1
|
Méndez-Fernández A, Fernández-Mora Á, Bernal-Ramírez J, Alves-Figueiredo H, Nieblas B, Salazar-Ramírez F, Maldonado-Ruiz R, Zazueta C, García N, Lozano O, Treviño V, Torre-Amione G, García-Rivas G. Distinguishing pathophysiological features of heart failure with reduced and preserved ejection fraction: A comparative analysis of two mouse models. J Physiol 2024. [PMID: 39018163 DOI: 10.1113/jp286410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024] Open
Abstract
Heart failure (HF) is a heterogeneous condition that can be categorized according to the left ventricular ejection fraction (EF) into HF with reduced (HFrEF) or preserved (HFpEF) EF. Although HFrEF and HFpEF share some common clinical manifestations, the mechanisms underlying each phenotype are often found to be distinct. Identifying shared and divergent pathophysiological features might expand our insights on HF pathophysiology and assist the search for therapies for each HF subtype. In this study, we evaluated and contrasted two new murine models of non-ischaemic HFrEF and cardiometabolic HFpEF in terms of myocardial structure, left ventricular function, gene expression, cardiomyocyte calcium handling, mitochondrial polarization and protein acetylation in a head-to-head fashion. We found that in conditions of similar haemodynamic stress, the HFrEF myocardium underwent a more pronounced hypertrophic and fibrotic remodelling, whereas inflammation was greater in the HFpEF myocardium. We observed opposing features on calcium release, which was diminished in the HFrEF cardiomyocyte but enhanced in the HFpEF cardiomyocyte. Mitochondria were less polarized in both HFrEF and HFpEF cardiomyocytes, reflecting similarly impaired metabolic capacity. Hyperacetylation of cardiac proteins was observed in both models, but it was more accentuated in the HFpEF heart. Despite shared features, unique triggering mechanisms (neurohormonal overactivation in HFrEF vs. inflammation in HFpEF) appear to determine the distinct phenotypes of HF. The findings of the present research stress the need for further exploration of the differential mechanisms underlying each HF subtype, because they might require specific therapeutic interventions. KEY POINTS: The mechanisms underlying heart failure with either reduced (HFrEF) or preserved (HFpEF) ejection fraction are often found to be different. Previous studies comparing pathophysiological traits between HFrEF and HFpEF have been conducted on animals of different ages and strains. The present research contrasted two age-matched mouse models of non-ischaemic HFrEF and cardiometabolic HFpEF to uncover divergent and shared features. We found that upon similar haemodynamic stress, the HFrEF heart experienced a more pronounced hypertrophic and fibrotic remodelling, whereas inflammation appeared to be greater in the HFpEF myocardium. Calcium release was diminished in the HFrEF cardiomyocyte and enhanced in the HFpEF cardiomyocyte. Mitochondria were comparably less polarized in both HFrEF and HFpEF myocytes. Hyperacetylation of proteins was common to both models, but stronger in the HFpEF heart. Casting light on common and distinguishing features might ease the quest for phenotype-specific therapies for heart failure patients.
Collapse
Affiliation(s)
- Abraham Méndez-Fernández
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Ángel Fernández-Mora
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Judith Bernal-Ramírez
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Hugo Alves-Figueiredo
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Bianca Nieblas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Felipe Salazar-Ramírez
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Roger Maldonado-Ruiz
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ciudad de Mexico, Mexico
| | - Noemí García
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Víctor Treviño
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Guillermo Torre-Amione
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| |
Collapse
|
2
|
Ranjan P, Dutta RK, Colin K, Li J, Zhang Q, Lal H, Qin G, Verma SK. Bone marrow-fibroblast progenitor cell-derived small extracellular vesicles promote cardiac fibrosis via miR-21-5p and integrin subunit αV signalling. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e152. [PMID: 38947170 PMCID: PMC11212340 DOI: 10.1002/jex2.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 04/17/2024] [Indexed: 07/02/2024]
Abstract
Cardiac fibrosis is the hallmark of cardiovascular disease (CVD), which is leading cause of death worldwide. Previously, we have shown that interleukin-10 (IL10) reduces pressure overload (PO)-induced cardiac fibrosis by inhibiting the recruitment of bone marrow fibroblast progenitor cells (FPCs) to the heart. However, the precise mechanism of FPC involvement in cardiac fibrosis remains unclear. Recently, exosomes and small extracellular vesicles (sEVs) have been linked to CVD progression. Thus, we hypothesized that pro-fibrotic miRNAs enriched in sEV-derived from IL10 KO FPCs promote cardiac fibrosis in pressure-overloaded myocardium. Small EVs were isolated from FPCs cultured media and characterized as per MISEV-2018 guidelines. Small EV's miRNA profiling was performed using Qiagen fibrosis-associated miRNA profiler kit. For functional analysis, sEVs were injected in the heart following TAC surgery. Interestingly, TGFβ-treated IL10-KO-FPCs sEV increased profibrotic genes expression in cardiac fibroblasts. The exosomal miRNA profiling identified miR-21a-5p as the key player, and its inhibition with antagomir prevented profibrotic signalling and fibrosis. At mechanistic level, miR-21a-5p binds and stabilizes ITGAV (integrin av) mRNA. Finally, miR-21a-5p-silenced in sEV reduced PO-induced cardiac fibrosis and improved cardiac function. Our study elucidates the mechanism by which inflammatory FPC-derived sEV exacerbate cardiac fibrosis through the miR-21a-5p/ITGAV/Col1α signalling pathway, suggesting miR-21a-5p as a potential therapeutic target for treating hypertrophic cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular DiseaseThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular DiseaseThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Karen Colin
- Department of Medicine, Division of Cardiovascular DiseaseThe University of Alabama at BirminghamBirminghamAlabamaUSA
- UAB School of Health ProfessionsThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jing Li
- Department of Medicine, Division of Cardiovascular DiseaseThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Qinkun Zhang
- Department of Medicine, Division of Cardiovascular DiseaseThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Hind Lal
- Department of Medicine, Division of Cardiovascular DiseaseThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Gangjian Qin
- Department of Biomedical EngineeringThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular DiseaseThe University of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Biomedical EngineeringThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
3
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Kerp H, Gassen J, Grund SC, Hönes GS, Dörr S, Mittag J, Härting N, Kaiser F, Moeller LC, Lorenz K, Führer D. Cardiac recovery from pressure overload is not altered by thyroid hormone status in old mice. Front Endocrinol (Lausanne) 2024; 15:1339741. [PMID: 38455657 PMCID: PMC10917895 DOI: 10.3389/fendo.2024.1339741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Thyroid hormones (THs) are known to have various effects on the cardiovascular system. However, the impact of TH levels on preexisting cardiac diseases is still unclear. Pressure overload due to arterial hypertension or aortic stenosis and aging are major risk factors for the development of structural and functional abnormalities and subsequent heart failure. Here, we assessed the sensitivity to altered TH levels in aged mice with maladaptive cardiac hypertrophy and cardiac dysfunction induced by transverse aortic constriction (TAC). Methods Mice at the age of 12 months underwent TAC and received T4 or anti-thyroid medication in drinking water over the course of 4 weeks after induction of left ventricular pressure overload. Results T4 excess or deprivation in older mice had no or only very little impact on cardiac function (fractional shortening), cardiac remodeling (cardiac wall thickness, heart weight, cardiomyocyte size, apoptosis, and interstitial fibrosis), and mortality. This is surprising because T4 excess or deprivation had significantly changed the outcome after TAC in young 8-week-old mice. Comparing the gene expression of deiodinases (Dio) 2 and 3 and TH receptor alpha (TRα) 1 and the dominant-negative acting isoform TRα2 between young and aged mice revealed that aged mice exhibited a higher expression of TRα2 and Dio3, while expression of Dio2 was reduced compared with young mice. These changes in Dio2 and 3 expressions might lead to reduced TH availability in the hearts of 12-month-old mice accompanied by reduced TRα action due to higher TRα2. Discussion In summary, our study shows that low and high TH availability have little impact on cardiac function and remodeling in older mice with preexisting pressure-induced cardiac damage. This observation seems to be the result of an altered expression of deiodinases and TRα isoforms, thus suggesting that even though cardiovascular risk is increasing with age, the response to TH stress may be dampened in certain conditions.
Collapse
Affiliation(s)
- Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Gassen
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Susanne Camilla Grund
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefanie Dörr
- Cardiovascular Pharmacology, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Jens Mittag
- Institute of Endocrinology and Diabetes and Center for Brain, Behavior and Metabolism, University Hospital Schleswig-Holstein (UKSH), University of Lübeck, Lübeck, Germany
| | - Nina Härting
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Kaiser
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kristina Lorenz
- Cardiovascular Pharmacology, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Nanda D, Pant P, Machha P, Sowpati DT, Kumarswamy R. Transcriptional changes during isoproterenol-induced cardiac fibrosis in mice. Front Mol Biosci 2023; 10:1263913. [PMID: 38178867 PMCID: PMC10765171 DOI: 10.3389/fmolb.2023.1263913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/23/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction: β-adrenergic stimulation using β-agonists such as isoproterenol has been routinely used to induce cardiac fibrosis in experimental animal models. Although transcriptome changes in surgical models of cardiac fibrosis such as transverse aortic constriction (TAC) and coronary artery ligation (CAL) are well-studied, transcriptional changes during isoproterenol-induced cardiac fibrosis are not well-explored. Methods: Cardiac fibrosis was induced in male C57BL6 mice by administration of isoproterenol for 4, 8, or 11 days at 50 mg/kg/day dose. Temporal changes in gene expression were studied by RNA sequencing. Results and discussion: We observed a significant alteration in the transcriptome profile across the different experimental groups compared to the saline group. Isoproterenol treatment caused upregulation of genes associated with ECM organization, cell-cell contact, three-dimensional structure, and cell growth, while genes associated with fatty acid oxidation, sarcoplasmic reticulum calcium ion transport, and cardiac muscle contraction are downregulated. A number of known long non-coding RNAs (lncRNAs) and putative novel lncRNAs exhibited differential regulation. In conclusion, our study shows that isoproterenol administration leads to the dysregulation of genes relevant to ECM deposition and cardiac contraction, and serves as an excellent alternate model to the surgical models of heart failure.
Collapse
Affiliation(s)
- Disha Nanda
- Council of Scientific and Industrial Research (CSIR)–Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Pant
- Council of Scientific and Industrial Research (CSIR)–Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pratheusa Machha
- Council of Scientific and Industrial Research (CSIR)–Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Tej Sowpati
- Council of Scientific and Industrial Research (CSIR)–Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Regalla Kumarswamy
- Council of Scientific and Industrial Research (CSIR)–Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Zheng S, Tan W, Li X, Wang L, Zhu C, Pyle WG, Chen J, Wu J, Ren X, Chen H, Zou Y, Backx PH, Yang FH. Apelin receptor inhibition in ischemia-reperfused mouse hearts protected by endogenous n-3 polyunsaturated fatty acids. Front Pharmacol 2023; 14:1145413. [PMID: 37942483 PMCID: PMC10628527 DOI: 10.3389/fphar.2023.1145413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
Background: While the protective effects of n-3 polyunsaturated fatty acids (PUFAs) on cardiac ischemia-reperfusion (IR) injury have been previously reported, limited data are available regarding how these fatty acids affect membrane receptors and their downstream signaling following IR injury. We aimed to identify potential receptors activated by n-3 PUFAs in IR hearts to understand the regulatory mechanisms of these receptors. Methods: We used fat-1 mice, which naturally have elevated levels of n-3 PUFAs, and C57BL/6J mice as a control group to create a myocardial IR injury model through Langendorff perfusion. We assessed the impact of endogenous n-3 PUFAs on left ventricular function, myocardial infarct size, myocardial apoptosis, and ATP production. RNA sequencing (RNA-seq) and bioinformatics analysis were conducted to identify molecular targets affected by n-3 PUFAs. Based on these analyses we then treated IR hearts of WT and fat-1 mice with an antagonist (ML221) or an agonist (apelin-13) for the predicted receptor to assess cardiac contractile function and intracellular signaling pathways. An in vitro hypoxia-reoxygenation (HR) model was also used to confirm the effects of n-3 PUFAs on the examined intracellular signaling pathways. Results: Endogenous n-3 PUFAs protected cardiac structure and function in post-IR hearts, and modulated phosphorylation patterns in the PI3K-AKT-mTOR signaling pathways. RNA-seq analysis revealed that n-3 PUFAs affected multiple biological processes as well as levels of the apelin receptor (APLNR). Consistent with a role for the PLNNR, ML221 synchronized the activation of the PI3K-AKT-mTOR signaling axis, suppressed the expression of PKCδ and phosphorylated p38α, upregulated PKCε expression, upregulated or restored the phosphorylation of myofilaments, and prevented myocardial injury and contractile dysfunction in WT IR hearts. By contrast, apelin-13 disrupted the PI3K-AKT-mTOR signaling axis in post-IR fat-1 hearts. The phosphorylation signaling targeted by APLNR inhibition in post-IR fat-1 hearts was also observed after treating HR cells with eicosatetraenoic acid (EPA). Conclusion: Endogenous n-3 PUFAs protect against post-IR injury and preserve cardiac contractile function possibly through APLNR inhibition. This inhibition synchronizes the PI3K-AKT-mTOR axis, suppresses detrimental phosphorylation signaling, and restores or increases myofilament phosphorylation in post-IR hearts. The beneficial effects observed in fat-1 transgenic mouse hearts can be attributed, at least in part, to elevated EPA levels. This study is the first to demonstrate that n-3 PUFAs protect hearts against IR injury through APLNR inhibition.
Collapse
Affiliation(s)
- Shuang Zheng
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Weijiang Tan
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiang Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Caiyi Zhu
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - W. Glen Pyle
- IMPART Investigator Team, Dalhousie Medicine, Saint John, NB, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jianxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuecong Ren
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Honghua Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yunzeng Zou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peter H. Backx
- Department of Biology, York University, Toronto, ON, Canada
| | - Feng Hua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| |
Collapse
|
7
|
Huang M, Yu L, Wang X, Wang M, Li W, Tang J, Ling G, Wei X, Wang Y, Wang W, Wu Y, Lu L. Evaluation of the transverse aortic constriction model in ICR and C57BL/6J mice. Front Physiol 2022; 13:1026884. [PMID: 36523549 PMCID: PMC9745147 DOI: 10.3389/fphys.2022.1026884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/14/2022] [Indexed: 08/30/2024] Open
Abstract
Transverse aortic constriction (TAC) is a frequently used model to investigate pressure overload-induced progressive heart failure (HF); however, there is considerable phenotypic variation among different mouse strains and even sub-strains. Moreover, less is known about the TAC model in ICR mice. Therefore, to determine the suitability of the ICR strain for TAC-induced HF research, we compared the effects of TAC on ICR and C57BL/6J mice at one, two and four weeks post-TAC via echocardiography, organ index, morphology, and histology. At the end of the study, behavior and gene expression patterns were assessed, and overall survival was monitored. Compared to the sham-operated mice, ICR and C57BL/6J mice displayed hypertrophic phenotypes with a significant increase in ventricle wall thickness, heart weight and ratio, and cross-sectional area of cardiomyocytes after a 2-week TAC exposure. In addition, ICR mice developed reduced systolic function and severe lung congestion 4 weeks post-TAC, whereas C57BL/6J did not. Besides, ICR mice demonstrated comparable survival, similar gene expression alteration but severer fibrotic remodeling and poor behavioral performance compared to the C57BL/6J mice. Our data demonstrated that ICR was quite sensitive to TAC-induced heart failure and can be an ideal research tool to investigate mechanisms and drug intervention for pressure overload-induced HF.
Collapse
Affiliation(s)
- Mengying Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lishuang Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingmin Wang
- Endocrinology Department, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Weili Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqi Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing, China
| | - Wei Wang
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing, China
| | - Yan Wu
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing, China
- Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
8
|
Chen Y, Zhou J, Wei Z, Cheng Y, Tian G, Quan Y, Kong Q, Wu W, Liu X. Identification of circular RNAs in cardiac hypertrophy and cardiac fibrosis. Front Pharmacol 2022; 13:940768. [PMID: 36003513 PMCID: PMC9393479 DOI: 10.3389/fphar.2022.940768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Cardiac hypertrophy initially serves as an adaptive response to physiological and pathological stimuli. Sustained hypertrophy progress to pathological cardiac hypertrophy, cardiac fibrosis and ultimately lead to heart failure, one of the leading medical causes of mortality worldwide. Intervention of pathological cardiac hypertrophy can effectively reduce the occurrence of heart failure. Abundant factors, such as adrenergic, angiotensin, and endothelin (ET-1) receptors, have been shown to participate in the regulation of pathological cardiac hypertrophy. Recently, an increasing number of studies have indicated that circRNA and circRNA-miRNA–mRNA network regulation is indispensable for the posttranscriptional regulation of mRNA in cardiac hypertrophy. In our study, the morphological, cardiac function and pathological changes during cardiac hypertrophy were investigated. RNA sequencing identified 93 circRNAs that were differentially expressed in the TAC_2w group, and 55 circRNAs in the TAC_4w group compared with the sham group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified several significant pathways, including hypertrophic cardiomyopathy, extracellular matrix (ECM)-receptor interaction and focal adhesion. Coexpression analyses were performed for differentially expressed circRNAs and differentially expressed mRNAs. Based on gene set enrichment analysis (GSEA), 8 circRNAs (mmu-Nfkb1_0001, mmu-Smad4_0007, mmu-Hecw2_0009, mmu-Itgbl1_0002, mmu-Lrrc2_0005, mmu-Cpeb3_0007, mmu-Ryr2_0040, and mmu-Rtn4_0001) involved in cardiac hypertrophy and cardiac fibrosis were identified. We validated some key circRNAs by qPCR. The crucial coexpression of circRNA–mRNA and its interaction with miRNA showed the possible mechanism of circRNAs in the process of cardiac dysfunction. Our results may provide promising targets for the treatment of pathological cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junteng Zhou
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Zisong Wei
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Cheng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Geer Tian
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Quan
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qihang Kong
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaojing Liu,
| |
Collapse
|