1
|
Han P, Zhao X, Li X, Geng J, Ni S, Li Q. Pathophysiology, molecular mechanisms, and genetics of atrial fibrillation. Hum Cell 2024; 38:14. [PMID: 39505800 DOI: 10.1007/s13577-024-01145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
The development of atrial fibrillation (AF) is a highly complex, multifactorial process involving pathophysiologic mechanisms, molecular pathway mechanisms and numerous genetic abnormalities. The pathophysiologic mechanisms including altered ion channels, abnormalities of the autonomic nervous system, inflammation, and abnormalities in Ca2 + handling. Molecular pathway mechanisms including, but not limited to, renin-angiotensin-aldosterone (RAAS), transforming growth factor-β (TGF-β), oxidative stress (OS). Although in clinical practice, the distinction between types of AF such as paroxysmal and persistent determines the choice of treatment options. However, it is the pathophysiologic alterations present in AF that truly determine the success of AF treatment and prognosis, but even more so the molecular mechanisms and genetic alterations that lie behind them. One tiny clue reveals the general trend, and small beginnings show how things will develop. This article will organize the development of these mechanisms and their interactions in recent years.
Collapse
Affiliation(s)
- Pan Han
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinxin Zhao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xuexun Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jing Geng
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Shouxiang Ni
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Qiao Li
- Department of Diagnostic Ultrasound, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
2
|
Ragusa R, Caselli C. Focus on cardiac troponin complex: From gene expression to cardiomyopathy. Genes Dis 2024; 11:101263. [PMID: 39211905 PMCID: PMC11357864 DOI: 10.1016/j.gendis.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 09/04/2024] Open
Abstract
The cardiac troponin complex (cTn) is a regulatory component of sarcomere. cTn consists of three subunits: cardiac troponin C (cTnC), which confers Ca2+ sensitivity to muscle; cTnI, which inhibits the interaction of cross-bridge of myosin with thin filament during diastole; and cTnT, which has multiple roles in sarcomere, such as promoting the link between the cTnI-cTnC complex and tropomyosin within the thin filament and influencing Ca2+ sensitivity of cTn and force development during contraction. Conditions that interfere with interactions within cTn and/or other thin filament proteins can be key factors in the regulation of cardiac contraction. These conditions include alterations in myofilament Ca2+ sensitivity, direct changes in cTn function, and triggering downstream events that lead to adverse cardiac remodeling and impairment of heart function. This review describes gene expression and post-translational modifications of cTn as well as the conditions that can adversely affect the delicate balance among the components of cTn, thereby promoting contractile dysfunction.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
3
|
Gencheva D, Angelova P, Genova K, Atemin S, Sleptsova M, Todorov T, Nikolov F, Ruseva D, Mitev V, Todorova A. A Cautionary Tale of Hypertrophic Cardiomyopathy-From "Benign" Left Ventricular Hypertrophy to Stroke, Atrial Fibrillation, and Molecular Genetic Diagnostics: A Case Report and Review of Literature. Int J Mol Sci 2024; 25:9385. [PMID: 39273332 PMCID: PMC11395475 DOI: 10.3390/ijms25179385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
This case report concerns a 48-year-old man with a history of ischemic stroke at the age of 41 who reported cardiac hypertrophy, registered in his twenties when explained by increased physical activity. Family history was positive for a mother with permanent atrial fibrillation from her mid-thirties. At the age of 44, he had a first episode of persistent atrial fibrillation, accompanied by left atrial thrombosis while on a direct oral anticoagulant. He presented at our clinic at the age of 45 with another episode of persistent atrial fibrillation and decompensated heart failure. Echocardiography revealed a dilated left atrium, reduced left ventricular ejection fraction, and an asymmetric left ventricular hypertrophy. Cardiac magnetic resonance was positive for a cardiomyopathy with diffuse fibrosis, while slow-flow phenomenon was present on coronary angiography. Genetic testing by whole-exome sequencing revealed three variants in the patient, c.309C > A, p.His103Gln in the ACTC1 gene, c.116T > G, p.Leu39Ter in the PLN gene, and c.5827C > T, p.His1943Tyr in the SCN5A gene, the first two associated with hypertrophic cardiomyopathy and the latter possibly with familial atrial fibrillation. This case illustrates the need for advanced diagnostics in unexplained left ventricular hypertrophy, as hypertrophic cardiomyopathy is often overlooked, leading to potentially debilitating health consequences.
Collapse
Affiliation(s)
- Dolina Gencheva
- First Department of Internal Diseases, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Cardiology, University Multi-Profile Hospital for Active Treatment "Sveti Georgi", 4002 Plovdiv, Bulgaria
| | - Petya Angelova
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Kameliya Genova
- Radiology Department, University Multi-Profile Hospital for Active Treatment and Emergency Medicine "N. I. Pirogov", 1606 Sofia, Bulgaria
| | - Slavena Atemin
- Genetic Medico-Diagnostic Laboratory "Genica", 1612 Sofia, Bulgaria
| | - Mila Sleptsova
- Genetic Medico-Diagnostic Laboratory "Genica", 1612 Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory "Genica", 1612 Sofia, Bulgaria
| | - Fedya Nikolov
- First Department of Internal Diseases, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Cardiology, University Multi-Profile Hospital for Active Treatment "Sveti Georgi", 4002 Plovdiv, Bulgaria
| | - Donka Ruseva
- Clinic of Cardiology, Hospital of Ministry of Transport, 4004 Plovdiv, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
4
|
Popa-Fotea NM, Oprescu N, Scafa-Udriste A, Micheu MM. Impact of rs1805127 and rs55742440 Variants on Atrial Remodeling in Hypertrophic Cardiomyopathy Patients with Atrial Fibrillation: A Romanian Cohort Study. Int J Mol Sci 2023; 24:17244. [PMID: 38139087 PMCID: PMC10743528 DOI: 10.3390/ijms242417244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Atrial fibrillation (AFib) is characterized by a complex genetic component. We aimed to investigate the association between variations in genes related to cardiac ion handling and AFib in a cohort of Romanian patients with hypertrophic cardiomyopathy (HCM). Forty-five unrelated probands with HCM were genotyped by targeted next-generation sequencing (NGS) for 24 genes associated with cardiac ion homeostasis. Subsequently, the study cohort was divided into two groups based on the presence (AFib+) or absence (AFiB-) of AFib detected during ECG monitoring. We identified two polymorphisms (rs1805127 located in KCNE1 and rs55742440 located in SCN1B) linked to AFib susceptibility. In AFib+, rs1805127 was associated with increased indexed left atrial (LA) maximal volume (LAVmax) (58.42 ± 21 mL/m2 vs. 32.54 ± 6.47 mL/m2, p < 0.001) and impaired LA strain reservoir (LASr) (13.3 ± 7.5% vs. 24.4 ± 6.8%, p < 0.05) compared to those without respective variants. The rs55742440 allele was less frequent in patients with AFib+ (12 out of 25, 48%) compared to those without arrhythmia (15 out of 20, 75%, p = 0.05). Also, AFib+ rs55742440 carriers had significantly lower LAVmax compared to those who were genotype negative. Among patients with HCM and AFib+, the rs1805127 variant was accompanied by pronounced LA remodeling, whereas rs55742440's presence was related to a milder LA enlargement.
Collapse
Affiliation(s)
- Nicoleta-Monica Popa-Fotea
- Department 4—Cardio-Thoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania;
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania;
| | - Nicoleta Oprescu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania;
| | - Alexandru Scafa-Udriste
- Department 4—Cardio-Thoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania;
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania;
| |
Collapse
|
5
|
Barefield DY, Alvarez-Arce A, Araujo KN. Mechanisms of Sarcomere Protein Mutation-Induced Cardiomyopathies. Curr Cardiol Rep 2023; 25:473-484. [PMID: 37060436 PMCID: PMC11141690 DOI: 10.1007/s11886-023-01876-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW The pace of identifying cardiomyopathy-associated mutations and advances in our understanding of sarcomere function that underlies many cardiomyopathies has been remarkable. Here, we aim to synthesize how these advances have led to the promising new treatments that are being developed to treat cardiomyopathies. RECENT FINDINGS The genomics era has identified and validated many genetic causes of hypertrophic and dilated cardiomyopathies. Recent advances in our mechanistic understanding of sarcomere pathophysiology include high-resolution molecular models of sarcomere components and the identification of the myosin super-relaxed state. The advances in our understanding of sarcomere function have yielded several therapeutic agents that are now in development and clinical use to correct contractile dysfunction-mediated cardiomyopathy. New genes linked to cardiomyopathy include targets with limited clinical evidence and require additional investigation. Large portions of cardiomyopathy with family history remain genetically undiagnosed and may be due to polygenic disease.
Collapse
Affiliation(s)
- David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA.
| | - Alejandro Alvarez-Arce
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Kelly N Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| |
Collapse
|
6
|
Wang S, Chen H, Liu C, Wu M, Sun W, Liu S, Zheng Y, He W. Genetic variants, pathophysiological pathways, and oral anticoagulation in patients with hypertrophic cardiomyopathy and atrial fibrillation. Front Cardiovasc Med 2023; 10:1023394. [PMID: 37139132 PMCID: PMC10149704 DOI: 10.3389/fcvm.2023.1023394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Atrial fibrillation (AF) is commonly prevalent in patients with hypertrophic cardiomyopathy (HCM). However, whether the prevalence and incidence of AF are different between genotype-positive vs. genotype-negative patients with HCM remains controversial. Recent evidence has indicated that AF is often the first presentation of genetic HCM patients in the absence of a cardiomyopathy phenotype, implying the importance of genetic testing in this population with early-onset AF. However, the association of the identified sarcomere gene variants with HCM occurrence in the future remains unclear. How the identification of these cardiomyopathy gene variants should influence the use of anticoagulation therapy for a patient with early-onset AF is still undefined. In this review, we sought to assess the genetic variants, pathophysiological pathways, and oral anticoagulation in patients with HCM and AF.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - He Chen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunju Liu
- Department ofClinical Laboratory, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mengxian Wu
- Department ofClinical Laboratory, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wanlei Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenjian Liu
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Zheng
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenfeng He
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Correspondence: Wenfeng He
| |
Collapse
|
7
|
Risi CM, Belknap B, White HD, Dryden K, Pinto JR, Chase PB, Galkin VE. High-resolution cryo-EM structure of the junction region of the native cardiac thin filament in relaxed state. PNAS NEXUS 2023; 2:pgac298. [PMID: 36712934 PMCID: PMC9832952 DOI: 10.1093/pnasnexus/pgac298] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Cardiac contraction depends on molecular interactions among sarcomeric proteins coordinated by the rising and falling intracellular Ca2+ levels. Cardiac thin filament (cTF) consists of two strands composed of actin, tropomyosin (Tm), and equally spaced troponin (Tn) complexes forming regulatory units. Tn binds Ca2+ to move Tm strand away from myosin-binding sites on actin to enable actomyosin cross-bridges required for force generation. The Tn complex has three subunits-Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. Tm strand is comprised of adjacent Tm molecules that overlap "head-to-tail" along the actin filament. The N-terminus of TnT (e.g., TnT1) binds to the Tm overlap region to form the cTF junction region-the region that connects adjacent regulatory units and confers to cTF internal cooperativity. Numerous studies have predicted interactions among actin, Tm, and TnT1 within the junction region, although a direct structural description of the cTF junction region awaited completion. Here, we report a 3.8 Å resolution cryo-EM structure of the native cTF junction region at relaxing (pCa 8) Ca2+ conditions. We provide novel insights into the "head-to-tail" interactions between adjacent Tm molecules and interactions between the Tm junction with F-actin. We demonstrate how TnT1 stabilizes the Tm overlap region via its interactions with the Tm C- and N-termini and actin. Our data show that TnT1 works as a joint that anchors the Tm overlap region to actin, which stabilizes the relaxed state of the cTF. Our structure provides insight into the molecular basis of cardiac diseases caused by missense mutations in TnT1.
Collapse
Affiliation(s)
- Cristina M Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Kelly Dryden
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
8
|
Kopylova GV, Matyushenko AM, Kochurova AM, Bershitsky SY, Shchepkin DV. Effects of Phosphorylation of Tropomyosin with Cardiomyopathic Mutations on Calcium Regulation of Myocardial Contraction. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|