results. We found supporting evidence for most highly ranked candidates predicted by our model which indicates that our approach can inform reliable new knowledge. CONCLUSION This paper shows that our graph mining model can predict reliable new relationships between AD and other entities (i.e., dietary supplements, chemicals, and drugs). The knowledge graph constructed can facilitate data-driven knowledge discoveries and the generation of novel hypotheses.
Collapse
Affiliation(s)
- Yi Nian
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Xinyue Hu
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Rui Zhang
- Department of Pharmaceutical Care & Health System (PCHS) and the Institute for Health Informatics (IHI), University of Minnesota, 7-115A Weaver-Densford Hall, Minneapolis, MN 55455 USA
| | - Jingna Feng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Jingcheng Du
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Fang Li
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Larry Bu
- University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201 USA
| | - Yuji Zhang
- University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201 USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics (DBEI), the Perelman School of Medicine, University of Pennsylvania, 602 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Cui Tao
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| |
Collapse
|
9
|
Weber Boutros S, Unni VK, Raber J. An Adaptive Role for DNA Double-Strand Breaks in Hippocampus-Dependent Learning and Memory. Int J Mol Sci 2022; 23:8352. [PMID: 35955487 PMCID: PMC9368779 DOI: 10.3390/ijms23158352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
DNA double-strand breaks (DSBs), classified as the most harmful type of DNA damage based on the complexity of repair, lead to apoptosis or tumorigenesis. In aging, DNA damage increases and DNA repair decreases. This is exacerbated in disease, as post-mortem tissue from patients diagnosed with mild cognitive impairment (MCI) or Alzheimer's disease (AD) show increased DSBs. A novel role for DSBs in immediate early gene (IEG) expression, learning, and memory has been suggested. Inducing neuronal activity leads to increases in DSBs and upregulation of IEGs, while increasing DSBs and inhibiting DSB repair impairs long-term memory and alters IEG expression. Consistent with this pattern, mice carrying dominant AD mutations have increased baseline DSBs, and impaired DSB repair is observed. These data suggest an adaptive role for DSBs in the central nervous system and dysregulation of DSBs and/or repair might drive age-related cognitive decline (ACD), MCI, and AD. In this review, we discuss the adaptive role of DSBs in hippocampus-dependent learning, memory, and IEG expression. We summarize IEGs, the history of DSBs, and DSBs in synaptic plasticity, aging, and AD. DSBs likely have adaptive functions in the brain, and even subtle alterations in their formation and repair could alter IEGs, learning, and memory.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Vivek K. Unni
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Health & Science University Parkinson Center, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
10
|
Younger S, Boutros S, Cargnin F, Jeon S, Lee JW, Lee SK, Raber J. Behavioral Phenotypes of Foxg1 Heterozygous Mice. Front Pharmacol 2022; 13:927296. [PMID: 35754477 PMCID: PMC9214218 DOI: 10.3389/fphar.2022.927296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
FOXG1 syndrome (FS, aka a congenital variant of Rett syndrome) is a recently defined rare and devastating neurodevelopmental disorder characterized by various symptoms, including severe intellectual disability, autistic features, involuntary, and continuous jerky movements, feeding problems, sleep disturbances, seizures, irritability, and excessive crying. FS results from mutations in a single allele of the FOXG1 gene, leading to impaired FOXG1 function. Therefore, in establishing mouse models for FS, it is important to test if heterozygous (HET) mutation in the Foxg1 gene, mimicking genotypes of the human FS individuals, also manifests phenotypes similar to their symptoms. We analyzed HET mice with a null mutation allele in a single copy of Foxg1, and found that they show various phenotypes resembling the symptoms of the human FS individuals. These include increased anxiety in the open field as well as impairment in object recognition, motor coordination, and fear learning and contextual and cued fear memory. Our results suggest that Foxg1 HET mice recapitulate at least some symptoms of the human FS individuals.
Collapse
Affiliation(s)
- Skyler Younger
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Sydney Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | | | - Shin Jeon
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States.,Department of Systems Pharmacology & Translational Therapeutics, Institute for Immunology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jae W Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Soo-Kyung Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Departments of Neurology and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
11
|
Saliev T, Fakhradiyev I, Tanabayeva S, Assanova Y, Toishybek D, Kazybayeva A, Tanabayev B, Sikhymbaev M, Alimbayeva A, Toishibekov Y. "Radio-Protective Effect of Aminocaproic Acid in Human Spermatozoa". Int J Radiat Biol 2022; 98:1462-1472. [PMID: 35021023 DOI: 10.1080/09553002.2022.2027540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The negative effects of ionizing radiation on organs and the reproductive system are well known and documented. Exposure to gamma radiation can lead to oligospermia, azoospermia and DNA damage. Up to date, there is no effective pharmaceutical compound for protecting the male reproductive system and sperm. OBJECTIVE This study aimed at investigating the ability of Ɛ-aminocaproic acid (EACA) to prevent the damage of human spermatozoa and DNA induced by ionizing radiation. MATERIALS AND METHODS Sperm samples were obtained from healthy volunteers (35 men; 31.50 ± 7.34 years old). There were 4 experimental groups: 1) control group (CG), 2) group exposed to maximal radiation dose 67.88 mGy (RMAX), 3) low-dose radiation (minimal) 22.62 mGy (RMIN), and 4) group treated with radiation (67.88 mGy) and EACA (dose 50 ng/ml). Sperm motility, viability, and DNA damage were assessed. RESULTS We observed a significant decrease in total sperm motility of the RMAX group compared to CG (p < 0.05). Sperm viability in the RMAX group was also reduced in comparison to the control (p < 0.05). A significant increase in DNA fragmentation was detected in the RMAX group. The results demonstrated that the treatment of sperm with EACA led to a decrease in the fragmentation of the sperm DNA (compared to the RMAX group) (p < 0.05). CONCLUSION The results indicate that EACA effectively protects human spermatozoa from DNA damage induced by ionizing radiation. Treatment of spermatozoa with EACA led to the preservation of cell motility, viability, and DNA integrity upon radiation exposure.
Collapse
Affiliation(s)
- Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Ildar Fakhradiyev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Shynar Tanabayeva
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Yelena Assanova
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan
| | - Dinmukhamed Toishybek
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan.,Embryo Technology Labs, Almaty, Kazakhstan
| | - Aigul Kazybayeva
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan.,Clinic of Reproduction and Anti Age, Almaty, Kazakhstan
| | | | - Marat Sikhymbaev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | - Yerzhan Toishibekov
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan.,Embryo Technology Labs, Almaty, Kazakhstan
| |
Collapse
|