1
|
Moond V, Maniyar B, Harne PS, Bailey-Lundberg JM, Thosani NC. Harnessing endoscopic ultrasound-guided radiofrequency ablation to reshape the pancreatic ductal adenocarcinoma microenvironment and elicit systemic immunomodulation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1056-1073. [PMID: 39351436 PMCID: PMC11438557 DOI: 10.37349/etat.2024.00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/19/2024] [Indexed: 10/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognostics and substantial therapeutic challenges, with dismal survival rates. Tumor resistance in PDAC is primarily attributed to its fibrotic, hypoxic, and immune-suppressive tumor microenvironment (TME). Endoscopic ultrasound-guided radiofrequency ablation (EUS-RFA), an Food and Drug Administration (FDA)-approved minimally invasive technique for treating pancreatic cancer, disrupts tumors with heat and induces coagulative necrosis, releasing tumor antigens that may trigger a systemic immune response-the abscopal effect. We aim to elucidate the roles of EUS-RFA-mediated thermal and mechanical stress in enhancing anti-tumor immunity in PDAC. A comprehensive literature review focused on radiofrequency immunomodulation and immunotherapy in pancreatic tumors to understand the pathophysiological mechanisms of RFA and its effect on the TME, which could prevent recurrence and resistance. We reviewed clinical, preclinical, and in vitro studies on RFA mechanisms in pancreatic adenocarcinoma, discussing the unique immunomodulatory effects of EUS-RFA. Recent findings suggest that combining RFA with immune adjuvants enhances responses in pancreatic adenocarcinoma. EUS-RFA offers a dual benefit against PDAC by directly reducing tumor viability and indirectly enhancing anti-tumor immunity. Observations of neutrophil-mediated immunomodulation and programmed cell death ligand 1 (PD-L1) modulation support integrating EUS-RFA with targeted immunotherapies for managing pancreatic adenocarcinoma. Integrating EUS-RFA in PDAC treatment promises direct cytoreduction and synergistic effects with molecular targeted therapies. Prospective clinical trials are crucial to assess the efficacy of this combined approach in improving outcomes and survival rates in advanced PDAC cases.
Collapse
Affiliation(s)
- Vishali Moond
- Department of Internal Medicine, Saint Peter’s University Hospital/Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Bhumi Maniyar
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Prateek Suresh Harne
- Department of Gastroenterology and Hepatology, University of Texas Health Science Center, Houston McGovern Medical School, Houston TX 77030, USA
| | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Nirav C. Thosani
- Department of Internal Medicine, Saint Peter’s University Hospital/Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Division of Elective Surgery and Interventional Gastroenterology, Department of Surgery, University of Texas Health Science Center, Houston TX 77030, USA
| |
Collapse
|
2
|
Heiduk M, Klimova A, Reiche C, Digomann D, Beer C, Aust DE, Distler M, Weitz J, Seifert AM, Seifert L. TIGIT Expression Delineates T-cell Populations with Distinct Functional and Prognostic Impact in Pancreatic Cancer. Clin Cancer Res 2023; 29:2638-2650. [PMID: 37140899 PMCID: PMC10345964 DOI: 10.1158/1078-0432.ccr-23-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Immunotherapy has led to a fundamental shift in the treatment of several cancers. However, its efficacy in pancreatic ductal adenocarcinoma (PDAC) is limited. Understanding the expression of inhibitory immune checkpoint receptors (ICR) by intratumoral T cells may help to unravel their involvement in insufficient T-cell-mediated antitumor immunity. EXPERIMENTAL DESIGN Using multicolor flow cytometry, we analyzed circulating and intratumoral T cells from blood (n = 144) and matched tumor samples (n = 107) of patients with PDAC. We determined the expression of programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibition motif (ITIM) domains (TIGIT) by CD8+ T-cells, conventional CD4+ T-cells (Tconv) and regulatory T cells (Treg) and their association with T-cell differentiation, tumor reactivity, and cytokine expression. A comprehensive follow-up was used to determine their prognostic value. RESULTS Intratumoral T cells were characterized by increased PD-1 and TIGIT expression. Both markers delineated distinct T-cell subpopulations. PD-1+TIGIT- T cells highly expressed proinflammatory cytokines and markers of tumor reactivity (CD39, CD103), whereas TIGIT expression was linked to antiinflammatory and exhausted phenotypes. In addition, the enhanced presence of intratumoral PD-1+TIGIT- Tconv was associated with improved clinical outcomes, while high ICR expression on blood T cells was a significant hazard for overall survival (OS). CONCLUSIONS Our results uncover the association between ICR expression and T-cell functionality. PD-1 and TIGIT characterized intratumoral T cells with highly divergent phenotypes linked to clinical outcomes, further underscoring the relevance of TIGIT for immunotherapeutic approaches in PDAC. The prognostic value of ICR expression in patient blood may be a valuable tool for patient stratification.
Collapse
Affiliation(s)
- Max Heiduk
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Anna Klimova
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Charlotte Reiche
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David Digomann
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Carolin Beer
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela E. Aust
- Institute of Pathology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Biobank Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adrian M. Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Else Kröner Clinician Scientist Professor for Translational Tumor Immunological Research, Dresden, Germany
| |
Collapse
|
3
|
Tang T, Huang X, Lu M, Zhang G, Han X, Liang T. Transcriptional control of pancreatic cancer immunosuppression by metabolic enzyme CD73 in a tumor-autonomous and -autocrine manner. Nat Commun 2023; 14:3364. [PMID: 37291128 PMCID: PMC10250326 DOI: 10.1038/s41467-023-38578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Cancer cell metabolism contributes to the establishment of an immunosuppressive tumor microenvironment. Aberrant expression of CD73, a critical enzyme in ATP metabolism, on the cell surface results in the extracellular accumulation of adenosine, which exhibits direct inhibitory effects on tumor-infiltrating lymphocytes. However, little is known about the influence of CD73 on negative immune regulation-associated signaling molecules and transduction pathways inside tumor cells. This study aims to demonstrate the moonlighting functions of CD73 in immunosuppression in pancreatic cancer, an ideal model characterized by complex crosstalk among cancer metabolism, immune microenvironment, and immunotherapeutic resistance. The synergistic effect of CD73-specific drugs in combination with immune checkpoint blockade is observed in multiple pancreatic cancer models. Cytometry by time-of-flight analysis shows that CD73 inhibition reduces tumor-infiltrating Tregs in pancreatic cancer. Tumor cell-autonomous CD73 is found to facilitate Treg recruitment, in which CCL5 is identified as a significant downstream effector of CD73 using integrated proteomic and transcriptomic analyses. CD73 transcriptionally upregulates CCL5 through tumor cell-autocrine adenosine-Adora2a signaling-mediated activation of the p38-STAT1 axis, recruiting Tregs to pancreatic tumors and causing an immunosuppressive microenvironment. Together, this study highlights that CD73-adenosine metabolism transcriptionally controls pancreatic cancer immunosuppression in a tumor-autonomous and -autocrine manner.
Collapse
Affiliation(s)
- Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Minghao Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xu Han
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Strickland LN, Faraoni EY, Ruan W, Yuan X, Eltzschig HK, Bailey-Lundberg JM. The resurgence of the Adora2b receptor as an immunotherapeutic target in pancreatic cancer. Front Immunol 2023; 14:1163585. [PMID: 37187740 PMCID: PMC10175829 DOI: 10.3389/fimmu.2023.1163585] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense desmoplastic stroma that impedes drug delivery, reduces parenchymal blood flow, and suppresses the anti-tumor immune response. The extracellular matrix and abundance of stromal cells result in severe hypoxia within the tumor microenvironment (TME), and emerging publications evaluating PDAC tumorigenesis have shown the adenosine signaling pathway promotes an immunosuppressive TME and contributes to the overall low survival rate. Hypoxia increases many elements of the adenosine signaling pathway, resulting in higher adenosine levels in the TME, further contributing to immune suppression. Extracellular adenosine signals through 4 adenosine receptors (Adora1, Adora2a, Adora2b, Adora3). Of the 4 receptors, Adora2b has the lowest affinity for adenosine and thus, has important consequences when stimulated by adenosine binding in the hypoxic TME. We and others have shown that Adora2b is present in normal pancreas tissue, and in injured or diseased pancreatic tissue, Adora2b levels are significantly elevated. The Adora2b receptor is present on many immune cells, including macrophages, dendritic cells, natural killer cells, natural killer T cells, γδ T cells, B cells, T cells, CD4+ T cells, and CD8+ T cells. In these immune cell types, adenosine signaling through Adora2b can reduce the adaptive anti-tumor response, augmenting immune suppression, or may contribute to transformation and changes in fibrosis, perineural invasion, or the vasculature by binding the Adora2b receptor on neoplastic epithelial cells, cancer-associated fibroblasts, blood vessels, lymphatic vessels, and nerves. In this review, we discuss the mechanistic consequences of Adora2b activation on cell types in the tumor microenvironment. As the cell-autonomous role of adenosine signaling through Adora2b has not been comprehensively studied in pancreatic cancer cells, we will also discuss published data from other malignancies to infer emerging therapeutic considerations for targeting the Adora2b adenosine receptor to reduce the proliferative, invasive, and metastatic potential of PDAC cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care, and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Faraoni EY, Singh K, Chandra V, Le Roux O, Dai Y, Sahin I, O'Brien BJ, Strickland LN, Li L, Vucic E, Warner AN, Pruski M, Clark T, Van Buren G, Thosani NC, Bynon JS, Wray CJ, Bar-Sagi D, Poulsen KL, Vornik LA, Savage MI, Sei S, Mohammed A, Zhao Z, Brown PH, Mills T, Eltzschig HK, McAllister F, Bailey-Lundberg JM. CD73-Dependent Adenosine Signaling through Adora2b Drives Immunosuppression in Ductal Pancreatic Cancer. Cancer Res 2023; 83:1111-1127. [PMID: 36720042 PMCID: PMC10071819 DOI: 10.1158/0008-5472.can-22-2553] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/04/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
The microenvironment that surrounds pancreatic ductal adenocarcinoma (PDAC) is profoundly desmoplastic and immunosuppressive. Understanding triggers of immunosuppression during the process of pancreatic tumorigenesis would aid in establishing targets for effective prevention and therapy. Here, we interrogated differential molecular mechanisms dependent on cell of origin and subtype that promote immunosuppression during PDAC initiation and in established tumors. Transcriptomic analysis of cell-of-origin-dependent epithelial gene signatures revealed that Nt5e/CD73, a cell-surface enzyme required for extracellular adenosine generation, is one of the top 10% of genes overexpressed in murine tumors arising from the ductal pancreatic epithelium as opposed to those rising from acinar cells. These findings were confirmed by IHC and high-performance liquid chromatography. Analysis in human PDAC subtypes indicated that high Nt5e in murine ductal PDAC models overlaps with high NT5E in human PDAC squamous and basal subtypes, considered to have the highest immunosuppression and worst prognosis. Multiplex immunofluorescent analysis showed that activated CD8+ T cells in the PDAC tumor microenvironment express high levels of CD73, indicating an opportunity for immunotherapeutic targeting. Delivery of CD73 small-molecule inhibitors through various delivery routes reduced tumor development and growth in genetically engineered and syngeneic mouse models. In addition, the adenosine receptor Adora2b was a determinant of adenosine-mediated immunosuppression in PDAC. These findings highlight a molecular trigger of the immunosuppressive PDAC microenvironment elevated in the ductal cell of origin, linking biology with subtype classification, critical components for PDAC immunoprevention and personalized approaches for immunotherapeutic intervention. SIGNIFICANCE Ductal-derived pancreatic tumors have elevated epithelial and CD8+GZM+ T-cell CD73 expression that confers sensitivity to small-molecule inhibition of CD73 or Adora2b to promote CD8+ T-cell-mediated tumor regression. See related commentary by DelGiorno, p. 977.
Collapse
Affiliation(s)
- Erika Y. Faraoni
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Kanchan Singh
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, and The University of Texas Health Science Center at Houston, Houston, Texas
| | - Olivereen Le Roux
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ismet Sahin
- Department of Engineering, Texas Southern University, Houston, Texas
| | - Baylee J. O'Brien
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Lincoln N. Strickland
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Le Li
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emily Vucic
- Departments of Biochemistry and Molecular Pharmacology and Medicine, NYU Langone School of Medicine, New York, New York
| | - Amanda N. Warner
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, and The University of Texas Health Science Center at Houston, Houston, Texas
| | - Melissa Pruski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Trent Clark
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - George Van Buren
- Division of Surgical Oncology, Baylor College of Medicine, Houston, Texas
| | - Nirav C. Thosani
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Center for Interventional Gastroenterology at UTHealth (iGUT), McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - John S. Bynon
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Curtis J. Wray
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Dafna Bar-Sagi
- Department of Engineering, Texas Southern University, Houston, Texas
| | - Kyle L. Poulsen
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Lana A. Vornik
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle I. Savage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland
| | - Altaf Mohammed
- Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Powel H. Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, and The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, and The University of Texas Health Science Center at Houston, Houston, Texas
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Center for Interventional Gastroenterology at UTHealth (iGUT), McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
6
|
O'Brien BJ, Faraoni EY, Strickland LN, Ma Z, Mota V, Mota S, Chen X, Mills T, Eltzschig HK, DelGiorno KE, Bailey‐Lundberg JM. CD73-generated extracellular adenosine promotes resolution of neutrophil-mediated tissue injury and restrains metaplasia in pancreatitis. FASEB J 2023; 37:e22684. [PMID: 36468677 PMCID: PMC9753971 DOI: 10.1096/fj.202201537r] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Pancreatitis is currently the leading cause of gastrointestinal hospitalizations in the US. This condition occurs in response to abdominal injury, gallstones, chronic alcohol consumption or, less frequently, the cause remains idiopathic. CD73 is a cell surface ecto-5'-nucleotidase that generates extracellular adenosine, which can contribute to resolution of inflammation by binding adenosine receptors on infiltrating immune cells. We hypothesized genetic deletion of CD73 would result in more severe pancreatitis due to decreased generation of extracellular adenosine. CD73 knockout (CD73-/- ) and C57BL/6 (wild type, WT) mice were used to evaluate the progression and response of caerulein-induced acute and chronic pancreatitis. In response to caerulein-mediated chronic or acute pancreatitis, WT mice display resolution of pancreatitis at earlier timepoints than CD73-/- mice. Using immunohistochemistry and analysis of single-cell RNA-seq (scRNA-seq) data, we determined CD73 localization in chronic pancreatitis is primarily observed in mucin/ductal cell populations and immune cells. In murine pancreata challenged with caerulein to induce acute pancreatitis, we compared CD73-/- to WT mice and observed a significant infiltration of Ly6G+, MPO+, and Granzyme B+ cells in CD73-/- compared to WT pancreata and we quantified a significant increase in acinar-to-ductal metaplasia demonstrating sustained metaplasia and inflammation in CD73-/- mice. Using neutrophil depletion in CD73-/- mice, we show neutrophil depletion significantly reduces metaplasia defined by CK19+ cells per field and significantly reduces acute pancreatitis. These data identify CD73 enhancers as a potential therapeutic strategy for patients with acute and chronic pancreatitis as adenosine generation and activation of adenosine receptors is critical to resolve persistent inflammation in the pancreas.
Collapse
Affiliation(s)
- Baylee J. O'Brien
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Erika Y. Faraoni
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Lincoln N. Strickland
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Zhibo Ma
- Gene Expression LaboratoryThe Salk Institute for Biological SciencesSan DiegoCaliforniaUSA
| | - Victoria Mota
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Samantha Mota
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- The Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Xuebo Chen
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Holger K. Eltzschig
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Kathleen E. DelGiorno
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Jennifer M. Bailey‐Lundberg
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- The Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
7
|
Faraoni EY, Strickland LN, O’Brien BJ, Barraza JF, Thosani NC, Wray CJ, Mills TW, Bailey-Lundberg JM. Radiofrequency ablation in combination with CD73 inhibitor AB680 reduces tumor growth and enhances anti-tumor immunity in a syngeneic model of pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:995027. [PMID: 36147911 PMCID: PMC9486545 DOI: 10.3389/fonc.2022.995027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma presents a 5-year overall survival rate of 11%, placing an imperative need for the discovery and application of innovative treatments. Radiofrequency ablation represents a promising therapy for PDA, as studies show it induces coagulative necrosis and a host adaptive immune response. In this work we evaluated the effects of RFA treatment in vivo by establishing a syngeneic mouse model of PDA and performing tumor ablation in one flank. Our studies revealed RFA acutely impaired PDA tumor growth; however, such effects were not sustained one week after treatment. Adenosine (ADO) pathway represents a strong immunosuppressive mechanism that was shown to play a role in PDA progression and preliminary data from ongoing clinical studies suggest ADO pathway inhibition may improve therapeutic outcomes. Thus, to investigate whether ADO generation may be involved in tumor growth relapse after RFA, we evaluated adenosine-monophosphate (AMP), ADO and inosine (INO) levels by HPLC and found they were acutely increased after treatment. Thus, we evaluated an in vivo CD73 inhibition in combination with RFA to study ADO pathway implication in RFA response. Results showed combination therapy of RFA and a CD73 small molecule inhibitor (AB680) in vivo promoted sustained tumor growth impairment up to 10 days after treatment as evidenced by increased necrosis and anti-tumor immunity, suggesting RFA in combination with CD73 inhibitors may improve PDA patient response.
Collapse
Affiliation(s)
- Erika Y. Faraoni
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Lincoln N. Strickland
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Baylee J. O’Brien
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joseph F. Barraza
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nirav C. Thosani
- Center for Interventional Gastroenterology at UTHealth (iGUT), McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Curtis J. Wray
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting W. Mills
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Interventional Gastroenterology at UTHealth (iGUT), McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|