1
|
Maksimov IV, Shein MY, Burkhanova GF. RNA Interference in Plant Protection from Fungal and Oomycete Infection. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
2
|
Recent Progress in Enhancing Fungal Disease Resistance in Ornamental Plants. Int J Mol Sci 2021; 22:ijms22157956. [PMID: 34360726 PMCID: PMC8348885 DOI: 10.3390/ijms22157956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/19/2023] Open
Abstract
Fungal diseases pose a major threat to ornamental plants, with an increasing percentage of pathogen-driven host losses. In ornamental plants, management of the majority of fungal diseases primarily depends upon chemical control methods that are often non-specific. Host basal resistance, which is deficient in many ornamental plants, plays a key role in combating diseases. Despite their economic importance, conventional and molecular breeding approaches in ornamental plants to facilitate disease resistance are lagging, and this is predominantly due to their complex genomes, limited availability of gene pools, and degree of heterozygosity. Although genetic engineering in ornamental plants offers feasible methods to overcome the intrinsic barriers of classical breeding, achievements have mainly been reported only in regard to the modification of floral attributes in ornamentals. The unavailability of transformation protocols and candidate gene resources for several ornamental crops presents an obstacle for tackling the functional studies on disease resistance. Recently, multiomics technologies, in combination with genome editing tools, have provided shortcuts to examine the molecular and genetic regulatory mechanisms underlying fungal disease resistance, ultimately leading to the subsequent advances in the development of novel cultivars with desired fungal disease-resistant traits, in ornamental crops. Although fungal diseases constitute the majority of ornamental plant diseases, a comprehensive overview of this highly important fungal disease resistance seems to be insufficient in the field of ornamental horticulture. Hence, in this review, we highlight the representative mechanisms of the fungal infection-related resistance to pathogens in plants, with a focus on ornamental crops. Recent progress in molecular breeding, genetic engineering strategies, and RNAi technologies, such as HIGS and SIGS for the enhancement of fungal disease resistance in various important ornamental crops, is also described.
Collapse
|
3
|
Lopez Arias DC, Chastellier A, Thouroude T, Bradeen J, Van Eck L, De Oliveira Y, Paillard S, Foucher F, Hibrand-Saint Oyant L, Soufflet-Freslon V. Characterization of black spot resistance in diploid roses with QTL detection, meta-analysis and candidate-gene identification. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3299-3321. [PMID: 32844252 DOI: 10.1007/s00122-020-03670-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/11/2020] [Indexed: 05/10/2023]
Abstract
Two environmentally stable QTLs linked to black spot disease resistance in the Rosa wichurana genetic background were detected, in different connected populations, on linkage groups 3 and 5. Co-localization between R-genes and defense response genes was revealed via meta-analysis. The widespread rose black spot disease (BSD) caused by the hemibiotrophic fungus Diplocarpon rosae Wolf. is efficiently controlled with fungicides. However, in the actual context of reducing agrochemical use, the demand for rose bushes with higher levels of resistance has increased. Qualitative resistance conferred by major genes (Rdr genes) has been widely studied but quantitative resistance to BSD requires further investigation. In this study, segregating populations connected through the BSD resistant Rosa wichurana male parent were phenotyped for disease resistance over several years and locations. A pseudo-testcross approach was used, resulting in six parental maps across three populations. A total of 45 individual QTLs with significant effect on BSD resistance were mapped on the male maps (on linkage groups (LG) B3, B4, B5 and B6), and 12 on the female maps (on LG A1, A2, A3, A4 and A5). Two major regions linked to BSD resistance were identified on LG B3 and B5 of the male maps and were integrated into a consensus map built from all three of the male maps. A meta-analysis was used to narrow down the confidence intervals of individual QTLs from three populations by generating meta-QTLs. Two 'hot spots' or meta-QTLs were found per LG, enabling reduction of the confidence interval to 10.42 cM for B3 and 11.47 cM for B5. An expert annotation of NBS-LRR encoding genes of the genome assembly of Hibrand et al. was performed and used to explore potential co-localization with R-genes. Co-localization with defense response genes was also investigated.
Collapse
Affiliation(s)
- D C Lopez Arias
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France.
| | - A Chastellier
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - T Thouroude
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - J Bradeen
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - L Van Eck
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Yannick De Oliveira
- Génétique Quantitative Et Évolution - Le Moulon, INRAE - Université Paris-Sud - CNRS - AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - S Paillard
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - F Foucher
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - L Hibrand-Saint Oyant
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - V Soufflet-Freslon
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
4
|
High density SNP and SSR linkage map and QTL analysis for resistance to black spot in segregating rose population. ACTA ACUST UNITED AC 2020. [DOI: 10.17660/actahortic.2020.1283.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Menz I, Lakhwani D, Clotault J, Linde M, Foucher F, Debener T. Analysis of the Rdr1 gene family in different Rosaceae genomes reveals an origin of an R-gene cluster after the split of Rubeae within the Rosoideae subfamily. PLoS One 2020; 15:e0227428. [PMID: 31971947 PMCID: PMC6977733 DOI: 10.1371/journal.pone.0227428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
The Rdr1 gene confers resistance to black spot in roses and belongs to a large TNL gene family, which is organized in two major clusters at the distal end of chromosome 1. We used the recently available chromosome scale assemblies for the R. chinensis 'Old Blush' genome, re-sequencing data for nine rose species and genome data for Fragaria, Rubus, Malus and Prunus to identify Rdr1 homologs from different taxa within Rosaceae. Members of the Rdr1 gene family are organized into two major clusters in R. chinensis and at a syntenic location in the Fragaria genome. Phylogenetic analysis indicates that the two clusters existed prior to the split of Rosa and Fragaria and that one cluster has a more recent origin than the other. Genes belonging to cluster 2, such as the functional Rdr1 gene muRdr1A, were subject to a faster evolution than genes from cluster 1. As no Rdr1 homologs were found in syntenic positions for Prunus persica, Malus x domestica and Rubus occidentalis, a translocation of the Rdr1 clusters to the current positions probably happened after the Rubeae split from other groups within the Rosoideae approximately 70-80 million years ago during the Cretaceous period.
Collapse
Affiliation(s)
- Ina Menz
- Institute for Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Deepika Lakhwani
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, Beaucouzé, France
| | - Jérémy Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, Beaucouzé, France
| | - Marcus Linde
- Institute for Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Fabrice Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, Beaucouzé, France
| | - Thomas Debener
- Institute for Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
6
|
Rouet C, Lee EA, Banks T, O'Neill J, LeBlanc R, Somers DJ. Identification of a polymorphism within the Rosa multiflora muRdr1A gene linked to resistance to multiple races of Diplocarpon rosae W. in tetraploid garden roses (Rosa × hybrida). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:103-117. [PMID: 31563968 DOI: 10.1007/s00122-019-03443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
A QTL for resistance to several races of black spot co-located with the known Rrd1 locus in Rosa. A polymorphism in muRdr1A linked to black spot resistance was identified and molecular markers were designed. Black spot, caused by Diplocarpon rosae, is one of the most serious foliar diseases of landscape roses that reduces the marketability and weakens the plants against winter survival. Genetic resistance to black spot (BS) exists and race-specific resistance is a good target to implement marker-assisted selection. High-density single nucleotide polymorphism-based genetic maps were created for the female parent of a tetraploid cross between 'CA60' and 'Singing in the Rain' using genotyping-by-sequencing following a two-way pseudo-testcross strategy. The female linkage map was generated based on 227 individuals and included 31 linkage groups, 1055 markers, with a length of 1980 cM. Race-specific resistance to four D. rosae races (5, 7, 10, 14) was evaluated using a detached leaf assay. BS resistance was also evaluated under natural infection in the field. Resistance to races 5, 10 and 14 of D. rosae and field resistance co-located on chromosome 1. A unique sequence of 32 bp in exon 4 of the muRdr1A gene was identified in 'CA60' that co-segregates with D. rosae resistance. Two diagnostic markers, a presence/absence marker and an INDEL marker, specific to this sequence were designed and validated in the mapping population and a backcross population derived from 'CA60.' Resistance to D. rosae race 7 mapped to a different location on chromosome 1.
Collapse
Affiliation(s)
- Cindy Rouet
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, ON, L0R 2E0, Canada.
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | - Elizabeth A Lee
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Travis Banks
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, ON, L0R 2E0, Canada
| | - Joseph O'Neill
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, ON, L0R 2E0, Canada
| | - Rachael LeBlanc
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, ON, L0R 2E0, Canada
| | - Daryl J Somers
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, ON, L0R 2E0, Canada
| |
Collapse
|
7
|
Cockerton HM, Li B, Vickerstaff RJ, Eyre CA, Sargent DJ, Armitage AD, Marina-Montes C, Garcia-Cruz A, Passey AJ, Simpson DW, Harrison RJ. Identifying Verticillium dahliae Resistance in Strawberry Through Disease Screening of Multiple Populations and Image Based Phenotyping. FRONTIERS IN PLANT SCIENCE 2019; 10:924. [PMID: 31379904 PMCID: PMC6657532 DOI: 10.3389/fpls.2019.00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/01/2019] [Indexed: 05/06/2023]
Abstract
Verticillium dahliae is a highly detrimental pathogen of soil cultivated strawberry (Fragaria x ananassa). Breeding of Verticillium wilt resistance into commercially viable strawberry cultivars can help mitigate the impact of the disease. In this study we describe novel sources of resistance identified in multiple strawberry populations, creating a wealth of data for breeders to exploit. Pathogen-informed experiments have allowed the differentiation of subclade-specific resistance responses, through studying V. dahliae subclade II-1 specific resistance in the cultivar "Redgauntlet" and subclade II-2 specific resistance in "Fenella" and "Chandler." A large-scale low-cost phenotyping platform was developed utilizing automated unmanned vehicles and near infrared imaging cameras to assess field-based disease trials. The images were used to calculate disease susceptibility for infected plants through the normalized difference vegetation index score. The automated disease scores showed a strong correlation with the manual scores. A co-dominant resistant QTL; FaRVd3D, present in both "Redgauntlet" and "Hapil" cultivars exhibited a major effect of 18.3% when the two resistance alleles were combined. Another allele, FaRVd5D, identified in the "Emily" cultivar was associated with an increase in Verticillium wilt susceptibility of 17.2%, though whether this allele truly represents a susceptibility factor requires further research, due to the nature of the F1 mapping population. Markers identified in populations were validated across a set of 92 accessions to determine whether they remained closely linked to resistance genes in the wider germplasm. The resistant markers FaRVd2B from "Redgauntlet" and FaRVd6D from "Chandler" were associated with resistance across the wider germplasm. Furthermore, comparison of imaging versus manual phenotyping revealed the automated platform could identify three out of four disease resistance markers. As such, this automated wilt disease phenotyping platform is considered to be a good, time saving, substitute for manual assessment.
Collapse
Affiliation(s)
| | - Bo Li
- NIAB EMR, East Malling, United Kingdom
| | | | - Catherine A. Eyre
- Driscoll’s Genetics Ltd., East Malling Enterprise Centre, East Malling, United Kingdom
| | - Daniel J. Sargent
- Driscoll’s Genetics Ltd., East Malling Enterprise Centre, East Malling, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Neu E, Domes HS, Menz I, Kaufmann H, Linde M, Debener T. Interaction of roses with a biotrophic and a hemibiotrophic leaf pathogen leads to differences in defense transcriptome activation. PLANT MOLECULAR BIOLOGY 2019; 99:299-316. [PMID: 30706286 DOI: 10.1007/s11103-018-00818-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/22/2018] [Indexed: 05/09/2023]
Abstract
Transcriptomic analysis resulted in the upregulation of the genes related to common defense mechanisms for black spot and the downregulation of the genes related to photosynthesis and cell wall modification for powdery mildew. Plant pathogenic fungi successfully colonize their hosts by manipulating the host defense mechanisms, which is accompanied by major transcriptome changes in the host. To characterize compatible plant pathogen interactions at early stages of infection by the obligate biotrophic fungus Podosphaera pannosa, which causes powdery mildew, and the hemibiotrophic fungus Diplocarpon rosae, which causes black spot, we analyzed changes in the leaf transcriptome after the inoculation of detached rose leaves with each pathogen. In addition, we analyzed differences in the transcriptomic changes inflicted by both pathogens as a first step to characterize specific infection strategies. Transcriptomic changes were analyzed using next-generation sequencing based on the massive analysis of cDNA ends approach, which was validated using high-throughput qPCR. We identified a large number of differentially regulated genes. A common set of the differentially regulated genes comprised of pathogenesis-related (PR) genes, such as of PR10 homologs, chitinases and defense-related transcription factors, such as various WRKY genes, indicating a conserved but insufficient PTI [pathogen associated molecular pattern (PAMP) triggered immunity] reaction. Surprisingly, most of the differentially regulated genes were specific to the interactions with either P. pannosa or D. rosae. Specific regulation in response to D. rosae was detected for genes from the phenylpropanoid and flavonoid pathways and for individual PR genes, such as paralogs of PR1 and PR5, and other factors of the salicylic acid signaling pathway. Differently, inoculation with P. pannosa leads in addition to the general pathogen response to a downregulation of genes related to photosynthesis and cell wall modification.
Collapse
Affiliation(s)
- Enzo Neu
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
- KWS SAAT SE, 37574, Einbeck, Germany
| | - Helena Sophia Domes
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Ina Menz
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Helgard Kaufmann
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Marcus Linde
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Thomas Debener
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany.
| |
Collapse
|
9
|
Soundararajan P, Won SY, Kim JS. Insight on Rosaceae Family with Genome Sequencing and Functional Genomics Perspective. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7519687. [PMID: 30911547 PMCID: PMC6399558 DOI: 10.1155/2019/7519687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/02/2019] [Accepted: 01/23/2019] [Indexed: 11/26/2022]
Abstract
Rosaceae is one of the important families possessing a variety of diversified plant species. It includes many economically valuable crops that provide nutritional and health benefits for the human. Whole genome sequences of valuable crop plants were released in recent years. Understanding of genomics helps to decipher the plant physiology and developmental process. With the information of cultivating species and its wild relative genomes, genome sequence-based molecular markers and mapping loci for economically important traits can be used to accelerate the genome assisted breeding. Identification and characterization of disease resistant capacities and abiotic stress tolerance related genes are feasible to study across species with genome information. Further breeding studies based on the identification of gene loci for aesthetic values, flowering molecular circuit controls, fruit firmness, nonacid fruits, etc. is required for producing new cultivars with valuable traits. This review discusses the whole genome sequencing reports of Malus, Pyrus, Fragaria, Prunus, and Rosa and status of functional genomics of representative traits in individual crops.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - So Youn Won
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Jung Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| |
Collapse
|
10
|
Smulders MJM, Arens P, Bourke PM, Debener T, Linde M, Riek JD, Leus L, Ruttink T, Baudino S, Hibrant Saint-Oyant L, Clotault J, Foucher F. In the name of the rose: a roadmap for rose research in the genome era. HORTICULTURE RESEARCH 2019; 6:65. [PMID: 31069087 PMCID: PMC6499834 DOI: 10.1038/s41438-019-0156-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 05/07/2023]
Abstract
The recent completion of the rose genome sequence is not the end of a process, but rather a starting point that opens up a whole set of new and exciting activities. Next to a high-quality genome sequence other genomic tools have also become available for rose, including transcriptomics data, a high-density single-nucleotide polymorphism array and software to perform linkage and quantitative trait locus mapping in polyploids. Rose cultivars are highly heterogeneous and diverse. This vast diversity in cultivated roses can be explained through the genetic potential of the genus, introgressions from wild species into commercial tetraploid germplasm and the inimitable efforts of historical breeders. We can now investigate how this diversity can best be exploited and refined in future breeding work, given the rich molecular toolbox now available to the rose breeding community. This paper presents possible lines of research now that rose has entered the genomics era, and attempts to partially answer the question that arises after the completion of any draft genome sequence: 'Now that we have "the" genome, what's next?'. Having access to a genome sequence will allow both (fundamental) scientific and (applied) breeding-orientated questions to be addressed. We outline possible approaches for a number of these questions.
Collapse
Affiliation(s)
- Marinus J. M. Smulders
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Peter M. Bourke
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Thomas Debener
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marcus Linde
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Jan De Riek
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Leen Leus
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Tom Ruttink
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Sylvie Baudino
- BVpam CNRS, FRE 3727, UJM-Saint-Étienne, Univ. Lyon, Saint-Etienne, France
| | - Laurence Hibrant Saint-Oyant
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Jeremy Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Fabrice Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| |
Collapse
|
11
|
Neu E, Debener T. Prediction of the Diplocarpon rosae secretome reveals candidate genes for effectors and virulence factors. Fungal Biol 2018; 123:231-239. [PMID: 30798878 DOI: 10.1016/j.funbio.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023]
Abstract
Rose black spot is one of the most severe diseases of field-grown roses. Though R-genes have been characterised, little information is known about the molecular details of the interaction between pathogen and host. Based on the recently published genome sequence of the black spot fungus, we analysed gene models with various bioinformatic tools utilising the expression data of infected host tissues, which led to the prediction of 827 secreted proteins. A significant proportion of the predicted secretome comprises enzymes for the degradation of cell wall components, several of which were highly expressed during the first infection stages. As the secretome comprises major factors determining the ability of the fungus to colonise its host, we focused our further analyses on predicted effector candidates. In total, 52 sequences of 251 effector candidates matched several bioinformatic criteria of effectors, contained a Y/F/WxC motif, and did not match annotated proteins from other fungi. Additional sequences were identified based on their high expression levels during the penetration/haustorium formation phase and/or by matching known effectors from other fungi. Several host genotypes that are resistant to the sequenced isolate but differ in the R-genes responsible for this resistance are available. The combination of these genotypes with functional studies of the identified candidate effectors will allow the mechanisms of the rose black spot interaction to be dissected.
Collapse
Affiliation(s)
- Enzo Neu
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, Herrenhaeuser Str. 2, Hannover 30419, Germany
| | - Thomas Debener
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, Herrenhaeuser Str. 2, Hannover 30419, Germany.
| |
Collapse
|
12
|
Nakamura N, Hirakawa H, Sato S, Otagaki S, Matsumoto S, Tabata S, Tanaka Y. Genome structure of Rosa multiflora, a wild ancestor of cultivated roses. DNA Res 2018; 25:113-121. [PMID: 29045613 PMCID: PMC5909451 DOI: 10.1093/dnares/dsx042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022] Open
Abstract
The draft genome sequence of a wild rose (Rosa multiflora Thunb.) was determined using Illumina MiSeq and HiSeq platforms. The total length of the scaffolds was 739,637,845 bp, consisting of 83,189 scaffolds, which was close to the 711 Mbp length estimated by k-mer analysis. N50 length of the scaffolds was 90,830 bp, and extent of the longest was 1,133,259 bp. The average GC content of the scaffolds was 38.9%. After gene prediction, 67,380 candidates exhibiting sequence homology to known genes and domains were extracted, which included complete and partial gene structures. This large number of genes for a diploid plant may reflect heterogeneity of the genome originating from self-incompatibility in R. multiflora. According to CEGMA analysis, 91.9% and 98.0% of the core eukaryotic genes were completely and partially conserved in the scaffolds, respectively. Genes presumably involved in flower color, scent and flowering are assigned. The results of this study will serve as a valuable resource for fundamental and applied research in the rose, including breeding and phylogenetic study of cultivated roses.
Collapse
Affiliation(s)
- Noriko Nakamura
- Suntory Global Innovation Center Ltd, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yoshikazu Tanaka
- Suntory Global Innovation Center Ltd, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
13
|
Menz I, Straube J, Linde M, Debener T. The TNL gene Rdr1 confers broad-spectrum resistance to Diplocarpon rosae. MOLECULAR PLANT PATHOLOGY 2018; 19:1104-1113. [PMID: 28779550 PMCID: PMC6638031 DOI: 10.1111/mpp.12589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 05/09/2023]
Abstract
Black spot disease, which is caused by the ascomycete Diplocarpon rosae, is the most severe disease in field-grown roses in temperate regions and has been distributed worldwide, probably together with commercial cultivars. Here, we present data indicating that muRdr1A is the active Rdr1 gene, a single-dominant TIR-NBS-LRR (Toll/interleukin-1 receptor-nucleotide binding site-leucine rich repeat) (TNL)-type resistance gene against black spot disease, which acts against a broad range of pathogenic isolates independent of the genetic background of the host genotype. Molecular analyses revealed that, compared with the original donor genotype, the multiple integrations that are found in the primary transgenic clone segregate into different integration patterns in its sexual progeny and do not show any sign of overexpression. Rdr1 provides resistance to 13 different single-spore isolates belonging to six different races and broad field mixtures of conidia; thus far, Rdr1 is only overcome by two races. The expression of muRdr1A, the active Rdr1 gene, leads to interaction patterns that are identical in the transgenic clones and the non-transgenic original donor genotype. This finding indicates that the interacting avirulence (Avr) factor on the pathogen side must be widespread among the pathogen populations and may have a central function in the rose-black spot interaction. Therefore, the Rdr1 gene, pyramided with only a few other R genes by sexual crosses, might be useful for breeding roses that are resistant to black spot because the spread of new pathogenic races of the fungus appears to be slow.
Collapse
Affiliation(s)
- Ina Menz
- Department of Molecular Plant BreedingInstitute for Plant Genetics, Leibniz Universität HannoverHannover 30419Germany
| | - Jannis Straube
- Department of Molecular Plant BreedingInstitute for Plant Genetics, Leibniz Universität HannoverHannover 30419Germany
| | - Marcus Linde
- Department of Molecular Plant BreedingInstitute for Plant Genetics, Leibniz Universität HannoverHannover 30419Germany
| | - Thomas Debener
- Department of Molecular Plant BreedingInstitute for Plant Genetics, Leibniz Universität HannoverHannover 30419Germany
| |
Collapse
|
14
|
Neu E, Featherston J, Rees J, Debener T. A draft genome sequence of the rose black spot fungus Diplocarpon rosae reveals a high degree of genome duplication. PLoS One 2017; 12:e0185310. [PMID: 28981525 PMCID: PMC5628827 DOI: 10.1371/journal.pone.0185310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Black spot is one of the most severe and damaging diseases of garden roses. We present the draft genome sequence of its causative agent Diplocarpon rosae as a working tool to generate molecular markers and to analyze functional and structural characteristics of this fungus. RESULTS The isolate DortE4 was sequenced with 191x coverage of different read types which were assembled into 2457 scaffolds. By evidence supported genome annotation with the MAKER pipeline 14,004 gene models were predicted and transcriptomic data indicated that 88.5% of them are expressed during the early stages of infection. Analyses of k-mer distributions resulted in unexpectedly large genome size estimations between 72.5 and 91.4 Mb, which cannot be attributed to its repeat structure and content of transposable elements alone, factors explaining such differences in other fungal genomes. In contrast, different lines of evidences demonstrate that a huge proportion (approximately 80%) of genes are duplicated, which might indicate a whole genome duplication event. By PCR-RFLP analysis of six paralogous gene pairs of BUSCO orthologs, which are expected to be single copy genes, we could show experimentally that the duplication is not due to technical error and that not all isolates tested possess all of the paralogs. CONCLUSIONS The presented genome sequence is still a fragmented draft but contains almost the complete gene space. Therefore, it provides a useful working tool to study the interaction of D. rosae with the host and the influence of a genome duplication outside of the model yeast in the background of a phytopathogen.
Collapse
Affiliation(s)
- Enzo Neu
- Institute for Plant Genetics, Leibniz University Hannover, Hannover, Germany
| | - Jonathan Featherston
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, Pretoria, South Africa
| | - Jasper Rees
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, Pretoria, South Africa
| | - Thomas Debener
- Institute for Plant Genetics, Leibniz University Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
15
|
Debener T, Byrne DH. Disease resistance breeding in rose: current status and potential of biotechnological tools. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:107-17. [PMID: 25438791 DOI: 10.1016/j.plantsci.2014.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 05/09/2023]
Abstract
The cultivated rose is a multispecies complex for which a high level of disease protection is needed due to the low tolerance of blemishes in ornamental plants. The most important fungal diseases are black spot, powdery mildew, botrytis and downy mildew. Rose rosette, a lethal viral pathogen, is emerging as a devastating disease in North America. Currently rose breeders use a recurrent phenotypic selection approach and perform selection for disease resistance for most pathogen issues in a 2-3 year field trial. Marker assisted selection could accelerate this breeding process. Thus far markers have been identified for resistance to black spot (Rdrs) and powdery mildew and with the ability of genotyping by sequencing to generate 1000s of markers our ability to identify markers useful in plant improvement should increase exponentially. Transgenic rose lines with various fungal resistance genes inserted have shown limited success and RNAi technology has potential to provide virus resistance. Roses, as do other plants, have sequences homologous to characterized R-genes in their genomes, some which have been related to specific disease resistance. With improving next generation sequencing technology, our ability to do genomic and transcriptomic studies of the resistance related genes in both the rose and the pathogens to reveal novel gene targets to develop resistant roses will accelerate. Finally, the development of designer nucleases opens up a potentially non-GMO approach to directly modify a rose's DNA to create a disease resistant rose. Although there is much potential, at present rose breeders are not using marker assisted breeding primarily because a good suite of marker/trait associations (MTA) that would ensure a path to stable disease resistance is not available. As our genomic analytical tools improve, so will our ability to identify useful genes and linked markers. Once these MTAs are available, it will be the cost savings, both in time and money, that will convince the breeders to use the technology.
Collapse
Affiliation(s)
- Thomas Debener
- Leibniz University of Hannover, Faculty of Natural Sciences, Institute for Plant Genetics, Hannover, Germany
| | - David H Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| |
Collapse
|
16
|
Kaufmann H, Qiu X, Wehmeyer J, Debener T. Isolation, Molecular Characterization, and Mapping of Four Rose MLO Orthologs. FRONTIERS IN PLANT SCIENCE 2012; 3:244. [PMID: 23130018 PMCID: PMC3487107 DOI: 10.3389/fpls.2012.00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/12/2012] [Indexed: 05/24/2023]
Abstract
Powdery mildew is a major disease of economic importance in cut and pot roses. As an alternative to conventional resistance breeding strategies utilizing single-dominant genes or QTLs, mildew resistance locus o (MLO)-based resistance might offer some advantages. In dicots such as Arabidopsis, pea, and tomato, loss-of-function mutations in MLO genes confer high levels of broad-spectrum resistance. Here, we report the isolation and characterization of four MLO homologs from a large rose EST collection isolated from leaves. These genes are phylogenetically closely related to other dicot MLO genes that are involved in plant powdery mildew interactions. Therefore, they are candidates for MLO genes involved in rose powdery mildew interactions. Two of the four isolated genes contain all of the sequence signatures considered to be diagnostic for MLO genes. We mapped all four genes to three linkage groups and conducted the first analysis of alternative alleles. This information is discussed in regards to a reverse genetics approach aimed at the selection of rose plants that are homozygous for loss-of-function in one or more MLO genes.
Collapse
Affiliation(s)
- Helgard Kaufmann
- Department of Molecular Breeding, Institute for Plant Genetics, Leibniz University of Hannover Hannover, Germany
| | | | | | | |
Collapse
|
17
|
Terefe-Ayana D, Kaufmann H, Linde M, Debener T. Evolution of the Rdr1 TNL-cluster in roses and other Rosaceous species. BMC Genomics 2012; 13:409. [PMID: 22905676 PMCID: PMC3503547 DOI: 10.1186/1471-2164-13-409] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/06/2012] [Indexed: 12/03/2022] Open
Abstract
Background The resistance of plants to pathogens relies on two lines of defense: a basal defense response and a pathogen-specific system, in which resistance (R) genes induce defense reactions after detection of pathogen-associated molecular patterns (PAMPS). In the specific system, a so-called arms race has developed in which the emergence of new races of a pathogen leads to the diversification of plant resistance genes to counteract the pathogens’ effect. The mechanism of resistance gene diversification has been elucidated well for short-lived annual species, but data are mostly lacking for long-lived perennial and clonally propagated plants, such as roses. We analyzed the rose black spot resistance gene, Rdr1, in five members of the Rosaceae: Rosa multiflora, Rosa rugosa, Fragaria vesca (strawberry), Malus x domestica (apple) and Prunus persica (peach), and we present the deduced possible mechanism of R-gene diversification. Results We sequenced a 340.4-kb region from R. rugosa orthologous to the Rdr1 locus in R. multiflora. Apart from some deletions and rearrangements, the two loci display a high degree of synteny. Additionally, less pronounced synteny is found with an orthologous locus in strawberry but is absent in peach and apple, where genes from the Rdr1 locus are distributed on two different chromosomes. An analysis of 20 TIR-NBS-LRR (TNL) genes obtained from R. rugosa and R. multiflora revealed illegitimate recombination, gene conversion, unequal crossing over, indels, point mutations and transposable elements as mechanisms of diversification. A phylogenetic analysis of 53 complete TNL genes from the five Rosaceae species revealed that with the exception of some genes from apple and peach, most of the genes occur in species-specific clusters, indicating that recent TNL gene diversification began prior to the split of Rosa from Fragaria in the Rosoideae and peach from apple in the Spiraeoideae and continued after the split in individual species. Sequence similarity of up to 99% is obtained between two R. multiflora TNL paralogs, indicating a very recent duplication. Conclusions The mechanisms by which TNL genes from perennial Rosaceae diversify are mainly similar to those from annual plant species. However, most TNL genes appear to be of recent origin, likely due to recent duplications, supporting the hypothesis that TNL genes in woody perennials are generally younger than those from annuals. This recent origin might facilitate the development of new resistance specificities, compensating for longer generation times in woody perennials.
Collapse
Affiliation(s)
- Diro Terefe-Ayana
- Institute for Plant Genetics, Leibniz University Hannover, Herrenhaeuser Str, 2, Hannover, 30419, Germany
| | | | | | | |
Collapse
|