1
|
Li R, Yao J, Ming Y, Guo J, Deng J, Liu D, Li Z, Cheng Y. Integrated proteomic analysis reveals interactions between phosphorylation and ubiquitination in rose response to Botrytis infection. HORTICULTURE RESEARCH 2024; 11:uhad238. [PMID: 38222823 PMCID: PMC10782497 DOI: 10.1093/hr/uhad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 01/16/2024]
Abstract
As two of the most abundant post-translational modifications, phosphorylation and ubiquitination play a significant role in modulating plant-pathogen interactions and increasing evidence indicates their crosstalk in plant immunity. Rose (Rosa sp.) is one of the most important ornamental plants and can be seriously infected by Botrytis cinerea. Here, integrated proteomics analysis was performed to detect global proteome, phosphorylation, and ubiquitination changes in rose upon B. cinerea infection and investigate the possible phosphorylation and ubiquitination crosstalk. A total of 6165 proteins, 11 774 phosphorylation and 10 582 ubiquitination sites, and 77 phosphorylation and 13 ubiquitination motifs were identified. Botrytis cinerea infection resulted in 169 up-regulated and 122 down-regulated proteins, 291 up-regulated and 404 down-regulated phosphorylation sites, and 250 up-regulated and 634 down-regulated ubiquitination sites. There were 12 up-regulated PR10 proteins and half of them also showed reduced ubiquitination. A lot of kinases probably involved in plant pattern-triggered immunity signaling were up-regulated phosphoproteins. Noticeably, numerous kinases and ubiquitination-related proteins also showed a significant change in ubiquitination and phosphorylation, respectively. A cross-comparison of phosphoproteome and ubiquitylome indicated that both of two post-translational modifications of 104 proteins were dynamically regulated, and many putative pattern-triggered immunity signaling components in the plant plasma membrane were co-regulated. Moreover, five selected proteins, including four PR10 proteins and a plasma membrane aquaporin, were proven to be involved in rose resistance to B. cinerea. Our study provides insights into the molecular mechanisms underlying rose resistance to B. cinerea and also increases the database of phosphorylation and ubiquitination sites in plants.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Juanni Yao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yue Ming
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jia Guo
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jingjing Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Cunsolo V, Di Francesco A, Pittalà MGG, Saletti R, Foti S. The TriMet_DB: A Manually Curated Database of the Metabolic Proteins of Triticum aestivum. Nutrients 2022; 14:nu14245377. [PMID: 36558536 PMCID: PMC9781733 DOI: 10.3390/nu14245377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Mass-spectrometry-based wheat proteomics is challenging because the current interpretation of mass spectrometry data relies on public databases that are not exhaustive (UniProtKB/Swiss-Prot) or contain many redundant and poor or un-annotated entries (UniProtKB/TrEMBL). Here, we report the development of a manually curated database of the metabolic proteins of Triticum aestivum (hexaploid wheat), named TriMet_DB (Triticum aestivum Metabolic Proteins DataBase). The manually curated TriMet_DB was generated in FASTA format so that it can be read directly by programs used to interpret the mass spectrometry data. Furthermore, the complete list of entries included in the TriMet_DB is reported in a freely available resource, which includes for each protein the description, the gene code, the protein family, and the allergen name (if any). To evaluate its performance, the TriMet_DB was used to interpret the MS data acquired on the metabolic protein fraction extracted from the cultivar MEC of Triticum aestivum. Data are available via ProteomeXchange with identifier PXD037709.
Collapse
|
3
|
Arshad M, Puri A, Simkovich AJ, Renaud J, Gruber MY, Marsolais F, Hannoufa A. Label-free quantitative proteomic analysis of alfalfa in response to microRNA156 under high temperature. BMC Genomics 2020; 21:758. [PMID: 33138776 PMCID: PMC7607685 DOI: 10.1186/s12864-020-07161-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abiotic stress, including heat, is one of the major factors that affect alfalfa growth and forage yield. The small RNA, microRNA156 (miR156), regulates multiple traits in alfalfa during abiotic stress. The aim of this study was to explore the role of miR156 in regulating heat response in alfalfa at the protein level. RESULTS In this study, we compared an empty vector control and miR156 overexpressing (miR156OE) alfalfa plants after exposing them to heat stress (40 °C) for 24 h. We measured physiological parameters of control and miR156OE plants under heat stress, and collected leaf samples for protein analysis. A higher proline and antioxidant contents were detected in miR156OE plants than in controls under heat stress. Protein samples were analyzed by label-free quantification proteomics. Across all samples, a total of 1878 protein groups were detected. Under heat stress, 45 protein groups in the empty vector plants were significantly altered (P < 0.05; |log2FC| > 2). Conversely, 105 protein groups were significantly altered when miR156OE alfalfa was subjected to heat stress, of which 91 were unique to miR156OE plants. The identified protein groups unique to miR156OE plants were related to diverse functions including metabolism, photosynthesis, stress-response and plant defenses. Furthermore, we identified transcription factors in miR156OE plants, which belonged to squamosa promoter binding-like protein, MYB, ethylene responsive factors, AP2 domain, ABA response element binding factor and bZIP families of transcription factors. CONCLUSIONS These results suggest a positive role for miR156 in heat stress response in alfalfa. They reveal a miR156-regulated network of mechanisms at the protein level to modulate heat responses in alfalfa.
Collapse
Affiliation(s)
- Muhammad Arshad
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
- Centre for Genomics and Systems Biology, New York University, Abu Dhabi, United Arab Emirates
| | - Alpa Puri
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7 Canada
| | - Aaron J. Simkovich
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7 Canada
| | - Justin Renaud
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
| | - Margaret Y. Gruber
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2 Canada
| | - Frédéric Marsolais
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7 Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7 Canada
| |
Collapse
|
4
|
Holzheu P, Kummer U. Computational systems biology of cellular processes in Arabidopsis thaliana: an overview. Cell Mol Life Sci 2020; 77:433-440. [PMID: 31768604 PMCID: PMC11105087 DOI: 10.1007/s00018-019-03379-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
Systems biology strives for gaining an understanding of biological phenomena by studying the interactions of different parts of a system and integrating the knowledge obtained into the current view of the underlying processes. This is achieved by a tight combination of quantitative experimentation and computational modeling. While there is already a large quantity of systems biology studies describing human, animal and especially microbial cell biological systems, plant biology has been lagging behind for many years. However, in the case of the model plant Arabidopsis thaliana, the steadily increasing amount of information on the levels of its genome, proteome and on a variety of its metabolic and signalling pathways is progressively enabling more researchers to construct models for cellular processes for the plant, which in turn encourages more experimental data to be generated, showing also for plant sciences how fruitful systems biology research can be. In this review, we provide an overview over some of these recent studies which use different systems biological approaches to get a better understanding of the cell biology of A. thaliana. The approaches used in these are genome-scale metabolic modeling, as well as kinetic modeling of metabolic and signalling pathways. Furthermore, we selected several cases to exemplify how the modeling approaches have led to significant advances or new perspectives in the field.
Collapse
Affiliation(s)
- Pascal Holzheu
- INF 267 (Bioquant), Heidelberg University, 69120, Heidelberg, Germany
| | - Ursula Kummer
- INF 267 (Bioquant), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Khan M, Youn JY, Gingras AC, Subramaniam R, Desveaux D. In planta proximity dependent biotin identification (BioID). Sci Rep 2018; 8:9212. [PMID: 29907827 PMCID: PMC6004002 DOI: 10.1038/s41598-018-27500-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
Proximity dependent biotin identification (BioID) has emerged as a powerful tool for studies of proteome architecture, including insoluble or membrane-associated proteins. The technique has been well established in mammalian cells but has yet to be applied to whole plant systems. Here we demonstrate the application of BioID on leaf tissues of the model plant Arabidopsis thaliana, thereby expanding the versatility of this important technique and providing a powerful proteomics tool for plant biologists.
Collapse
Affiliation(s)
- Madiha Khan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada
| | - Ji-Young Youn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada.
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada. .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, M5S 3B2, Canada.
| |
Collapse
|
6
|
Bromilow S, Gethings LA, Buckley M, Bromley M, Shewry PR, Langridge JI, Clare Mills EN. A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. J Proteomics 2017; 163:67-75. [PMID: 28385663 PMCID: PMC5479479 DOI: 10.1016/j.jprot.2017.03.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
Abstract
The unique physiochemical properties of wheat gluten enable a diverse range of food products to be manufactured. However, gluten triggers coeliac disease, a condition which is treated using a gluten-free diet. Analytical methods are required to confirm if foods are gluten-free, but current immunoassay-based methods can unreliable and proteomic methods offer an alternative but require comprehensive and well annotated sequence databases which are lacking for gluten. A manually a curated database (GluPro V1.0) of gluten proteins, comprising 630 discrete unique full length protein sequences has been compiled. It is representative of the different types of gliadin and glutenin components found in gluten. An in silico comparison of their coeliac toxicity was undertaken by analysing the distribution of coeliac toxic motifs. This demonstrated that whilst the α-gliadin proteins contained more toxic motifs, these were distributed across all gluten protein sub-types. Comparison of annotations observed using a discovery proteomics dataset acquired using ion mobility MS/MS showed that more reliable identifications were obtained using the GluPro V1.0 database compared to the complete reviewed Viridiplantae database. This highlights the value of a curated sequence database specifically designed to support the proteomic workflows and the development of methods to detect and quantify gluten. SIGNIFICANCE We have constructed the first manually curated open-source wheat gluten protein sequence database (GluPro V1.0) in a FASTA format to support the application of proteomic methods for gluten protein detection and quantification. We have also analysed the manually verified sequences to give the first comprehensive overview of the distribution of sequences able to elicit a reaction in coeliac disease, the prevalent form of gluten intolerance. Provision of this database will improve the reliability of gluten protein identification by proteomic analysis, and aid the development of targeted mass spectrometry methods in line with Codex Alimentarius Commission requirements for foods designed to meet the needs of gluten intolerant individuals.
Collapse
Affiliation(s)
- Sophie Bromilow
- School of Biological Sciences, Manchester Institute of Biotechnology, Manchester Academic Health Sciences Centre, University of Manchester, M17DN, UK
| | - Lee A Gethings
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Mike Buckley
- School of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, M17DN, UK
| | - Mike Bromley
- Genon Laboratories Limited, Cragg Vale, Halifax, UK
| | | | - James I Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - E N Clare Mills
- School of Biological Sciences, Manchester Institute of Biotechnology, Manchester Academic Health Sciences Centre, University of Manchester, M17DN, UK.
| |
Collapse
|
7
|
Heazlewood JL, Jorrín-Novo JV, Agrawal GK, Mazzuca S, Lüthje S. Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014. FRONTIERS IN PLANT SCIENCE 2016; 7:1190. [PMID: 27547211 PMCID: PMC4974273 DOI: 10.3389/fpls.2016.01190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/25/2016] [Indexed: 05/20/2023]
Affiliation(s)
- Joshua L. Heazlewood
- Lawrence Berkeley National Laboratory, Physical Biosciences Division, Joint BioEnergy InstituteBerkeley, CA, USA
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of MelbourneMelbourne, VIC, Australia
- *Correspondence: Joshua L. Heazlewood
| | - Jesús V. Jorrín-Novo
- Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| | - Ganesh K. Agrawal
- Research Laboratory for Biotechnology and BiochemistryKathmandu, Nepal
- Global Research Arch for Developing Education Academy Private LimitedBirgunj, Nepal
| | - Silvia Mazzuca
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaRende, Italy
| | - Sabine Lüthje
- Oxidative Stress and Plant Proteomics Group, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
| |
Collapse
|
8
|
Gong F, Hu X, Wang W. Proteomic analysis of crop plants under abiotic stress conditions: where to focus our research? FRONTIERS IN PLANT SCIENCE 2015; 6:418. [PMID: 26097486 PMCID: PMC4456565 DOI: 10.3389/fpls.2015.00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/24/2015] [Indexed: 05/23/2023]
|
9
|
Chen J, Han G, Shang C, Li J, Zhang H, Liu F, Wang J, Liu H, Zhang Y. Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa. FRONTIERS IN PLANT SCIENCE 2015; 6:105. [PMID: 25774161 PMCID: PMC4343008 DOI: 10.3389/fpls.2015.00105] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 05/11/2023]
Abstract
Cold acclimation in alfalfa (Medicago sativa L.) plays a crucial role in cold tolerance to harsh winters. To examine the cold acclimation mechanisms in freezing-tolerant alfalfa (ZD) and freezing-sensitive alfalfa (W5), holoproteins, and low-abundance proteins (after the removal of RuBisCO) from leaves were extracted to analyze differences at the protein level. A total of 84 spots were selected, and 67 spots were identified. Of these, the abundance of 49 spots and 24 spots in ZD and W5, respectively, were altered during adaptation to chilling stress. Proteomic results revealed that proteins involved in photosynthesis, protein metabolism, energy metabolism, stress and redox and other proteins were mobilized in adaptation to chilling stress. In ZD, a greater number of changes were observed in proteins, and autologous metabolism and biosynthesis were slowed in response to chilling stress, thereby reducing consumption, allowing for homeostasis. The capability for protein folding and protein biosynthesis in W5 was enhanced, which allows protection against chilling stress. The ability to perceive low temperatures was more sensitive in freezing-tolerant alfalfa compared to freezing-sensitive alfalfa. This proteomics study provides new insights into the cold acclimation mechanism in alfalfa.
Collapse
Affiliation(s)
- Jing Chen
- College of Life Sciences and Technology, Harbin Normal UniversityHarbin, China
| | - Guiqing Han
- College of Life Sciences and Technology, Harbin Normal UniversityHarbin, China
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Chen Shang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Jikai Li
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Hailing Zhang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Fengqi Liu
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Jianli Wang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Huiying Liu
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Yuexue Zhang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| |
Collapse
|
10
|
Ford KL, Zeng W, Heazlewood JL, Bacic A. Characterization of protein N-glycosylation by tandem mass spectrometry using complementary fragmentation techniques. FRONTIERS IN PLANT SCIENCE 2015; 6:674. [PMID: 26379696 PMCID: PMC4551829 DOI: 10.3389/fpls.2015.00674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/15/2015] [Indexed: 05/03/2023]
Abstract
The analysis of post-translational modifications (PTMs) by proteomics is regarded as a technically challenging undertaking. While in recent years approaches to examine and quantify protein phosphorylation have greatly improved, the analysis of many protein modifications, such as glycosylation, are still regarded as problematic. Limitations in the standard proteomics workflow, such as use of suboptimal peptide fragmentation methods, can significantly prevent the identification of glycopeptides. The current generation of tandem mass spectrometers has made available a variety of fragmentation options, many of which are becoming standard features on these instruments. We have used three common fragmentation techniques, namely CID, HCD, and ETD, to analyze a glycopeptide and highlight how an integrated fragmentation approach can be used to identify the modified residue and characterize the N-glycan on a peptide.
Collapse
Affiliation(s)
- Kristina L. Ford
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of MelbourneMelbourne, VIC, Australia
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of MelbourneMelbourne, VIC, Australia
| | - Joshua L. Heazlewood
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of MelbourneMelbourne, VIC, Australia
- Physical Biosciences Division, Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of MelbourneMelbourne, VIC, Australia
- *Correspondence: Antony Bacic, ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Building 122, Melbourne, Victoria 3010, Australia
| |
Collapse
|
11
|
Ito J, Parsons HT, Heazlewood JL. The Arabidopsis cytosolic proteome: the metabolic heart of the cell. FRONTIERS IN PLANT SCIENCE 2014; 5:21. [PMID: 24550929 PMCID: PMC3914213 DOI: 10.3389/fpls.2014.00021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/19/2014] [Indexed: 05/09/2023]
Abstract
The plant cytosol is the major intracellular fluid that acts as the medium for inter-organellar crosstalk and where a plethora of important biological reactions take place. These include its involvement in protein synthesis and degradation, stress response signaling, carbon metabolism, biosynthesis of secondary metabolites, and accumulation of enzymes for defense and detoxification. This central role is highlighted by estimates indicating that the majority of eukaryotic proteins are cytosolic. Arabidopsis thaliana has been the subject of numerous proteomic studies on its different subcellular compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted proteomic characterizations of complexes is included. Despite this, few groups are currently applying advanced proteomic approaches to this important metabolic space. This review will highlight the current state of the Arabidopsis cytosolic proteome since its initial characterization a few years ago.
Collapse
Affiliation(s)
- Jun Ito
- Joint BioEnergy Institute, Emeryville, CAUSA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CAUSA
| | - Harriet T. Parsons
- Joint BioEnergy Institute, Emeryville, CAUSA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CAUSA
- Department of Plant and Environmental Sciences, University of Copenhagen, CopenhagenDenmark
| | - Joshua L. Heazlewood
- Joint BioEnergy Institute, Emeryville, CAUSA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CAUSA
| |
Collapse
|
12
|
Carroll AW, Joshi HJ, Heazlewood JL. Managing the green proteomes for the next decade of plant research. FRONTIERS IN PLANT SCIENCE 2013; 4:501. [PMID: 24379820 PMCID: PMC3864100 DOI: 10.3389/fpls.2013.00501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 05/25/2023]
Affiliation(s)
- Andrew W. Carroll
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of CopenhagenCopenhagen, Denmark
| | - Hiren J. Joshi
- Physical Biosciences Division and Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Joshua L. Heazlewood
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
13
|
PAPE (Prefractionation-Assisted Phosphoprotein Enrichment): A Novel Approach for Phosphoproteomic Analysis of Green Tissues from Plants. Proteomes 2013; 1:254-274. [PMID: 28250405 PMCID: PMC5302697 DOI: 10.3390/proteomes1030254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 11/17/2022] Open
Abstract
Phosphorylation is an important post-translational protein modification with regulatory roles in diverse cellular signaling pathways. Despite recent advances in mass spectrometry, the detection of phosphoproteins involved in signaling is still challenging, as protein phosphorylation is typically transient and/or occurs at low levels. In green plant tissues, the presence of highly abundant proteins, such as the subunits of the RuBisCO complex, further complicates phosphoprotein analysis. Here, we describe a simple, but powerful, method, which we named prefractionation-assisted phosphoprotein enrichment (PAPE), to increase the yield of phosphoproteins from Arabidopsis thaliana leaf material. The first step, a prefractionation via ammonium sulfate precipitation, not only depleted RuBisCO almost completely, but, serendipitously, also served as an efficient phosphoprotein enrichment step. When coupled with a subsequent metal oxide affinity chromatography (MOAC) step, the phosphoprotein content was highly enriched. The reproducibility and efficiency of phosphoprotein enrichment was verified by phospho-specific staining and, further, by mass spectrometry, where it could be shown that the final PAPE fraction contained a significant number of known and additionally novel (potential) phosphoproteins. Hence, this facile two-step procedure is a good prerequisite to probe the phosphoproteome and gain deeper insight into plant phosphorylation-based signaling events.
Collapse
|
14
|
Proteomics of model and crop plant species: Status, current limitations and strategic advances for crop improvement. J Proteomics 2013; 93:5-19. [DOI: 10.1016/j.jprot.2013.05.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 12/22/2022]
|
15
|
Mann GW, Calley PC, Joshi HJ, Heazlewood JL. MASCP gator: an overview of the Arabidopsis proteomic aggregation portal. FRONTIERS IN PLANT SCIENCE 2013; 4:411. [PMID: 24167507 PMCID: PMC3806167 DOI: 10.3389/fpls.2013.00411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/27/2013] [Indexed: 05/18/2023]
Abstract
A key challenge in the area of bioinformatics in the coming decades is the ability to manage the wealth of information that is being generated from the variety of high throughput methodologies currently being undertaken in laboratories across the world. While these approaches have made available large volumes of data to the research community, less attention has been given to the problem of how to intuitively present the data to enable greater biological insights. Recently, an attempt was made to tackle this problem in the area of Arabidopsis proteomics. The model plant has been the target of countless proteomics surveys producing an exhaustive array of data and online repositories. The MASCP Gator is an aggregation portal for proteomic data currently being produced by the community and unites a large collection of specialized resources to a single portal (http://gator.masc-proteomics.org/). Here we describe the latest additions, upgrades and features to this resource further expanding its role into protein modifications and genome sequence variations.
Collapse
Affiliation(s)
- Gregory W. Mann
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Paul C. Calley
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Hiren J. Joshi
- Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, University of CopenhagenCopenhagen, Denmark
| | - Joshua L. Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- *Correspondence: Joshua L. Heazlewood, Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road MS 978-4466, Berkeley, CA 94720, USA e-mail:
| |
Collapse
|
16
|
Deswal R, Gupta R, Dogra V, Singh R, Abat JK, Sarkar A, Mishra Y, Rai V, Sreenivasulu Y, Amalraj RS, Raorane M, Chaudhary RP, Kohli A, Giri AP, Chakraborty N, Zargar SM, Agrawal VP, Agrawal GK, Job D, Renaut J, Rakwal R. Plant proteomics in India and Nepal: current status and challenges ahead. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:461-477. [PMID: 24431515 PMCID: PMC3781272 DOI: 10.1007/s12298-013-0198-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Plant proteomics has made tremendous contributions in understanding the complex processes of plant biology. Here, its current status in India and Nepal is discussed. Gel-based proteomics is predominantly utilized on crops and non-crops to analyze majorly abiotic (49 %) and biotic (18 %) stress, development (11 %) and post-translational modifications (7 %). Rice is the most explored system (36 %) with major focus on abiotic mainly dehydration (36 %) stress. In spite of expensive proteomics setup and scarcity of trained workforce, output in form of publications is encouraging. To boost plant proteomics in India and Nepal, researchers have discussed ground level issues among themselves and with the International Plant Proteomics Organization (INPPO) to act in priority on concerns like food security. Active collaboration may help in translating this knowledge to fruitful applications.
Collapse
Affiliation(s)
- Renu Deswal
- />Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Ravi Gupta
- />Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Vivek Dogra
- />Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India
| | - Raksha Singh
- />Department of Plant Molecular Biology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Jasmeet Kaur Abat
- />Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Abhijit Sarkar
- />Department of Botany, Banaras Hindu University, Varanasi, India
- />Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal
| | - Yogesh Mishra
- />Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Vandana Rai
- />National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Yelam Sreenivasulu
- />Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India
| | - Ramesh Sundar Amalraj
- />Plant Pathology Section, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Tamil Nadu, India
| | - Manish Raorane
- />Plant Molecular Biology Laboratory, Plant Breeding, Genetics and Biotechnology, International Rice Research Institute, Manila, Philippines
| | - Ram Prasad Chaudhary
- />Central Department of Botany, and Research Centre for Applied Science and Technology, Tribhuvan University, Kirtipur, Nepal
| | - Ajay Kohli
- />Plant Molecular Biology Laboratory, Plant Breeding, Genetics and Biotechnology, International Rice Research Institute, Manila, Philippines
| | - Ashok Prabhakar Giri
- />Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | | - Sajad Majeed Zargar
- />School of Biotechnology, SK University of Agricultural Sciences and Technology, Chatha, Jammu, 180009 Jammu and Kashmir India
| | | | - Ganesh Kumar Agrawal
- />Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal
| | - Dominique Job
- />CNRS/Bayer Crop Science (UMR 5240) Joint Laboratory, Lyon, France
| | - Jenny Renaut
- />Department of Environment and Agrobiotechnologies, Centre de Recherche Public-Gabriel Lippmann, Belvaux, GD Luxembourg
| | - Randeep Rakwal
- />Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal
- />Organization for Educational Initiatives, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
- />Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 Japan
| |
Collapse
|
17
|
Proteome coverage of the model plant Arabidopsis thaliana: implications for shotgun proteomic studies. J Proteomics 2013; 79:195-9. [PMID: 23268116 DOI: 10.1016/j.jprot.2012.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 11/20/2022]
Abstract
The recent aggregation of matched proteomics data for the model plant Arabidopsis has enabled the assessment of a diverse array of large scale shotgun proteomics data. A collection of over nine million matched peptides was used to assess proteome coverage and experimental parameters when compared to the theoretical tryptic peptide population. The analysis indicated that the experimentally identified median peptide mass was significantly higher than the theoretical median tryptic peptide in Arabidopsis. This finding led to a critical examination of precursor scan ranges currently being employed by shotgun proteomic studies. The analysis revealed diminishing returns at the high end scan range and opportunities for greater coverage and identifications at the low mass range. Based on these findings, a recommended basic scan range of 300 to 1200m/z would suitably capture the peptide population in shotgun proteomic analyses in Arabidopsis.
Collapse
|
18
|
Jogaiah S, Govind SR, Tran LSP. Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol 2012; 33:23-39. [PMID: 22364373 DOI: 10.3109/07388551.2012.659174] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Economically important crops, such as maize, wheat, rice, barley, and other food crops are affected by even small changes in water potential at important growth stages. Developing a comprehensive understanding of host response to drought requires a global view of the complex mechanisms involved. Research on drought tolerance has generally been conducted using discipline-specific approaches. However, plant stress response is complex and interlinked to a point where discipline-specific approaches do not give a complete global analysis of all the interlinked mechanisms. Systems biology perspective is needed to understand genome-scale networks required for building long-lasting drought resistance. Network maps have been constructed by integrating multiple functional genomics data with both model plants, such as Arabidopsis thaliana, Lotus japonicus, and Medicago truncatula, and various food crops, such as rice and soybean. Useful functional genomics data have been obtained from genome-wide comparative transcriptome and proteome analyses of drought responses from different crops. This integrative approach used by many groups has led to identification of commonly regulated signaling pathways and genes following exposure to drought. Combination of functional genomics and systems biology is very useful for comparative analysis of other food crops and has the ability to develop stable food systems worldwide. In addition, studying desiccation tolerance in resurrection plants will unravel how combination of molecular genetic and metabolic processes interacts to produce a resurrection phenotype. Systems biology-based approaches have helped in understanding how these individual factors and mechanisms (biochemical, molecular, and metabolic) "interact" spatially and temporally. Signaling network maps of such interactions are needed that can be used to design better engineering strategies for improving drought tolerance of important crop species.
Collapse
Affiliation(s)
- Sudisha Jogaiah
- Downy Mildew Research Laboratory, Department of Studies in Biotechnology, University of Mysore, Mysore, Karnataka, India
| | | | | |
Collapse
|
19
|
Abstract
Plants are one of the most fascinating and important groups of organisms living on Earth. They serve as the conduit of energy into the biosphere, provide food, and shape our environment. If we want to make headway in understanding how these essential organisms function and build the foundation for a more sustainable future, then we need to apply the most advanced technologies available to the study of plant life. In 2009, a committee of the National Academy highlighted the "understanding of plant growth" as one of the big challenges for society and part of a new era which they termed "new biology." The aim of this article is to identify how new technologies can and will transform plant science to address the challenges of new biology. We assess where we stand today regarding current technologies, with an emphasis on molecular and imaging technologies, and we try to address questions about where we may go in the future and whether we can get an idea of what is at and beyond the horizon.
Collapse
|
20
|
Usadel B, Schwacke R, Nagel A, Kersten B. GabiPD - The GABI Primary Database integrates plant proteomic data with gene-centric information. FRONTIERS IN PLANT SCIENCE 2012; 3:154. [PMID: 23293643 PMCID: PMC3391694 DOI: 10.3389/fpls.2012.00154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/20/2012] [Indexed: 05/08/2023]
Abstract
GabiPD is an integrative plant "omics" database that has been established as part of the German initiative for Genome Analysis of the Plant Biological System (GABI). Data from different "omics" disciplines are integrated and interactively visualized. Proteomics is represented by data and tools aiding studies on the identification of post-translational modification and function of proteins. Annotated 2D electrophoresis-gel images are offered to inspect protein sets expressed in different tissues of Arabidopsis thaliana and Brassica napus. From a given protein spot, a link will direct the user to the related GreenCard Gene entry where detailed gene-centric information will support the functional annotation. Beside MapMan- and GO-classification, information on conserved protein domains and on orthologs is integrated in this GreenCard service. Moreover, all other GabiPD data related to the gene, including transcriptomic data, as well as gene-specific links to external resources are provided. Researches interested in plant protein phosphorylation will find information on potential MAP kinase substrates identified in different protein microarray studies integrated in GabiPD's Phosphoproteomics page. These data can be easily compared to experimentally identified or predicted phosphorylation sites in PhosPhAt via the related Gene GreenCard. This will allow the selection of interesting candidates for further experimental validation of their phosphorylation.
Collapse
Affiliation(s)
- Björn Usadel
- Max Planck Institute of Molecular Plant Physiology,Potsdam, Germany
- Department of Botany, RWTH Aachen University,Aachen, Germany
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich,Jülich, Germany
| | - Rainer Schwacke
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich,Jülich, Germany
| | - Axel Nagel
- Max Planck Institute of Molecular Plant Physiology,Potsdam, Germany
| | - Birgit Kersten
- Max Planck Institute of Molecular Plant Physiology,Potsdam, Germany
- Department of Genome Research, Institute of Forest Genetics, Johann Heinrich von Thünen Institute,Großhansdorf, Germany
- *Correspondence: Birgit Kersten, Department of Genome Research, Institute of Forest Genetics, Johann Heinrich von Thünen Institute, Sieker Landstr. 2, D-22927 Großhansdorf, Germany. e-mail:
| |
Collapse
|
21
|
Huber SC. Grand challenges in plant physiology: the underpinning of translational research. FRONTIERS IN PLANT SCIENCE 2011; 2:48. [PMID: 22639597 PMCID: PMC3355685 DOI: 10.3389/fpls.2011.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/22/2011] [Indexed: 05/04/2023]
Affiliation(s)
- Steven C. Huber
- United States Department of Agriculture–Agricultural Research Service, University of IllinoisUrbana-Champaign, IL, USA
- Departments of Plant Biology and Crop Science, University of IllinoisUrbana-Champaign, IL, USA
- *Correspondence:
| |
Collapse
|