1
|
Fan Y, Xu Y, Huo Z, Zhang H, Peng L, Jiang X, Thomson AW, Dai H. Role of triggering receptor expressed on myeloid cells-1 in kidney diseases: A biomarker and potential therapeutic target. Chin Med J (Engl) 2024; 137:1663-1673. [PMID: 38809056 PMCID: PMC11268828 DOI: 10.1097/cm9.0000000000003197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 05/30/2024] Open
Abstract
ABSTRACT Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily. As an amplifier of the inflammatory response, TREM-1 is mainly involved in the production of inflammatory mediators and the regulation of cell survival. TREM-1 has been studied in infectious diseases and more recently in non-infectious disorders. More and more studies have shown that TREM-1 plays an important pathogenic role in kidney diseases. There is evidence that TREM-1 can not only be used as a biomarker for diagnosis of disease but also as a potential therapeutic target to guide the development of novel therapeutic agents for kidney disease. This review summarized molecular biology of TREM-1 and its signaling pathways as well as immune response in the progress of acute kidney injury, renal fibrosis, diabetic nephropathy, immune nephropathy, and renal cell carcinoma.
Collapse
Affiliation(s)
- Yuxi Fan
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ye Xu
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Medical College of Guangxi University, Nanning, Guangxi 530004, China
| | - Zhi Huo
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People’s Hospital), Zhengzhou, Henan 450000, China
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
2
|
Li C, Cai C, Xu D, Chen X, Song J. TREM1: Activation, signaling, cancer and therapy. Pharmacol Res 2024; 204:107212. [PMID: 38749377 DOI: 10.1016/j.phrs.2024.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM1) is a cell surface receptor expressed on neutrophils, monocytes and some tissue macrophages, where it functions as an immunoregulator that controls myeloid cell responses. The activation of TREM1 is suggested to be an upregulation-based, ligands-induced and structural multimerization-mediated process, in which damage- and pathogen-associated molecular patterns play important roles. Activated TREM1 initiates an array of downstream signaling pathways that ultimately result in the production of pro-inflammatory cytokines and chemokines, whereby it functions as an amplifier of inflammation and is implicated in the pathogenesis of many inflammation-associated diseases. Over the past decade, there has been growing evidence for the involvement of TREM1 overactivation in tumor stroma inflammation and cancer progression. Indeed, it was shown that TREM1 promotes tumor progression, immunosuppression, and resistance to therapy by activating tumor-infiltrating myeloid cells. TREM1-deficiency or blockade provide protection against tumors and reverse the resistance to anti-PD-1/PD-L1 therapy and arginine-deprivation therapy in preclinical models. Here, we first review the structure, activation modes and signaling pathways of TREM1 and emphasize the role of soluble TREM1 as a biomarker of infection and cancer. We then focus on the role of TREM1 in cancer and systematically summarize its expression patterns, upregulation mechanisms and functions in tumor development and progression. Lastly, we discuss the therapeutic prospects of TREM1 inhibition, via effective pharmacological inhibitors, in treating cancer and other diseases.
Collapse
Affiliation(s)
- Chenyang Li
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Chujun Cai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis(Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dafeng Xu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei 430030, China; Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei 430030, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China.
| | - Jia Song
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Mufumba I, Kazinga C, Namazzi R, Opoka RO, Batte A, Bond C, John CC, Conroy AL. sTREM-1: A Biomarker of Mortality in Severe Malaria Impacted by Acute Kidney Injury. J Infect Dis 2024; 229:936-946. [PMID: 38078677 PMCID: PMC11011168 DOI: 10.1093/infdis/jiad561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/07/2023] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Malaria is an important cause of mortality in African children. Identification of biomarkers to identify children at risk of mortality has the potential to improve outcomes. METHODS We evaluated 11 biomarkers of host response in 592 children with severe malaria. The primary outcome was biomarker performance for predicting mortality. Biomarkers were evaluated using receiver operating characteristic (ROC) curve analysis comparing the area under the ROC curve (AUROC). RESULTS Mortality was 7.3% among children in the study with 72% of deaths occurring within 24 hours of admission. Among the candidate biomarkers, soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) had the highest AUROC (0.78 [95% confidence interval, .70-.86]), outperforming several other biomarkers including C-reactive protein and procalcitonin. sTREM-1 was the top-performing biomarker across prespecified subgroups (malaria definition, site, sex, nutritional status, age). Using established cutoffs, we evaluated mortality across sTREM-1 risk zones. Among children with acute kidney injury, 39.9% of children with a critical-risk sTREM-1 result had an indication for dialysis. When evaluated relative to a disease severity score, sTREM-1 improved mortality prediction (difference in AUROC, P = .016). CONCLUSIONS sTREM-1 is a promising biomarker to guide rational allocation of clinical resources and should be integrated into clinical decision support algorithms, particularly when acute kidney injury is suspected.
Collapse
Affiliation(s)
- Ivan Mufumba
- CHILD Laboratory, Global Health Uganda, Kampala, Uganda
| | | | - Ruth Namazzi
- CHILD Laboratory, Global Health Uganda, Kampala, Uganda
- Department of Pediatrics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Robert O Opoka
- CHILD Laboratory, Global Health Uganda, Kampala, Uganda
- Department of Pediatrics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Anthony Batte
- CHILD Laboratory, Global Health Uganda, Kampala, Uganda
- Child Health and Development Center, Makerere University College of Health Sciences, Kampala, Uganda
| | - Caitlin Bond
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine
- Center for Global Health, Indiana University, Indianapolis
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine
- Center for Global Health, Indiana University, Indianapolis
| |
Collapse
|
4
|
Feng Z, Cao X, Zhao C, Niu J, Yan Y, Shi T, Hao J, Zheng X. Serum CIRP increases the risk of acute kidney injury after cardiac surgery. Front Med (Lausanne) 2024; 10:1258622. [PMID: 38235271 PMCID: PMC10791772 DOI: 10.3389/fmed.2023.1258622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Acute kidney injury (AKI) is a frequent perioperative complication. The underlying mechanisms of cardiac surgery-associated AKI are still not completely elucidated. Cold-induced RNA-binding protein (CIRP) has been subsequently found to be regulated by various stress conditions. During cardiac surgery and cardiopulmonary bypass (CPB), the host is subjected to hypothermia and inadequate organ perfusion, resulting in an upregulation of CIRP secretion. The aim of this study is to evaluate the role of elevated extracellular CIRP level as a contributing factor in the development of AKI. Methods A total of 292 patients who underwent cardiac surgery were retrospectively enrolled and their serum samples were collected preoperative and postoperative. Demographic data, intraoperative data, in-hospital outcomes, and the occurrence of AKI were also collected for the patients. The correlation between CIRP and intraoperative procedures, as well as its association with postoperative outcomes were analyzed. Results In multivariable analysis, higher ΔCIRP (p = 0.036) and body mass index (p = 0.015) were independent risk factors for postoperative AKI. Meanwhile, patients with postoperative AKI exhibited lower survival rate in 2-year follow-up (p = 0.008). Compared to off-pump coronary artery bypass grafting surgery, patients who underwent on-pump coronary artery bypass grafting, valve surgery, aortic dissection and other surgery showed higher ΔCIRP, measuring 1,093, 666, 914 and 258 pg/mL, respectively (p < 0.001). The levels of ΔCIRP were significantly higher in patients who underwent CPB compared to those who did not (793.0 ± 648.7 vs. 149.5 ± 289.1 pg/mL, p < 0.001). Correlation analysis revealed a positive correlation between ΔCIRP levels and the duration of CPB (r = 0.502, p < 0.001). Patients with higher CIRP levels are at greater risk of postoperative AKI (OR: 1.67, p = 0.032), especially the stage 2-3 AKI (OR: 2.11, p = 0.037). Conclusion CIRP secretion increases with prolonged CPB time after cardiac surgery, and CIRP secretion is positively correlated with the duration of CPB. Cardiac surgeries with CPB exhibited significantly higher levels of CIRP compared to non-CPB surgeries. Elevation of CIRP level is an independent risk factor for the incidence of AKI, especially the severe AKI, and were associated with adverse in-hospital outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinglong Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Yamaga S, Murao A, Ma G, Brenner M, Aziz M, Wang P. Radiation upregulates macrophage TREM-1 expression to exacerbate injury in mice. Front Immunol 2023; 14:1151250. [PMID: 37168858 PMCID: PMC10164953 DOI: 10.3389/fimmu.2023.1151250] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Exposure to high-dose ionizing radiation causes tissue injury, infections and even death due to immune dysfunction. The triggering receptor expressed on myeloid cells-1 (TREM-1) has been demonstrated to critically amplify and dysregulate immune responses. However, the role of TREM-1 in radiation injury remains unknown. Extracellular cold-inducible RNA-binding protein (eCIRP), a new damage-associated molecular pattern, is released from activated or stressed cells during inflammation. We hypothesized that ionizing radiation upregulates TREM-1 expression via eCIRP release to worsen survival. Methods RAW264.7 cells and peritoneal macrophages collected from C57BL/6 wild-type (WT) mice were exposed to 5- and 10-Gray (Gy) radiation. C57BL/6 WT and CIRP-/- mice underwent 10-Gy total body irradiation (TBI). TREM-1 expression on RAW264.7 cells and peritoneal macrophages in vitro and in vivo were evaluated by flow cytometry. eCIRP levels in cell culture supernatants and in peritoneal lavage isolated from irradiated mice were evaluated by Western blotting. We also evaluated 30-day survival in C57BL/6 WT, CIRP-/- and TREM-1-/- mice after 6.5-Gy TBI. Results The surface protein and mRNA levels of TREM-1 in RAW264.7 cells were significantly increased at 24 h after 5- and 10-Gy radiation exposure. TREM-1 expression on peritoneal macrophages was significantly increased after radiation exposure in vitro and in vivo. eCIRP levels were significantly increased after radiation exposure in cell culture supernatants of peritoneal macrophages in vitro and in peritoneal lavage in vivo. Moreover, CIRP-/- mice exhibited increased survival after 6.5-Gy TBI compared to WT mice. Interestingly, TREM-1 expression on peritoneal macrophages in CIRP-/- mice was significantly decreased compared to that in WT mice at 24 h after 10-Gy TBI. Furthermore, 30-day survival in TREM-1-/- mice was significantly increased to 64% compared to 20% in WT mice after 6.5-Gy TBI. Conclusion Our data indicate that ionizing radiation increases TREM-1 expression in macrophages via the release of eCIRP, and TREM-1 contributes to worse survival after total body irradiation. Thus, targeting TREM-1 could have the potential to be developed as a novel medical countermeasure for radiation injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Gaifeng Ma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|