1
|
Fellah S, Ying C, Wang Y, Guilliams KP, Fields ME, Chen Y, Lewis J, Mirro A, Cohen R, Igwe N, Eldeniz C, Jiang D, Lu H, Powers WJ, Lee JM, Ford AL, An H. Comparison of cerebral oxygen extraction fraction using ASE and TRUST methods in patients with sickle cell disease and healthy controls. J Cereb Blood Flow Metab 2024; 44:1404-1416. [PMID: 38436254 PMCID: PMC11342725 DOI: 10.1177/0271678x241237072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Abnormal oxygen extraction fraction (OEF), a putative biomarker of cerebral metabolic stress, may indicate compromised oxygen delivery and ischemic vulnerability in patients with sickle cell disease (SCD). Elevated OEF was observed at the tissue level across the brain using an asymmetric spin echo (ASE) MR method, while variable global OEFs were found from the superior sagittal sinus (SSS) using a T2-relaxation-under-spin-tagging (TRUST) MRI method with different calibration models. In this study, we aimed to compare the average ASE-OEF in the SSS drainage territory and TRUST-OEF in the SSS from the same SCD patients and healthy controls. 74 participants (SCD: N = 49; controls: N = 25) underwent brain MRI. TRUST-OEF was quantified using the Lu-bovine, Bush-HbA and Li-Bush-HbS models. ASE-OEF and TRUST-OEF were significantly associated in healthy controls after controlling for hematocrit using the Lu-bovine or the Bush-HbA model. However, no association was found between ASE-OEF and TRUST-OEF in patients with SCD using either the Bush-HbA or the Li-Bush-HbS model. Plausible explanations include a discordance between spatially volume-averaged oxygenation brain tissue and flow-weighted volume-averaged oxygenation in SSS or sub-optimal calibration in SCD. Further work is needed to refine and validate non-invasive MR OEF measurements in SCD.
Collapse
Affiliation(s)
- Slim Fellah
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chunwei Ying
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yan Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristin P Guilliams
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie E Fields
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yasheng Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Josiah Lewis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Mirro
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Cohen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nkemdilim Igwe
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dengrong Jiang
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William J Powers
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andria L Ford
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongyu An
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Kiersnowski OC, Winston GP, Caciagli L, Biondetti E, Elbadri M, Buck S, Duncan JS, Thornton JS, Shmueli K, Vos SB. Quantitative susceptibility mapping identifies hippocampal and other subcortical grey matter tissue composition changes in temporal lobe epilepsy. Hum Brain Mapp 2023; 44:5047-5064. [PMID: 37493334 PMCID: PMC10502681 DOI: 10.1002/hbm.26432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is associated with widespread brain alterations. Using quantitative susceptibility mapping (QSM) alongside transverse relaxation rate (R 2 * ), we investigated regional brain susceptibility changes in 36 patients with left-sided (LTLE) or right-sided TLE (RTLE) secondary to hippocampal sclerosis, and 27 healthy controls (HC). We compared three susceptibility calculation methods to ensure image quality. Correlations of susceptibility andR 2 * with age of epilepsy onset, frequency of focal-to-bilateral tonic-clonic seizures (FBTCS), and neuropsychological test scores were examined. Weak-harmonic QSM (WH-QSM) successfully reduced noise and removed residual background field artefacts. Significant susceptibility increases were identified in the left putamen in the RTLE group compared to the LTLE group, the right putamen and right thalamus in the RTLE group compared to HC, and a significant susceptibility decrease in the left hippocampus in LTLE versus HC. LTLE patients who underwent epilepsy surgery showed significantly lower left-versus-right hippocampal susceptibility. SignificantR 2 * changes were found between TLE and HC groups in the amygdala, putamen, thalamus, and in the hippocampus. Specifically, decreased R2 * was found in the left and right hippocampus in LTLE and RTLE, respectively, compared to HC. Susceptibility andR 2 * were significantly correlated with cognitive test scores in the hippocampus, globus pallidus, and thalamus. FBTCS frequency correlated positively with ipsilateral thalamic and contralateral putamen susceptibility and withR 2 * in bilateral globi pallidi. Age of onset was correlated with susceptibility in the hippocampus and putamen, and withR 2 * in the caudate. Susceptibility andR 2 * changes observed in TLE groups suggest selective loss of low-myelinated neurons alongside iron redistribution in the hippocampi, predominantly ipsilaterally, indicating QSM's sensitivity to local pathology. Increased susceptibility andR 2 * in the thalamus and putamen suggest increased iron content and reflect disease severity.
Collapse
Affiliation(s)
- Oliver C. Kiersnowski
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
- Department of Medicine, Division of NeurologyQueen's UniversityKingstonCanada
| | - Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emma Biondetti
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Department of Neuroscience, Imaging and Clinical SciencesInstitute for Advanced Biomedical Technologies, “D'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Maha Elbadri
- Department of NeurologyQueen Elizabeth HospitalBirminghamUK
| | - Sarah Buck
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - John S. Thornton
- Neuroradiological Academic UnitUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Karin Shmueli
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Sjoerd B. Vos
- Neuroradiological Academic UnitUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Centre for Microscopy, Characterisation, and AnalysisThe University of Western AustraliaNedlandsAustralia
- Centre for Medical Image Computing, Computer Science departmentUniversity College LondonLondonUK
| |
Collapse
|