1
|
Xu W, Zhang Y, Li L, Pan L, Lu L, Zhi S, Li W. Osteocyte-derived exosomes regulate the DLX2/wnt pathway to alleviate osteoarthritis by mediating cartilage repair. Autoimmunity 2024; 57:2364686. [PMID: 38946534 DOI: 10.1080/08916934.2024.2364686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Chondrocyte viability, apoptosis, and migration are closely related to cartilage injury in osteoarthritis (OA) joints. Exosomes are identified as potential therapeutic agents for OA. OBJECTIVE This study aimed to investigate the role of exosomes derived from osteocytes in OA, particularly focusing on their effects on cartilage repair and molecular mechanisms. METHODS An injury cell model was established by treating chondrocytes with IL-1β. Cartilage repair was evaluated using cell counting kit-8, flow cytometry, scratch test, and Western Blot. Molecular mechanisms were analyzed using quantitative real-time PCR, bioinformatic analysis, and Western Blot. An OA mouse model was established to explore the role of exosomal DLX2 in vivo. RESULTS Osteocyte-released exosomes promoted cell viability and migration, and inhibited apoptosis and extracellular matrix (ECM) deposition. Moreover, exosomes upregulated DLX2 expression, and knockdown of DLX2 activated the Wnt pathway. Additionally, exosomes attenuated OA in mice by transmitting DLX2. CONCLUSION Osteocyte-derived exosomal DLX2 alleviated IL-1β-induced cartilage repair and inactivated the Wnt pathway, thereby alleviating OA progression. The findings suggested that osteocyte-derived exosomes may hold promise as a treatment for OA.
Collapse
Affiliation(s)
- Wenjuan Xu
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Yuanyuan Zhang
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Lijuan Li
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Liyan Pan
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Li Lu
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Shenshen Zhi
- Department of Blood Transfusion, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wei Li
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| |
Collapse
|
2
|
Fan X, Ong LJY, Sun AR, Prasadam I. From polarity to pathology: Decoding the role of cell orientation in osteoarthritis. J Orthop Translat 2024; 49:62-73. [PMID: 39430130 PMCID: PMC11488446 DOI: 10.1016/j.jot.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cell polarity refers to the orientation of tissue and organelles within a cell and the direction of its function. It is one of the most critical characteristics of metazoans. The development, growth, and functional tissue distribution are closely related to holistic tissue or organ homeostasis. However, the connection between cell polarity and osteoarthritis (OA) is less well-known. In OA, multiple chondrocyte clusters and tissue disorganisation can be observed in the degraded cartilage tissue. The excessive upregulation of the planar cell polarity (PCP) signalling pathway leads to the loss of cell polarity and organisation in OA progression and aetiology. Recent research has become increasingly aware of the importance of cell polarity and its correlation with OA. Several cell polarity-related treatments have shed light on OA. A thorough understanding of cell polarity and OA would provide more insights for future investigations to treat this worldwide disease. The translational potential of this article Understanding cell polarity, associated signalling pathways, organelle changes, and cell movement in the development of OA could lead to advances in precision medicine and enhanced treatment strategies for OA patients.
Collapse
Affiliation(s)
- Xiwei Fan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Louis Jun Ye Ong
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Antonia RuJia Sun
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Indira Prasadam
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
3
|
Maouche A, Boumediene K, Baugé C. Bioactive Compounds in Osteoarthritis: Molecular Mechanisms and Therapeutic Roles. Int J Mol Sci 2024; 25:11656. [PMID: 39519204 PMCID: PMC11546619 DOI: 10.3390/ijms252111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is the most common and debilitating form of arthritis. Current therapies focus on pain relief and efforts to slow disease progression through a combination of drug and non-drug treatments. Bioactive compounds derived from plants show significant promise due to their anti-inflammatory, antioxidant, and tissue-protective properties. These natural compounds can help regulate the inflammatory processes and metabolic pathways involved in OA, thereby alleviating symptoms and potentially slowing disease progression. Investigating the efficacy of these natural agents in treating osteoarthritis addresses a growing demand for natural health solutions and creates new opportunities for managing this increasingly prevalent age-related condition. The aim of this review is to provide an overview of the use of some bioactive compounds from plants in modulating the progression of osteoarthritis and alleviating associated pain.
Collapse
Affiliation(s)
| | | | - Catherine Baugé
- UR7451 BIOCONNECT, Université de Caen Normandie, 14032 Caen, France; (A.M.); (K.B.)
| |
Collapse
|
4
|
Chen J, Tan Y, Chen Z, Yang H, Li X, Long X, Han Y, Yang J. Exosomes derived from primary cartilage stem/progenitor cells promote the repair of osteoarthritic chondrocytes by modulating immune responses. Int Immunopharmacol 2024; 143:113397. [PMID: 39461237 DOI: 10.1016/j.intimp.2024.113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Exosomes derived from primary chondrogenic stem/progenitor cells (CSPCs-EXOs) show promise in cartilage repair due to their immunomodulatory and regenerative properties. However, their specific therapeutic potential in osteoarthritis (OA), especially in modulating immune responses and enhancing chondrocyte function, requires further exploration. This study aims to clarify CSPCs-EXOs' effects on OA by investigating their role in chondrocyte proliferation, migration, inflammation inhibition, and cartilage regeneration. METHODS A rat model of osteoarthritis was established using monosodium iodoacetate (MIA). CSPCs-EXOs were isolated and characterized before being administered to the OA rats. Comprehensive transcriptomic analysis was conducted to identify differentially expressed genes (DEGs) and signaling pathways influenced by CSPCs-EXOs. Histopathological evaluation of cartilage tissue, immunohistochemistry, and in vitro assays were performed to assess chondrocyte proliferation, migration, inflammation, and intracellular environmental changes. RESULTS CSPCs-EXOs treatment significantly reduced OA-induced cartilage damage, shown by improved histopathological features, increased chondrocyte proliferation, migration, and enhanced cartilage matrix integrity. CSPCs-EXOs uniquely modulated immune pathways and enhanced cellular repair, setting them apart from traditional treatments. Transcriptomic analysis revealed regulation of immune response, inflammation, oxidative stress, and DNA repair pathways. CSPCs-EXOs downregulated inflammatory cytokines (TNF, IL-17) and upregulated pathways for cellular proliferation, migration, and metabolism. They also altered splicing patterns of DNA repair enzymes, indicating a role in boosting repair mechanisms. CONCLUSIONS CSPCs-EXOs promote cartilage repair in osteoarthritis by modulating immune responses, inhibiting inflammation, and improving the intracellular environment. These findings emphasize their innovative therapeutic potential and offer key insights into their regenerative mechanisms, positioning CSPCs-EXOs as a promising strategy for OA treatment and a foundation for future clinical applications in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Ya Tan
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Zhifeng Chen
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Hongwei Yang
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Xiaodi Li
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodong Long
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| | - Yangyun Han
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| | - Jian Yang
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| |
Collapse
|
5
|
Liu Y, Jia F, Li K, Liang C, Lin X, Geng W, Li Y. Critical signaling molecules in the temporomandibular joint osteoarthritis under different magnitudes of mechanical stimulation. Front Pharmacol 2024; 15:1419494. [PMID: 39055494 PMCID: PMC11269110 DOI: 10.3389/fphar.2024.1419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanical stress environment in the temporomandibular joint (TMJ) is constantly changing due to daily mandibular movements. Therefore, TMJ tissues, such as condylar cartilage, the synovial membrane and discs, are influenced by different magnitudes of mechanical stimulation. Moderate mechanical stimulation is beneficial for maintaining homeostasis, whereas abnormal mechanical stimulation leads to degeneration and ultimately contributes to the development of temporomandibular joint osteoarthritis (TMJOA), which involves changes in critical signaling molecules. Under abnormal mechanical stimulation, compensatory molecules may prevent degenerative changes while decompensatory molecules aggravate. In this review, we summarize the critical signaling molecules that are stimulated by moderate or abnormal mechanical loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify abnormal mechanical stimulation-induced molecules into compensatory or decompensatory molecules. Our aim is to understand the pathophysiological mechanism of TMJ dysfunction more deeply in the ever-changing mechanical environment, and then provide new ideas for discovering effective diagnostic and therapeutic targets in TMJOA.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Gardashli M, Baron M, Huang C, Kaplan LD, Meng Z, Kouroupis D, Best TM. Mechanical loading and orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA): a comprehensive review. Front Bioeng Biotechnol 2024; 12:1401207. [PMID: 38978717 PMCID: PMC11228341 DOI: 10.3389/fbioe.2024.1401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The importance of mechanical loading and its relationship to orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA) is beginning to receive attention. This review explores the current efficacy of orthobiologic interventions, notably platelet-rich plasma (PRP), bone marrow aspirate (BMA), and mesenchymal stem/stromal cells (MSCs), in combating PTOA drawing from a comprehensive review of both preclinical animal models and human clinical studies. This review suggests why mechanical joint loading, such as running, might improve outcomes in PTOA management in conjunction with orthiobiologic administration. Accumulating evidence underscores the influence of mechanical loading on chondrocyte behavior and its pivotal role in PTOA pathogenesis. Dynamic loading has been identified as a key factor for optimal articular cartilage (AC) health and function, offering the potential to slow down or even reverse PTOA progression. We hypothesize that integrating the activation of mechanotransduction pathways with orthobiologic treatment strategies may hold a key to mitigating or even preventing PTOA development. Specific loading patterns incorporating exercise and physical activity for optimal joint health remain to be defined, particularly in the clinical setting following joint trauma.
Collapse
Affiliation(s)
- Mahammad Gardashli
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Max Baron
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charles Huang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| |
Collapse
|
8
|
Chen W, Lu Y, Zhang Y, Wu J, McVicar A, Chen Y, Zhu S, Zhu G, Lu Y, Zhang J, McConnell M, Li YP. Cbfβ regulates Wnt/β-catenin, Hippo/Yap, and Tgfβ signaling pathways in articular cartilage homeostasis and protects from ACLT surgery-induced osteoarthritis. eLife 2024; 13:e95640. [PMID: 38805545 PMCID: PMC11132684 DOI: 10.7554/elife.95640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that CBFB (subunit of a heterodimeric Cbfβ/Runx1, Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfb in tamoxifen-induced Cbfbf/f;Col2a1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfβ deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/Yap signaling and Tgfβ signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfβ and Yap expression and increased active β-catenin expression in articular cartilage, while local AAV-mediated Cbfb overexpression promoted Yap expression and diminished active β-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfb overexpression in knee joints of mice with OA showed the significant protective effect of Cbfβ on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfβ may be the cause of OA. Moreover, Local admission of Cbfb may rescue and protect OA through decreasing Wnt/β-catenin signaling, and increasing Hippo/Yap signaling and Tgfβ/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfb overexpression could be an effective strategy for treatment of OA.
Collapse
Affiliation(s)
- Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| | - Yun Lu
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| | - Yan Zhang
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| | - Jinjin Wu
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Yilin Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Guochun Zhu
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| | - You Lu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Jiayang Zhang
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Matthew McConnell
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
9
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
10
|
Segarra-Queralt M, Crump K, Pascuet-Fontanet A, Gantenbein B, Noailly J. The interplay between biochemical mediators and mechanotransduction in chondrocytes: Unravelling the differential responses in primary knee osteoarthritis. Phys Life Rev 2024; 48:205-221. [PMID: 38377727 DOI: 10.1016/j.plrev.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
In primary or idiopathic osteoarthritis (OA), it is unclear which factors trigger the shift of articular chondrocyte activity from pro-anabolic to pro-catabolic. In fact, there is a controversy about the aetiology of primary OA, either mechanical or inflammatory. Chondrocytes are mechanosensitive cells, that integrate mechanical stimuli into cellular responses in a process known as mechanotransduction. Mechanotransduction occurs thanks to the activation of mechanosensors, a set of specialized proteins that convert physical cues into intracellular signalling cascades. Moderate levels of mechanical loads maintain normal tissue function and have anti-inflammatory effects. In contrast, mechanical over- or under-loading might lead to cartilage destruction and increased expression of pro-inflammatory cytokines. Simultaneously, mechanotransduction processes can regulate and be regulated by pro- and anti-inflammatory soluble mediators, both local (cells of the same joint, i.e., the chondrocytes themselves, infiltrating macrophages, fibroblasts or osteoclasts) and systemic (from other tissues, e.g., adipokines). Thus, the complex process of mechanotransduction might be altered in OA, so that cartilage-preserving chondrocytes adopt a different sensitivity to mechanical signals, and mechanic stimuli positively transduced in the healthy cartilage may become deleterious under OA conditions. This review aims to provide an overview of how the biochemical exposome of chondrocytes can alter important mechanotransduction processes in these cells. Four principal mechanosensors, i.e., integrins, Ca2+ channels, primary cilium and Wnt signalling (canonical and non-canonical) were targeted. For each of these mechanosensors, a brief summary of the response to mechanical loads under healthy or OA conditions is followed by a concise overview of published works that focus on the further regulation of the mechanotransduction pathways by biochemical factors. In conclusion, this paper discusses and explores how biological mediators influence the differential behaviour of chondrocytes under mechanical loads in healthy and primary OA.
Collapse
Affiliation(s)
- Maria Segarra-Queralt
- BCN MedTech, Universitat Pompeu Fabra, C/ de la Mercè, 12, Barcelona, 08002, Catalonia, Spain
| | - Katherine Crump
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Murtenstrasse 35, Bern, 3008, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Mittelstrasse 43, Bern, 3012, Bern, Switzerland
| | - Andreu Pascuet-Fontanet
- BCN MedTech, Universitat Pompeu Fabra, C/ de la Mercè, 12, Barcelona, 08002, Catalonia, Spain
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Murtenstrasse 35, Bern, 3008, Bern, Switzerland; Department of Orthopedic Surgery & Traumatology, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Bern, Switzerland
| | - Jérôme Noailly
- BCN MedTech, Universitat Pompeu Fabra, C/ de la Mercè, 12, Barcelona, 08002, Catalonia, Spain.
| |
Collapse
|
11
|
Li M, Zhang FJ, Bai RJ. The Hippo-YAP Signaling Pathway in Osteoarthritis and Rheumatoid Arthritis. J Inflamm Res 2024; 17:1105-1120. [PMID: 38406325 PMCID: PMC10891274 DOI: 10.2147/jir.s444758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Arthritis is the most prevalent joint disease and is characterized by articular cartilage degradation, synovial inflammation, and changes in periarticular and subchondral bone. Recent studies have reported that Yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) have significant effects on the proliferation, migration, and survival of chondrocytes and fibroblast-like synovial cells (FLSs). YAP/TAZ signaling pathway, as well as the related Hippo-YAP signaling pathway, are responsible for the condition of cells and articular cartilage in joints. They are tightly regulated to maintain metabolism in chondrocytes and FLSs because abnormal expression may result in cartilage damage. However, the roles and mechanisms of the Hippo-YAP pathway in arthritis remain largely unknown. This review summarizes the roles and key functions of YAP/TAZ and the Hippo-YAP signaling pathway in FLSs and chondrocytes for the induction of proliferation, migration, survival, and differentiation in rheumatoid arthritis (RA) and osteoarthritis (OA) research. We also discuss the therapeutic strategies involving YAP/TAZ and the related Hippo-YAP signaling pathway involved in OA.
Collapse
Affiliation(s)
- Min Li
- Department of Orthopaedics, Wuxi Ninth People’s Hospital, Soochow University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Fang-Jie Zhang
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, People’s Republic of China
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Rui-Jun Bai
- Department of Orthopaedics, Wuxi Ninth People’s Hospital, Soochow University, Wuxi, Jiangsu, 214000, People’s Republic of China
| |
Collapse
|
12
|
Ma J, Yu P, Ma S, Li J, Wang Z, Hu K, Su X, Zhang B, Cheng S, Wang S. Bioinformatics and Integrative Experimental Method to Identifying and Validating Co-Expressed Ferroptosis-Related Genes in OA Articular Cartilage and Synovium. J Inflamm Res 2024; 17:957-980. [PMID: 38370466 PMCID: PMC10871044 DOI: 10.2147/jir.s434226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/13/2024] [Indexed: 02/20/2024] Open
Abstract
Purpose Osteoarthritis (OA) is the most common joint disease worldwide and is the primary cause of disability and chronic pain in older adults.Ferroptosis is a type of programmed cell death characterized by aberrant iron metabolism and reactive oxygen species accumulation; however, its role in OA is not known. Methods To identify ferroptosis markers co-expressed in articular cartilage and synovium samples from patients with OA, in silico analysis was performed.Signature genes were analyzed and the results were evaluated using a ROC curve prediction model.The biological function, correlation between Signature genes, immune cell infiltration, and ceRNA network analyses were performed. Signature genes and ferroptosis phenotypes were verified through in vivo animal experiments and clinical samples. The expression levels of non-coding RNAs in samples from patients with OA were determined using qRT-PCR. ceRNA network analysis results were confirmed using dual-luciferase assays. Results JUN, ATF3, and CDKN1A were identified as OA- and ferroptosis-associated signature genes. GSEA analysis demonstrated an enrichment of these genes in immune and inflammatory responses, and amino acid metabolism. The CIBERSORT algorithm showed a negative correlation between T cells and these signature genes in the cartilage, and a positive correlation in the synovium. Moreover, RP5-894D12.5 and FAM95B1 regulated the expression of JUN, ATF3, and CDKN1A by competitively binding to miR-1972, miR-665, and miR-181a-2-3p. In vivo, GPX4 was downregulated in both OA cartilage and synovium; however, GPX4 and GSH were downregulated, while ferrous ions were upregulated in patient OA cartilage and synovium samples, indicating that ferroptosis was involved in the pathogenesis of OA. Furthermore, JUN, ATF3, and CDKN1A expression was downregulated in both mouse and human OA synovial and cartilage tissues. qRT-PCR demonstrated that miR-1972, RP5-894D12.5, and FAM95B1 were differentially expressed in OA tissues. Targeted interactions between miR-1972 and JUN, and a ceRNA regulatory mechanism between RP5-894D12.5, miR-1972, and JUN were confirmed by dual-luciferase assays. Conclusion This study identified JUN, ATF3, and CDKN1A as possible diagnostic biomarkers and therapeutic targets for joint synovitis and OA. Furthermore, our finding indicated that RP5-894D12.5/miR-1972/JUN was a potential ceRNA regulatory axis in OA, providing an insight into the connection between ferroptosis and OA.
Collapse
Affiliation(s)
- Jinxin Ma
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Peng Yu
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Shang Ma
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jinjin Li
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Zhen Wang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Kunpeng Hu
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xinzhe Su
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Bei Zhang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Shao Cheng
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Department of Arthropathy, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People’s Republic of China
- School of Osteopathy, Henan Province Engineering Research Center of Basic and Clinical Research of Bone and Joint Repair in Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Shangzeng Wang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Department of Arthropathy, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People’s Republic of China
- School of Osteopathy, Henan Province Engineering Research Center of Basic and Clinical Research of Bone and Joint Repair in Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
13
|
Dai J, Jiang H, Cheng Z, Li Y, Yang Z, Cheng C, Tang X. Genetic polymorphism of WNT9A is functionally associated with thumb osteoarthritis in the Chinese population. Adv Rheumatol 2024; 64:12. [PMID: 38287451 DOI: 10.1186/s42358-023-00337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/04/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND In a recent genome-wide association study, novel genetic variations of WNT9A were reported to be involved in the etiopathogenesis of thumb osteoarthritis (TOA) in Caucasians. Our purposes were to replicate the association of WNT9A with the development of TOA in the Chinese population and to further unveil the functional role of the risk variants. METHODS SNP rs11588850 of WNT9A were genotyped in 953 TOA patients and 1124 healthy controls. The differences of genotype and allele distributions between the patients and healthy controls were evaluated using the Chi-square test. Luciferase Reporter Assay was performed to investigate the influence of variant on the gene expression. RESULTS There was significantly lower frequency of genotype AA in TOA patients than in the controls 74.9% vs. 81.9%, p < 0.001). The frequency of allele A was remarkably lower in the patients than in the controls (86.3% vs. 90.5%, p < 0.001), with an odds ratio of 0.66 (95% CI = 0.54-0.80). Luciferase Reporter Assay showed that the construct containing mutant allele G of rs11588850 displayed 29.1% higher enhancer activity than the wild allele A construct (p < 0.05). CONCLUSIONS Allele G of rs11588850 was associated with the increased risk of TOA possibly via up-regulation of WNT9A expression. Further functional analysis into the regulatory role of rs11588850 in WNT9A expression can shed new light on the genetic architecture of TOA.
Collapse
Affiliation(s)
- Jian Dai
- Department of Orthopedics Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Haitao Jiang
- Department of Orthopedics Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Zhang Cheng
- Department of Orthopedics Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Yao Li
- Department of Orthopedics Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Zhaoqi Yang
- Postgraduate in Orthopedics Surgery, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chuan Cheng
- Department of Orthopedics Surgery, Third People's Hospital of Jiujiang City, Jiujiang, Jiangxi Province, China.
| | - Xiaoming Tang
- Department of Orthopedics Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China.
| |
Collapse
|
14
|
Ma T, Ruan H, Lv L, Wei C, Yu Y, Jia L, Song X, Zhang J, Li Y. Oleanolic acid, a small-molecule natural product, inhibits ECM degeneration in osteoarthritis by regulating the Hippo/YAP and Wnt/β-catenin pathways. Food Funct 2023; 14:9999-10013. [PMID: 37856220 DOI: 10.1039/d3fo01902k] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Over the past few decades, osteoarthritis (OA) has been a major health problem worldwide. It is urgent to develop new, effective, and safe drugs to treat OA. There are many pentacyclic triterpenoids in nature that are safe and have health benefits. Oleanolic acid (OLA), one of the pentacyclic triterpenoids, is a potential novel compound for treating OA; however, its mechanism of action is still unclear. In this study, the mechanism of resistance to extracellular matrix (ECM) degradation of OLA and its protective role in the amelioration of OA were investigated by in vivo and in vitro experiments. We found that OLA promoted interleukin-1β (IL-1β)-induced production of type II collagen (collagen II) in rat chondrocytes, decreased the expression of matrix metalloproteinase (MMP)-3 and MMP-13, and inhibited inflammatory cytokine (IL-1β and TNF-α) and cartilage marker (CTX-II and COMP) levels, thereby hindering the pathological process of cartilage. Mechanistically, OLA inhibited the Wnt/β-catenin pathway, activated the Hippo/YAP pathway, and hampered the ECM degradation process by inhibiting the nuclear translocation of β-catenin and YAP. When we knocked down β-catenin, OLA lost its stimulatory effect on the Hippo pathway. These findings confirm that OLA plays an anti-ECM degradation role by regulating the Wnt/β-catenin and Hippo/YAP pathways. Overall, this study provides a theoretical basis for developing highly effective and low-toxic natural products for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Hongri Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Liangyu Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Chengwei Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
| | - Yue Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Lina Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Xiaopeng Song
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Yanan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| |
Collapse
|
15
|
Papathanasiou I, Balis C, Destounis D, Mourmoura E, Tsezou A. NEAT1-mediated miR-150-5p downregulation regulates b-catenin expression in OA chondrocytes. Funct Integr Genomics 2023; 23:246. [PMID: 37468759 DOI: 10.1007/s10142-023-01139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
We investigated the role of miR-150-5p in osteoarthritic (OA) chondrocytes, as well as the possible regulatory role of long non-coding RNAs (lncRNAs) in miR-150-5p expression. TargetScan, StarBase, DIANA-LncBase, and Open Targets databases were used to predict miR-150-5p target genes, lncRNAs/miR-150-5p interactions, and OA-related genes. Protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Gene ontology (GO) and pathway analysis were performed using Enrichr database. A publicly available RNA-seq dataset was retrieved to identify differentially expressed lncRNAs in damaged vs intact cartilage. We re-analyzed the retrieved RNA-seq data and revealed 177 differentially expressed lncRNAs in damage vs intact cartilage, including Nuclear Paraspeckle Assembly Transcript 1(NEAT1). MiR-150-5p, NEAT1, b-catenin, matrix metallopeptidase 13 (MMP-13), and ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS-5) expressions were assessed by reverse transcription-quantitative PCR (RT-qPCR) and western blot assay. Knockout and transfection experiments were conducted to investigate the role of NEAT1/miR-150-5p/b-catenin in cartilage degradation. Bioinformatics analysis revealed that b-catenin was an OA-related miR-150-5p target. MiR-150-5p overexpression in OA chondrocytes resulted in decreased expression of b-catenin, as well as MMP-13 and ADAMTS-5, both being Wnt/b-catenin downstream target genes. NEAT1/miR-150-5p interaction was predicted by bioinformatics analysis, while NEAT1 knockout led to increased expression of miR-150-5p in OA chondrocytes. Moreover, inhibition of miR-150-5p reversed the repressive effects of NEAT1 silencing in b-catenin expression in OA chondrocytes. Our results support a possible catabolic role of NEAT1/miR-150-5p interaction in OA progression by regulating b-catenin expression.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Biopolis, 41500, Larissa, Greece
- Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Charalampos Balis
- Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Dimitrios Destounis
- Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Evanthia Mourmoura
- Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Aspasia Tsezou
- Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Biopolis, 41500, Larissa, Greece.
- Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|
16
|
Ruan X, Gu J, Chen M, Zhao F, Aili M, Zhang D. Multiple roles of ALK3 in osteoarthritis. Bone Joint Res 2023; 12:397-411. [PMID: 37394235 DOI: 10.1302/2046-3758.127.bjr-2022-0310.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinning Gu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Wu Z, Yang Z, Liu L, Xiao Y. Natural compounds protect against the pathogenesis of osteoarthritis by mediating the NRF2/ARE signaling. Front Pharmacol 2023; 14:1188215. [PMID: 37324450 PMCID: PMC10266108 DOI: 10.3389/fphar.2023.1188215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Osteoarthritis (OA), a chronic joint cartilage disease, is characterized by the imbalanced homeostasis between anabolism and catabolism. Oxidative stress contributes to inflammatory responses, extracellular matrix (ECM) degradation, and chondrocyte apoptosis and promotes the pathogenesis of OA. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central regulator of intracellular redox homeostasis. Activation of the NRF2/ARE signaling may effectively suppress oxidative stress, attenuate ECM degradation, and inhibit chondrocyte apoptosis. Increasing evidence suggests that the NRF2/ARE signaling has become a potential target for the therapeutic management of OA. Natural compounds, such as polyphenols and terpenoids, have been explored to protect against OA cartilage degeneration by activating the NRF2/ARE pathway. Specifically, flavonoids may function as NRF2 activators and exhibit chondroprotective activity. In conclusion, natural compounds provide rich resources to explore the therapeutic management of OA by activating NRF2/ARE signaling.
Collapse
Affiliation(s)
- Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Zhouxin Yang
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Luying Liu
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Yong Xiao
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Xiaoyong Traditional Chinese Medicine Clinic in Yudu, Ganzhou, China
| |
Collapse
|