1
|
Jiang Q, Li Z, Dang D, Wei J, Wu H. Role of mechanosensitive channel Piezo1 protein in intestinal inflammation regulation: A potential target. FASEB J 2024; 38:e70122. [PMID: 39425504 PMCID: PMC11580726 DOI: 10.1096/fj.202401323r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The intestine is a hollow tract that primarily transports and digests food. It often encounters mechanical forces and exotic threats, resulting in increased intestinal inflammation attributed to the consistent threat of foreign pathogens. Piezo1, a mechanosensitive ion channel, is distributed broadly and abundantly in the intestinal tissue. It transduces mechanical signals into electrochemical signals and participates in many critical life activities, such as proliferation, differentiation, cell apoptosis, immune cell activation, and migration. Its effect on inflammation has been discussed in detail in systems, such as musculoskeletal (osteoarthritis) and cardiac (myocarditis), but the effects on intestinal inflammation remain unelucidated. Piezo1 regulates mucosal layer and epithelial barrier homeostasis during the complex intestinal handling of foreign antigens and tissue trauma. It initiates and spreads immune responses and causes distant effects of inflammation in the vascular and lymphatic systems, but reports of the effects of Piezo1 in intestinal inflammation are scarce. Therefore, this study aimed to discuss the role of Piezo1 in intestinal inflammation and explore novel therapeutic targets.
Collapse
Affiliation(s)
- Qinlei Jiang
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Zhenyu Li
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Dan Dang
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Jiaqi Wei
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Hui Wu
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| |
Collapse
|
2
|
Gabai P, Novel-Catin E, Reynaud Q, Nove-Josserand R, Pelletier S, Fouque D, Koppe L, Durieu I. Kidney effects of triple CFTR modulator therapy in people with cystic fibrosis. Clin Kidney J 2024; 17:sfae256. [PMID: 39359568 PMCID: PMC11443170 DOI: 10.1093/ckj/sfae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 10/04/2024] Open
Abstract
Background Elexacaftor/tezacaftor/ivacaftor (ETI) is a new cystic fibrosis transmembrane conductance regulator (CFTR) modulator that has transformed the respiratory prognosis of people with cystic fibrosis (pwCF). However, its impact on other organs such as the kidneys, where CFTR is expressed, remains unclear. Since pwCF are risk of both kidney disease and urolithiasis, we aimed to study the potential effects of ETI on renal function, volume status, and risk factors for urolithiasis. Methods This prospective, observational, single-center, before-after cohort study, involved adult pwCF eligible for ETI. The changes in plasma and urinary profiles were assessed by comparing renal function (using 2021 CKD-EPIcreatinine and 2021 CKD-EPIcreatinine-cystatin C formulas), volume status (using aldosterone/renin ratio and blood pressure), and risk factors for urolithiasis, at the time of ETI introduction (M0) and 7 months after (M7). Results Nineteen pwCF were included. No significant change in renal function was observed between M0 and M7 (2021 CKD-EPIcreatinine: 105.5 ml/min/1.73 m² at M0 vs. 103.3 ml/min/1.73 m² at M7; P = .17). There was a significant reduction in aldosterone level (370.3 pmol/l at M0 vs. 232.4 pmol/l at M7; P = .02) and aldosterone/renin ratio (33.6 at M0 vs. 21.8 at M7; P = .03). Among the risk factors for urolithiasis, a significant reduction in magnesuria level was found (4.6 mmol/d at M0 vs. 3.8 mmol/d at M7; P = .01). Conclusion These findings suggest that ETI seem to have no short-term impact on the renal function of adult pwCF and appears to correct secondary hyperaldosteronism due to excessive sweat losses. Further investigations are needed to determine the potential impact of decreased magnesuria observed under ETI therapy on the risk of urolithiasis.
Collapse
Affiliation(s)
- Pierre Gabai
- Service de Néphrologie, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
| | - Etienne Novel-Catin
- Service de Néphrologie, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
| | - Quitterie Reynaud
- Centre de Ressource et de Compétences de la mucoviscidose, Service de médecine Interne et de Pathologie Vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
- ERN-Lung Cystic Fibrosis Network, Frankfurt, Frankfurt Region, Germany
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Claude Bernard Lyon 1 University, 8 Avenue Rockfeller, Lyon Cedex 08, Rhône, France
| | - Raphaële Nove-Josserand
- Centre de Ressource et de Compétences de la mucoviscidose, Service de médecine Interne et de Pathologie Vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
| | - Solenne Pelletier
- Service de Néphrologie, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
| | - Denis Fouque
- Service de Néphrologie, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre-Bénite, Rhône, France
| | - Laetitia Koppe
- Service de Néphrologie, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre-Bénite, Rhône, France
| | - Isabelle Durieu
- Centre de Ressource et de Compétences de la mucoviscidose, Service de médecine Interne et de Pathologie Vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
- ERN-Lung Cystic Fibrosis Network, Frankfurt, Frankfurt Region, Germany
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Claude Bernard Lyon 1 University, 8 Avenue Rockfeller, Lyon Cedex 08, Rhône, France
| |
Collapse
|
3
|
Guo J, Li L, Chen F, Fu M, Cheng C, Wang M, Hu J, Pei L, Sun J. Forces Bless You: Mechanosensitive Piezo Channels in Gastrointestinal Physiology and Pathology. Biomolecules 2024; 14:804. [PMID: 39062518 PMCID: PMC11274378 DOI: 10.3390/biom14070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The gastrointestinal (GI) tract is an organ actively involved in mechanical processes, where it detects forces via a mechanosensation mechanism. Mechanosensation relies on specialized cells termed mechanoreceptors, which convert mechanical forces into electrochemical signals via mechanosensors. The mechanosensitive Piezo1 and Piezo2 are widely expressed in various mechanosensitive cells that respond to GI mechanical forces by altering transmembrane ionic currents, such as epithelial cells, enterochromaffin cells, and intrinsic and extrinsic enteric neurons. This review highlights recent research advances on mechanosensitive Piezo channels in GI physiology and pathology. Specifically, the latest insights on the role of Piezo channels in the intestinal barrier, GI motility, and intestinal mechanosensation are summarized. Additionally, an overview of Piezo channels in the pathogenesis of GI disorders, including irritable bowel syndrome, inflammatory bowel disease, and GI cancers, is provided. Overall, the presence of mechanosensitive Piezo channels offers a promising new perspective for the treatment of various GI disorders.
Collapse
Affiliation(s)
- Jing Guo
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Li Li
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Feiyi Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Minhan Fu
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Cheng Cheng
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Meizi Wang
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Jun Hu
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| |
Collapse
|
4
|
Yan Z, Niu L, Wang S, Gao C, Pan S. Intestinal Piezo1 aggravates intestinal barrier dysfunction during sepsis by mediating Ca 2+ influx. J Transl Med 2024; 22:332. [PMID: 38575957 PMCID: PMC10996241 DOI: 10.1186/s12967-024-05076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
INTRODUCTION Intestinal barrier dysfunction is a pivotal factor in sepsis progression. The mechanosensitive ion channel Piezo1 is associated with barrier function; however, its role in sepsis-induced intestinal barrier dysfunction remains poorly understood. METHODS The application of cecal ligation and puncture (CLP) modeling was performed on both mice of the wild-type (WT) variety and those with Villin-Piezo1flox/flox genetic makeup to assess the barrier function using in vivo FITC-dextran permeability measurements and immunofluorescence microscopy analysis of tight junctions (TJs) and apoptosis levels. In vitro, Caco-2 monolayers were subjected to TNF-α incubation. Moreover, to modulate Piezo1 activation, GsMTx4 was applied to inhibit Piezo1 activation. The barrier function, intracellular calcium levels, and mitochondrial function were monitored using calcium imaging and immunofluorescence techniques. RESULTS In the intestinal tissues of CLP-induced septic mice, Piezo1 protein levels were notably elevated compared with those in normal mice. Piezo1 has been implicated in the sepsis-mediated disruption of TJs, apoptosis of intestinal epithelial cells, elevated intestinal mucosal permeability, and systemic inflammation in WT mice, whereas these effects were absent in Villin-Piezo1flox/flox CLP mice. In Caco-2 cells, TNF-α prompted calcium influx, an effect reversed by GsMTx4 treatment. Elevated calcium concentrations are correlated with increased accumulation of reactive oxygen species, diminished mitochondrial membrane potential, and TJ disruption. CONCLUSIONS Thus, Piezo1 is a potential contributor to sepsis-induced intestinal barrier dysfunction, influencing apoptosis and TJ modification through calcium influx-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zimeng Yan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Lei Niu
- Department of Emergency, Shanghai Jiahui International Hospital, No. 689, Guiping Rd., Shanghai, China
| | - Shangyuan Wang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China.
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China.
| |
Collapse
|
5
|
Volarić M, Šojat D, Majnarić LT, Vučić D. The Association between Functional Dyspepsia and Metabolic Syndrome-The State of the Art. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:237. [PMID: 38397726 PMCID: PMC10888556 DOI: 10.3390/ijerph21020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Functional dyspepsia is a common functional disorder of the gastrointestinal tract that is responsible for many primary care visits. No organic changes have been found to explain its symptoms. We hypothesize that modern lifestyles and environmental factors, especially psychological stress, play a crucial role in the high prevalence of functional dyspepsia and metabolic syndrome. While gastrointestinal tract diseases are rarely linked to metabolic disorders, chronic stress, obesity-related metabolic syndrome, chronic inflammation, intestinal dysbiosis, and functional dyspepsia have significant pathophysiological associations. Functional dyspepsia, often associated with anxiety and chronic psychological stress, can activate the neuroendocrine stress axis and immune system, leading to unhealthy habits that contribute to obesity. Additionally, intestinal dysbiosis, which is commonly present in functional dyspepsia, can exacerbate systemic inflammation and obesity, further promoting metabolic syndrome-related disorders. It is worth noting that the reverse is also true: obesity-related metabolic syndrome can worsen functional dyspepsia and its associated symptoms by triggering systemic inflammation and intestinal dysbiosis, as well as negative emotions (depression) through the brain-gut axis. To understand the pathophysiology and deliver an effective treatment strategy for these two difficult-to-cure disorders, which are challenging for both caregivers and patients, a psychosocial paradigm is essential.
Collapse
Affiliation(s)
- Mile Volarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (M.V.); (L.T.M.)
- Department of Gastroenterology and Hepatology, School of Medicine, University of Mostar Clinical Hospital, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Dunja Šojat
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (M.V.); (L.T.M.)
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (M.V.); (L.T.M.)
| | - Domagoj Vučić
- Department of Cardiology, General Hospital “Dr. Josip Benčević”, A. Štampara, 35105 Slavonski Brod, Croatia;
| |
Collapse
|
6
|
He H, Zhou J, Xu X, Zhou P, Zhong H, Liu M. Piezo channels in the intestinal tract. Front Physiol 2024; 15:1356317. [PMID: 38379701 PMCID: PMC10877011 DOI: 10.3389/fphys.2024.1356317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The intestine is the largest mechanosensitive organ in the human body whose epithelial cells, smooth muscle cells, neurons and enteroendocrine cells must sense and respond to various mechanical stimuli such as motility, distension, stretch and shear to regulate physiological processes including digestion, absorption, secretion, motility and immunity. Piezo channels are a newly discovered class of mechanosensitive ion channels consisting of two subtypes, Piezo1 and Piezo2. Piezo channels are widely expressed in the intestine and are involved in physiological and pathological processes. The present review summarizes the current research progress on the expression, function and regulation of Piezo channels in the intestine, with the aim of providing a reference for the future development of therapeutic strategies targeting Piezo channels.
Collapse
Affiliation(s)
- Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuan Xu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pinxi Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huan Zhong
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
7
|
Chen W, Xu Z, Jiang J, Chen L, Chen Y, Yu T, Chen H, Shi R. CXCL8 as a Potential Biomarker for Crohn's Disease is Associated with Immune Infiltration and RNA Methylation. Biochem Genet 2023; 61:2599-2617. [PMID: 37202601 DOI: 10.1007/s10528-023-10397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
TRP channels have an important role in regulating the function of gastrointestinal epithelial cells. The aim of this study was to investigate the molecular mechanisms of genes associated with TRP channels in Crohn's disease (CD) by bioinformatics approach and to identify potential key biomarkers. In our study, we identified TRP channel-related differentially expressed genes (DEGs) based on the GSE95095 dataset and the TRP channel-related gene set from the GeneCards database. Hub genes (CXCL8, HIF1A, NGF, JUN, IL1A) were identified by the PPI network and validated by the external GSE52746 dataset. Immune infiltration analysis revealed that CXCL8 was significantly correlated with B cells memory, NK cells activated, Mast cells resting, Mast cells activated, and Neutrophils. GSEA of CXCL8 results showed inositol phosphate metabolism, RNA polymerase, propanoate metabolism, MAPK signaling pathway, base excision repair, and Calcium signaling pathway. In addition, we constructed a lncRNA-miRNA-mRNA ceRNA network and a drug-gene interaction network. Finally, we performed in vitro experiments to verify that LPS induced CXCL8 expression in HT-29 cells and that knockdown of CXCL8 inhibited the inflammatory stimulatory effects of LPS. This study reveals that CXCL8 plays an important role in the pathogenesis of Crohn's disease and is expected to be a novel biomarker.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Zeyan Xu
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jingjing Jiang
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Lu Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yanfang Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ting Yu
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Hong Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Moschetta M, Vurro V, Sesti V, Bertarelli C, Paternò GM, Lanzani G. Modulation of Mechanosensitive Potassium Channels by a Membrane-targeted Nongenetic Photoswitch. J Phys Chem B 2023; 127:8869-8878. [PMID: 37815392 PMCID: PMC10591468 DOI: 10.1021/acs.jpcb.3c04551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Indexed: 10/11/2023]
Abstract
Mechanosensitive ion channels are present in the plasma membranes of all cells. They play a fundamental role in converting mechanical stimuli into biochemical signals and are involved in several physiological processes such as touch sensation, hearing, and blood pressure regulation. This protein family includes TWIK-related arachidonic acid-stimulated K+ channel (TRAAK), which is specifically implicated in the maintenance of the resting membrane potential and in the regulation of a variety of important neurobiological functions. Dysregulation of these channels has been linked to various diseases, including blindness, epilepsy, cardiac arrhythmia, and chronic pain. For these reasons, mechanosensitive channels are targets for the treatment of several diseases. Here, we propose a new approach to investigate TRAAK ion channel modulation that is based on nongenetic photostimulation. We employed an amphiphilic azobenzene, named Ziapin2. In the dark, Ziapin2 preferentially dwells in the plasma membrane, causing a thinning of the membrane. Upon light irradiation, an isomerization occurs, breaking the dimers and inducing membrane relaxation. To study the effect of Ziapin2 on the mechanosensitive channels, we expressed human TRAAK (hTRAAK) channels in HEK293T cells. We observed that Ziapin2 insertion in the membrane is able per se to recruit hTRAAK, permitting the exit of K+ ions outside the cells with a consequent hyperpolarization of the cell membrane. During light stimulation, membrane relaxation induces hTRAAK closure, generating a consistent and compensatory depolarization. These results add information to the Ziapin2 mechanism and suggest that membrane deformation can be a tool for the nonselective modulation of mechanosensitive channels.
Collapse
Affiliation(s)
- Matteo Moschetta
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino, 81, 20134 Milano, Italy
| | - Vito Vurro
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino, 81, 20134 Milano, Italy
| | - Valentina Sesti
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino, 81, 20134 Milano, Italy
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Chiara Bertarelli
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino, 81, 20134 Milano, Italy
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Giuseppe Maria Paternò
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino, 81, 20134 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Guglielmo Lanzani
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino, 81, 20134 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
9
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Abstract
All cells in the body are exposed to physical force in the form of tension, compression, gravity, shear stress, or pressure. Cells convert these mechanical cues into intracellular biochemical signals; this process is an inherent property of all cells and is essential for numerous cellular functions. A cell's ability to respond to force largely depends on the array of mechanical ion channels expressed on the cell surface. Altered mechanosensing impairs conscious senses, such as touch and hearing, and unconscious senses, like blood pressure regulation and gastrointestinal (GI) activity. The GI tract's ability to sense pressure changes and mechanical force is essential for regulating motility, but it also underlies pain originating in the GI tract. Recent identification of the mechanically activated ion channels Piezo1 and Piezo2 in the gut and the effects of abnormal ion channel regulation on cellular function indicate that these channels may play a pathogenic role in disease. Here, we discuss our current understanding of mechanically activated Piezo channels in the pathogenesis of pancreatic and GI diseases, including pancreatitis, diabetes mellitus, irritable bowel syndrome, GI tumors, and inflammatory bowel disease. We also describe how Piezo channels could be important targets for treating GI diseases.
Collapse
|
11
|
Zholos AV, Dryn DO, Melnyk MI. General anaesthesia-related complications of gut motility with a focus on cholinergic mechanisms, TRP channels and visceral pain. Front Physiol 2023; 14:1174655. [PMID: 37275228 PMCID: PMC10232893 DOI: 10.3389/fphys.2023.1174655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
General anesthesia produces multiple side effects. Notably, it temporarily impairs gastrointestinal motility following surgery and causes the so-called postoperative ileus (POI), a multifactorial and complex condition that develops secondary to neuromuscular failure and mainly affects the small intestine. There are currently limited medication options for POI, reflecting a lack of comprehensive understanding of the mechanisms involved in this complex condition. Notably, although acetylcholine is one of the major neurotransmitters initiating excitation-contraction coupling in the gut, cholinergic stimulation by prokinetic drugs is not very efficient in case of POI. Acetylcholine when released from excitatory motoneurones of the enteric nervous system binds to and activates M2 and M3 types of muscarinic receptors in smooth muscle myocytes. Downstream of these G protein-coupled receptors, muscarinic cation TRPC4 channels act as the major focal point of receptor-mediated signal integration, causing membrane depolarisation accompanied by action potential discharge and calcium influx via L-type Ca2+ channels for myocyte contraction. We have recently found that both inhalation (isoflurane) and intravenous (ketamine) anesthetics significantly inhibit this muscarinic cation current (termed mI CAT) in ileal myocytes, even when G proteins are activated directly by intracellular GTPγS, i.e., bypassing muscarinic receptors. Here we aim to summarize Transient Receptor Potential channels and calcium signalling-related aspects of the cholinergic mechanisms in the gut and visceral pain, discuss exactly how these may be negatively impacted by general anaesthetics, while proposing the receptor-operated TRPC4 channel as a novel molecular target for the treatment of POI.
Collapse
Affiliation(s)
- Alexander V. Zholos
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Dariia O. Dryn
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mariia I. Melnyk
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
12
|
Kola JB, Docsa T, Uray K. Mechanosensing in the Physiology and Pathology of the Gastrointestinal Tract. Int J Mol Sci 2022; 24:ijms24010177. [PMID: 36613619 PMCID: PMC9820522 DOI: 10.3390/ijms24010177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Normal gastrointestinal function relies on sensing and transducing mechanical signals into changes in intracellular signaling pathways. Both specialized mechanosensing cells, such as certain enterochromaffin cells and enteric neurons, and non-specialized cells, such as smooth muscle cells, interstitial cells of Cajal, and resident macrophages, participate in physiological and pathological responses to mechanical signals in the gastrointestinal tract. We review the role of mechanosensors in the different cell types of the gastrointestinal tract. Then, we provide several examples of the role of mechanotransduction in normal physiology. These examples highlight the fact that, although these responses to mechanical signals have been known for decades, the mechanosensors involved in these responses to mechanical signals are largely unknown. Finally, we discuss several diseases involving the overstimulation or dysregulation of mechanotransductive pathways. Understanding these pathways and identifying the mechanosensors involved in these diseases may facilitate the identification of new drug targets to effectively treat these diseases.
Collapse
Affiliation(s)
- Job Baffin Kola
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, 4032 Debrecen, Hungary
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, 4032 Debrecen, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, 4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|