1
|
Aryal A C S, Islam MS. Potential Role of BMP7 in Regenerative Dentistry. Int Dent J 2024; 74:901-909. [PMID: 38664175 PMCID: PMC11561487 DOI: 10.1016/j.identj.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 09/20/2024] Open
Abstract
In recent years, the field of regenerative dentistry has garnered considerable attention for its focus on restoring and renewing damaged dental tissue. This narrative review explores the potential of bone morphogenetic protein 7 (BMP7) and its diverse applications in the regeneration of dental tissue. Recently, significant efforts have been made to understand BMP7's role in advancing regenerative dentistry. Amongst the various signalling molecules investigated for their regenerative capabilities, BMP7 emerges as a pivotal candidate, demonstrating the ability to stimulate the regeneration of dental pulp, periodontal, craniofacial, and alveolar bone tissues for dental implant placement. Whilst BMP7 exhibits significant promise as a therapeutic agent in regenerative dentistry, further research and clinical trials are necessary to fully unlock its potential and optimise its clinical effectiveness in addressing diverse dental and craniofacial conditions. This review highlights BMP7's substantial potential and emphasises the ongoing need for continued research to effectively harness its clinical utility in diverse dental and craniofacial contexts.
Collapse
Affiliation(s)
- Smriti Aryal A C
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Md Sofiqul Islam
- Department of Operative Dentistry, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| |
Collapse
|
2
|
Allemailem KS, Almatroudi A, Alharbi HOA, AlSuhaymi N, Alsugoor MH, Aldakheel FM, Khan AA, Rahmani AH. Apigenin: A Bioflavonoid with a Promising Role in Disease Prevention and Treatment. Biomedicines 2024; 12:1353. [PMID: 38927560 PMCID: PMC11202028 DOI: 10.3390/biomedicines12061353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Apigenin is a powerful flavone compound found in numerous fruits and vegetables, and it offers numerous health-promoting benefits. Many studies have evidenced that this compound has a potential role as an anti-inflammatory and antioxidant compound, making it a promising candidate for reducing the risk of pathogenesis. It has also been found to positively affect various systems in the body, such as the respiratory, digestive, immune, and reproductive systems. Apigenin is effective in treating liver, lung, heart, kidney, neurological diseases, diabetes, and maintaining good oral and skin health. Multiple studies have reported that this compound is capable of suppressing various types of cancer through the induction of apoptosis and cell-cycle arrest, suppressing cell migration and invasion, reduction of inflammation, and inhibiting angiogenesis. When used in combination with other drugs, apigenin increases their efficacy, reduces the risk of side effects, and improves the response to chemotherapy. This review broadly analyzes apigenin's potential in disease management by modulating various biological activities. In addition, this review also described apigenin's interaction with other compounds or drugs and the potential role of nanoformulation in different pathogeneses. Further extensive research is needed to explore the mechanism of action, safety, and efficacy of this compound in disease prevention and treatment.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia (M.H.A.)
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia (M.H.A.)
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| |
Collapse
|
3
|
Liu Y, Wu Y, Hu X, Sun Y, Zeng G, Wang Q, Liu S, Sun M. The role of vitamin D receptor in predentin mineralization and dental repair after injury. Cell Tissue Res 2024; 396:343-351. [PMID: 38492000 DOI: 10.1007/s00441-024-03886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr-/-) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr-/- mice. The finding revealed a thicker predentin in Vdr-/- mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr-/- mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr-/- mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr-/- mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr-/- mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Histology and Embryology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Yinlin Wu
- Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Xiaodong Hu
- Department of Histology and Embryology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Yu Sun
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Guojin Zeng
- Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Qinglong Wang
- Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Shanshan Liu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China.
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, 287 Chuang Huai Road, Bengbu, 233004, China.
| | - Meiqun Sun
- Department of Histology and Embryology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China.
| |
Collapse
|
4
|
Elkady DM, Helaly YR, El Fayoumy HW, AbuBakr HO, Yassin AM, AbdElkader NA, Farag DBE, El Aziz PMA, Scarano A, Khater AGA. An animal study on the effectiveness of platelet-rich plasma as a direct pulp capping agent. Sci Rep 2024; 14:3699. [PMID: 38355945 PMCID: PMC10867036 DOI: 10.1038/s41598-024-54162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Direct pulp capping (DPC) is a conservative approach for preserving tooth vitality without requiring more invasive procedures by enhancing pulp healing and mineralized tissue barrier formation. We investigated the effectiveness of Platelet Rich Plasma (PRP) vs. Mineral Trioxide Aggregate (MTA) as a DPC agent. Forty-two teeth from three mongrel dogs were divided into two equal groups. After three months, the animals were sacrificed to evaluate teeth radiographically using cone-beam computerized tomography, histopathologically, and real-time PCR for dentin sialophosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE), and nestin (NES) mRNA expression. Radiographically, hard tissue formation was evident in both groups without significant differences (p = 0.440). Histopathologic findings confirmed the dentin bridge formation in both groups; however, such mineralized tissues were homogenous without cellular inclusions in the PRP group, while was osteodentin type in the MTA group. There was no significant difference in dentin bridge thickness between the PRP-capped and MTA-capped teeth (p = 0.732). The PRP group had significantly higher DSPP, MEPE, and NES mRNA gene expression than the MTA group (p < 0.05). In conclusion, PRP enables mineralized tissue formation following DPC similar to MTA, and could generate better cellular dentinogenic responses and restore dentin with homogenous architecture than MTA, making PRP a promising alternative DPC agent.
Collapse
Affiliation(s)
- Dina M Elkady
- Conservative Dentistry Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Yara R Helaly
- Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Hala W El Fayoumy
- Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Naglaa A AbdElkader
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dina B E Farag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Possy M Abd El Aziz
- Conservative Dentistry Department, Faculty of Dentistry, Cairo University, Giza, Egypt
- Faculty of Oral and Dental Medicine, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy
| | - Ahmad G A Khater
- Faculty of Oral and Dental Medicine, Egyptian Russian University, Badr City, Cairo, Egypt.
- Health Affairs Directorate, Egyptian Ministry of Health and Population, Banisuif, Egypt.
| |
Collapse
|
5
|
Miyano Y, Mikami M, Katsuragi H, Shinkai K. Effects of Sr 2+, BO 33-, and SiO 32- on Differentiation of Human Dental Pulp Stem Cells into Odontoblast-Like Cells. Biol Trace Elem Res 2023; 201:5585-5600. [PMID: 36917393 DOI: 10.1007/s12011-023-03625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
This study aimed to clarify the effects of strontium (Sr2+), borate (BO33-), and silicate (SiO32-) on cell proliferative capacity, the induction of differentiation into odontoblast-like cells (OLCs), and substrate formation of human dental pulp stem cells (hDPSCs). Sr2+, BO33-, and SiO32- solutions were added to the hDPSC culture medium at three different concentrations, totaling nine experimental groups. The effects of these ions on hDPSC proliferation, calcification, and collagen formation after 14, 21, and 28 days of culture were evaluated using a cell proliferation assay, a quantitative alkaline phosphatase (ALP) activity assay, and Alizarin Red S and Sirius Red staining, respectively. Furthermore, the effects of these ions on hDPSC differentiation into OLCs were assessed via quantitative polymerase chain reaction and immunocytochemistry. Sr2+ and SiO32- increased the expression of odontoblast markers; i.e., nestin, dentin matrix protein-1, dentin sialophosphoprotein, and ALP genes, compared with the control group. BO33- increased the ALP gene expression and activity. The results of this study suggested that Sr2+, BO33-, and SiO32- may induce hDPSC differentiation into OLCs.
Collapse
Affiliation(s)
- Yuko Miyano
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, Nigata, Japan
| | - Masato Mikami
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Hiroaki Katsuragi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Koichi Shinkai
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Nigata, 951-8580, Japan.
| |
Collapse
|
6
|
Ahuja A, Tyagi PK, Kumar M, Sharma N, Prakash S, Radha, Chandran D, Dhumal S, Rais N, Singh S, Dey A, Senapathy M, Saleena LAK, Shanavas A, Mohankumar P, Rajalingam S, Murugesan Y, Vishvanathan M, Sathyaseelan SK, Viswanathan S, Kumar KK, Natta S, Mekhemar M. Botanicals and Oral Stem Cell Mediated Regeneration: A Paradigm Shift from Artificial to Biological Replacement. Cells 2022; 11:2792. [PMID: 36139367 PMCID: PMC9496740 DOI: 10.3390/cells11182792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, India
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Naveen Sharma
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi 110029, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sci-ences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer 305004, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo P.O. Box 138, Ethiopia
| | - Lejaniya Abdul Kalam Saleena
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lampur 56000, Malaysia
| | - Arjun Shanavas
- Division of Medicine, Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pran Mohankumar
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Yasodha Murugesan
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Marthandan Vishvanathan
- Department of Seed Science and Technology, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | | | - Sabareeshwari Viswanathan
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Keerthana Krishna Kumar
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong 737106, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Chris-tian-Albrecht’s University, 24105 Kiel, Germany
| |
Collapse
|
7
|
Lee ES, Aryal YP, Kim TY, Kim JY, Yamamoto H, An CH, An SY, Lee Y, Sohn WJ, Jung JK, Ha JH, Kim JY. Facilitation of Reparative Dentin Using a Drug Repositioning Approach With 4-Phenylbutric Acid. Front Physiol 2022; 13:885593. [PMID: 35600310 PMCID: PMC9114641 DOI: 10.3389/fphys.2022.885593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
For hard tissue formation, cellular mechanisms, involved in protein folding, processing, and secretion play important roles in the endoplasmic reticulum (ER). In pathological and regeneration conditions, ER stress hinders proper formation and secretion of proteins, and tissue regeneration by unfolded protein synthesis. 4-Phenylbutyric acid (4PBA) is a chemical chaperone that alleviates ER stress through modulation in proteins folding and protein trafficking. However, previous studies about 4PBA only focused on the metabolic diseases rather than on hard tissue formation and regeneration. Herein, we evaluated the function of 4PBA in dentin regeneration using an exposed pulp animal model system via a local delivery method as a drug repositioning strategy. Our results showed altered morphological changes and cellular physiology with histology and immunohistochemistry. The 4PBA treatment modulated the inflammation reaction and resolved ER stress in the early stage of pulp exposure. In addition, 4PBA treatment activated blood vessel formation and TGF-β1 expression in the dentin-pulp complex. Micro-computed tomography and histological examinations confirmed the facilitated formation of the dentin bridge in the 4PBA-treated specimens. These results suggest that proper modulation of ER stress would be an important factor for secretion and patterned formation in dentin regeneration.
Collapse
Affiliation(s)
- Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Incheon, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
- *Correspondence: Jae-Young Kim, , orcid.org/0000-0002-6752-5683; Jung-Hong Ha, , orcid.org/0000-0002-0469-4324
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
- *Correspondence: Jae-Young Kim, , orcid.org/0000-0002-6752-5683; Jung-Hong Ha, , orcid.org/0000-0002-0469-4324
| |
Collapse
|
8
|
Calcium Phosphate Cement Promotes Odontoblastic Differentiation of Dental Pulp Cells In Vitro and In Vivo. COATINGS 2022. [DOI: 10.3390/coatings12040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the case of pulp injury, odontoblastic differentiation of dental pulp cells (DPCs) at the site of the exposed pulp is necessary for a successful direct pulp capping treatment. Calcium phosphate cement (CPC), a kind of hydroxyapatite-like bone cement, exhibits therapeutic potential in osteogenesis by regulating cell cycle progression and promoting osteoblastic differentiation. Based on the similar biological process of osteo/odontoblastic differentiation, the present study evaluated the effects of CPC on odontoblastic differentiation of DPCs in vitro and in vivo, respectively. The morphology of CPC was observed by scanning electron microscopy. Colony-forming units were used to assess the antibacterial activity. The effects of CPC on cell proliferation and odontoblastic differentiation of human dental pulp cells (hDPCs) were also measured. Histological staining was performed to observe the reparative dentin formation in rat molars. In vitro, results of antibacterial studies showed that CPC significantly inhibited the growth of Streptococcus mutans. The appropriate concentration of CPC extract showed low cytotoxicity on hDPCs. Furthermore, CPC extract also promoted odontoblastic differentiation and mineralization compared with the control group, as shown by a dynamic increase in the expression of odontogenic marker genes and the increased number of mineralized nodules at 21 days. The pulpotomy models with CPC facilitated the formation of dentin bridge with the highly expressed dentin matrix protein 1 (DMP1) in odontoblast-like cells. In conclusion, the favorable biocompatibility, antibacterial property and bio-inductivity of CPC suggest that CPC can be used as a promising direct pulp capping material.
Collapse
|