1
|
Roy Chowdhury M, Massé E. New Perspectives on Crosstalks Between Bacterial Regulatory RNAs from Outer Membrane Vesicles and Eukaryotic Cells. Methods Mol Biol 2024; 2741:183-194. [PMID: 38217654 DOI: 10.1007/978-1-0716-3565-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Regulatory small RNAs (sRNAs) help the bacteria to survive harsh environmental conditions by posttranscriptional regulation of genes involved in various biological pathways including stress responses, homeostasis, and virulence. These sRNAs can be found carried by different membrane-bound vesicles like extracellular vesicles (EVs), membrane vesicles (MVs), or outer membrane vesicles (OMVs). OMVs provide myriad functions in bacterial cells including carrying a cargo of proteins, lipids, and nucleic acids including sRNAs. A few interesting studies have shown that these sRNAs can be transported to the host cell by membrane vesicles and can regulate the host immune system. Although there is evidence that sRNAs can be exported to host cells and sometimes can even cross the blood-brain barrier, the exact mechanism is still unknown. In this review, we investigated the new techniques implemented in various studies, to elucidate the crosstalks between bacterial cells and human immune systems by membrane vesicles carrying bacterial regulatory sRNAs.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
2
|
Mani T, Joshi JB, Priyadharshini R, Sharmila JS, Uthandi S. Flagellin, a plant-defense-activating protein identified from Xanthomonas axonopodis pv. Dieffenbachiae invokes defense response in tobacco. BMC Microbiol 2023; 23:284. [PMID: 37798635 PMCID: PMC10552369 DOI: 10.1186/s12866-023-03028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Secretome analysis is a valuable tool to study host-pathogen protein interactions and to identify new proteins that are important for plant health. Microbial signatures elicit defense responses in plants, and by that, the plant immune system gets triggered prior to pathogen infection. Functional properties of secretory proteins from Xanthomonas axonopodis pv. dieffenbachiae (Xad1) involved in priming plant immunity was evaluated. RESULTS In this study, the secretome of Xad1 was analyzed under host plant extract-induced conditions, and mass spectroscopic analysis of differentially expressed protein was identified as plant-defense-activating protein viz., flagellin C (FliC). The flagellin and Flg22 peptides both elicited hypersensitive reaction (HR) in non-host tobacco, activated reactive oxygen species (ROS) scavenging enzymes, and increased pathogenesis-related (PR) gene expression viz., NPR1, PR1, and down-regulation of PR2 (β-1,3-glucanase). Protein docking studies revealed the Flg22 epitope of Xad1, a 22 amino acid peptide region in FliC that recognizes plant receptor FLS2 to initiate downstream defense signaling. CONCLUSION The flagellin or the Flg22 peptide from Xad1 was efficient in eliciting an HR in tobacco via salicylic acid (SA)-mediated defense signaling that subsequently triggers systemic immune response epigenetically. The insights from this study can be used for the development of bio-based products (small PAMPs) for plant immunity and health.
Collapse
Affiliation(s)
- Tamilarasi Mani
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - J Beslin Joshi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
- Centre for Water Resources Development and Management, Kozhikode, India
| | - R Priyadharshini
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Jeya Sundara Sharmila
- Department of Nano Science and Technology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| |
Collapse
|
3
|
Qi S, Wang J, Zhang Y, Naz M, Afzal MR, Du D, Dai Z. Omics Approaches in Invasion Biology: Understanding Mechanisms and Impacts on Ecological Health. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091860. [PMID: 37176919 PMCID: PMC10181282 DOI: 10.3390/plants12091860] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Invasive species and rapid climate change are affecting the control of new plant diseases and epidemics. To effectively manage these diseases under changing environmental conditions, a better understanding of pathophysiology with holistic approach is needed. Multiomics approaches can help us to understand the relationship between plants and microbes and construct predictive models for how they respond to environmental stresses. The application of omics methods enables the simultaneous analysis of plant hosts, soil, and microbiota, providing insights into their intricate relationships and the mechanisms underlying plant-microbe interactions. This can help in the development of novel strategies for enhancing plant health and improving soil ecosystem functions. The review proposes the use of omics methods to study the relationship between plant hosts, soil, and microbiota, with the aim of developing a new technique to regulate soil health. This approach can provide a comprehensive understanding of the mechanisms underlying plant-microbe interactions and contribute to the development of effective strategies for managing plant diseases and improving soil ecosystem functions. In conclusion, omics technologies offer an innovative and holistic approach to understanding plant-microbe interactions and their response to changing environmental conditions.
Collapse
Affiliation(s)
- Shanshan Qi
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiahao Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Zhang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhicong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
4
|
Lyu D, Smith DL. The root signals in rhizospheric inter-organismal communications. FRONTIERS IN PLANT SCIENCE 2022; 13:1064058. [PMID: 36618624 PMCID: PMC9811129 DOI: 10.3389/fpls.2022.1064058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Root exudates play a key role in mediating plant-plant and plant-rhizomicrobiome interactions, including regulating biochemical/physiological aspects of plant-associated microorganisms, to enhance host plant growth and resilience. Root exudates can act as signals to reduce the competition from neighboring plants and recruiting/choreographing a wide range of diverse rhizomicrobiome members to make the host plant a good fit with its immediate environment. Root exudate production is a dynamic and key process, but there is a limited understanding of the metabolites or metabolic pathways involved in the inter-organismal communications facilitated by them. Given the well-known symbiotic relationships between plants and associated rhizomicrobiome members, adding root exudates to microbial isolation media may allow some of the large segments of rhizomicrobiome members that are not currently culturable to be grown in vitro. This will provide new insights into how root signals orchestrate associated microbes, will benefit agricultural production in the face of challenges posed by climate change, and will help to sustainably provide food for a growing global human population.
Collapse
|
5
|
Alberton D, Valdameri G, Moure VR, Monteiro RA, Pedrosa FDO, Müller-Santos M, de Souza EM. What Did We Learn From Plant Growth-Promoting Rhizobacteria (PGPR)-Grass Associations Studies Through Proteomic and Metabolomic Approaches? FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.607343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plant growth stimulation by microorganisms that interact in a mutually beneficial manner remains poorly understood. Understanding the nature of plant-bacteria interactions may open new routes for plant productivity enhancement, especially cereal crops consumed by humans. Proteomic and metabolomic analyses are particularly useful for elucidating these mechanisms. A complete depiction of these mechanisms will prompt researchers to develop more efficient plant-bacteria associations. The success of microorganisms as biofertilizers may replace the current massive use of chemical fertilizers, mitigating many environmental and economic issues. In this review, we discuss the recent advances and current state of the art in proteomics and metabolomics studies involving grass-bacteria associations. We also discuss essential subjects involved in the bacterial plant-growth promotion, such, nitrogen fixation, plant stress, defense responses, and siderophore production.
Collapse
|
6
|
Leprêtre M, Almunia C, Armengaud J, Le Guernic A, Salvador A, Geffard A, Palos-Ladeiro M. Identification of immune-related proteins of Dreissena polymorpha hemocytes and plasma involved in host-microbe interactions by differential proteomics. Sci Rep 2020; 10:6226. [PMID: 32277127 PMCID: PMC7148315 DOI: 10.1038/s41598-020-63321-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/27/2020] [Indexed: 12/04/2022] Open
Abstract
Biological responses of zebra mussel Dreissena polymorpha are investigated to assess the impact of contaminants on aquatic organisms and ecosystems. In addition to concentrate chemical contaminants in their tissues, zebra mussels accumulate several microorganisms such as viruses, protozoa and bacteria. In order to understand the molecular mechanisms involved in the defence against microorganisms this study aims at identifying immune proteins from D. polymorpha hemolymph involved in defence against protozoa and viruses. For this purpose, hemolymph were exposed ex vivo to Cryptosporidium parvum and RNA poly I:C. Differential proteomics on both hemocytes and plasma revealed immune proteins modulated under exposures. Different patterns of response were observed after C. parvum and RNA poly I:C exposures. The number of modulated proteins per hemolymphatic compartments suggest that C. parvum is managed in cells while RNA poly I:C is managed in plasma after 4 h exposure. BLAST annotation and GO terms enrichment analysis revealed further characteristics of immune mechanisms. Results showed that many proteins involved in the recognition and destruction of microorganisms were modulated in both exposure conditions, while proteins related to phagocytosis and apoptosis were exclusively modulated by C. parvum. This differential proteomic analysis highlights in zebra mussels modulated proteins involved in the response to microorganisms, which reflect a broad range of immune mechanisms such as recognition, internalization and destruction of microorganisms. This study paves the way for the identification of new markers of immune processes that can be used to assess the impact of both chemical and biological contaminations on the health status of aquatic organisms.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100, Villeurbanne, France
| | - Christine Almunia
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Antoine Le Guernic
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100, Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France.
| |
Collapse
|
7
|
Vaishnav A, Singh J, Singh P, Rajput RS, Singh HB, Sarma BK. Sphingobacterium sp. BHU-AV3 Induces Salt Tolerance in Tomato by Enhancing Antioxidant Activities and Energy Metabolism. Front Microbiol 2020; 11:443. [PMID: 32308647 PMCID: PMC7145953 DOI: 10.3389/fmicb.2020.00443] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
Salt tolerant bacteria can be helpful in improving a plant's tolerance to salinity. Although plant-bacteria interactions in response to salt stress have been characterized, the precise molecular mechanisms by which bacterial inoculation alleviates salt stress in plants are still poorly explored. In the present study, we aimed to determine the role of a salt-tolerant plant growth-promoting rhizobacteria (PGPR) Sphingobacterium BHU-AV3 for improving salt tolerance in tomato through investigating the physiological responses of tomato roots and leaves under salinity stress. Tomato plants inoculated with BHU-AV3 and challenged with 200 mM NaCl exhibited less senescence, positively correlated with the maintenance of ion balance, lowered reactive oxygen species (ROS), and increased proline content compared to the non-inoculated plants. BHU-AV3-inoculated plant leaves were less affected by oxidative stress, as evident from a reduction in superoxide contents, cell death, and lipid peroxidation. The reduction in ROS level was associated with the increased antioxidant enzyme activities along with multiple-isoform expression [peroxidase (POD), polyphenol oxidase (PPO), and superoxide dismutase (SOD)] in plant roots. Additionally, BHU-AV3 inoculation induced the expression of proteins involved in (i) energy production [ATP synthase], (ii) carbohydrate metabolism (enolase), (iii) thiamine biosynthesis protein, (iv) translation protein (elongation factor 1 alpha), and the antioxidant defense system (catalase) in tomato roots. These findings have provided insight into the molecular mechanisms of bacteria-mediated alleviation of salt stress in plants. From the study, we can conclude that BHU-AV3 inoculation effectively induces antioxidant systems and energy metabolism in tomato roots, which leads to whole plant protection during salt stress through induced systemic tolerance.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jyoti Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prachi Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Singh Rajput
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS. The PTI to ETI Continuum in Phytophthora-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:593905. [PMID: 33391306 PMCID: PMC7773600 DOI: 10.3389/fpls.2020.593905] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Phytophthora species are notorious pathogens of several economically important crop plants. Several general elicitors, commonly referred to as Pathogen-Associated Molecular Patterns (PAMPs), from Phytophthora spp. have been identified that are recognized by the plant receptors to trigger induced defense responses in a process termed PAMP-triggered Immunity (PTI). Adapted Phytophthora pathogens have evolved multiple strategies to evade PTI. They can either modify or suppress their elicitors to avoid recognition by host and modulate host defense responses by deploying hundreds of effectors, which suppress host defense and physiological processes by modulating components involved in calcium and MAPK signaling, alternative splicing, RNA interference, vesicle trafficking, cell-to-cell trafficking, proteolysis and phytohormone signaling pathways. In incompatible interactions, resistant host plants perceive effector-induced modulations through resistance proteins and activate downstream components of defense responses in a quicker and more robust manner called effector-triggered-immunity (ETI). When pathogens overcome PTI-usually through effectors in the absence of R proteins-effectors-triggered susceptibility (ETS) ensues. Qualitatively, many of the downstream defense responses overlap between PTI and ETI. In general, these multiple phases of Phytophthora-plant interactions follow the PTI-ETS-ETI paradigm, initially proposed in the zigzag model of plant immunity. However, based on several examples, in Phytophthora-plant interactions, boundaries between these phases are not distinct but are rather blended pointing to a PTI-ETI continuum.
Collapse
Affiliation(s)
- Zunaira Afzal Naveed
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Hira Mubeen
- Departement of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Gul Shad Ali
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- EukaryoTech LLC, Apopka, FL, United States
- *Correspondence: Gul Shad Ali
| |
Collapse
|
9
|
Płociniczak T, Chodór M, Pacwa-Płociniczak M, Piotrowska-Seget Z. Metal-tolerant endophytic bacteria associated with Silene vulgaris support the Cd and Zn phytoextraction in non-host plants. CHEMOSPHERE 2019; 219:250-260. [PMID: 30543960 DOI: 10.1016/j.chemosphere.2018.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 05/20/2023]
Abstract
The aim of this study was to isolate and characterise metal-resistant endophytic bacteria from the tissues of Silene vulgaris collected within the vicinity of non-ferrous steelworks in Katowice, Upper Silesia, Southern Poland. Twenty-four strains of metal-resistant endophytic bacteria that belong to 15 genera were isolated from the stems and leaves of Silene vulgaris. Most of these strains showed multiple plant growth-promoting capabilities. The most promising strains, Proteus vulgaris H7, Pseudomonas sp. H15, and Pseudomonas helmanticensis H16, were used in a pot experiment, and their impact on the biomass of white mustard and Zn and Cd accumulation was examined. Soil inoculation with the tested strains resulted in a higher fresh biomass of shoots, which increased by 74.5% (Proteus vulgaris H7), 121.7% (Pseudomonas sp. H15), and 142.2% (P. helmanticensis H16) compared to the control plants. The highest phytoextraction enhancement was caused by P. helmanticensis H16, which increased Zn and Cd accumulation in the shoot tissues by 43.8% and 112.6%, respectively. All of the tested strains were detected in the soil at the last sampling points, but only Proteus vulgaris H7 and Pseudomonas sp. H15 were capable of temporary colonisation of the roots of white mustard. None of the inoculants were found in the stems and leaves of the plants during the experimental period. The plant growth-promoting features of the isolates combined with their resistance to heavy metals and high survival in soil after inoculation make these strains good candidates for the promotion of plant growth and increased phytoremediation efficiency.
Collapse
Affiliation(s)
- T Płociniczak
- Department of Microbiology, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - M Chodór
- Department of Microbiology, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - M Pacwa-Płociniczak
- Department of Microbiology, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Z Piotrowska-Seget
- Department of Microbiology, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
10
|
KhalKhal E, Rezaei-Tavirani M, Rostamii-Nejad M. Pharmaceutical Advances and Proteomics Researches. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:51-67. [PMID: 32802089 PMCID: PMC7393046 DOI: 10.22037/ijpr.2020.112440.13758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proteomics enables understanding the composition, structure, function and interactions of the entire protein complement of a cell, a tissue, or an organism under exactly defined conditions. Some factors such as stress or drug effects will change the protein pattern and cause the present or absence of a protein or gradual variation in abundances. The aim of this study is to explore relationship between proteomics application and drug discovery. "proteomics", "Application", and "pharmacology were the main keywords that were searched in PubMed (PubMed Central), Web of Science, and Google Scholar. The titles that were stablished by 2019, were studied and after study of the appreciated abstracts, the full texts of the 118 favor documents were extracted. Changes in the proteome provide a snapshot of the cell activities and physiological processes. Proteomics shows the observed protein changes to the causal effects and generate a complete three-dimensional map of the cell indicating their exact location. Proteomics is used in different biological fields and is applied in medicine, agriculture, food microbiology, industry, and pharmacy and drug discovery. Biomarker discovery, follow up of drug effect on the patients, and in vitro and in vivo proteomic investigation about the drug treated subjects implies close relationship between proteomics advances and application and drug discovery and development. This review overviews and summarizes the applications of proteomics especially in pharmacology and drug discovery.
Collapse
Affiliation(s)
- Ensieh KhalKhal
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Rostamii-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Zhang L, Liu JY, Gu H, Du Y, Zuo JF, Zhang Z, Zhang M, Li P, Dunwell JM, Cao Y, Zhang Z, Zhang YM. Bradyrhizobium diazoefficiens USDA 110- Glycine max Interactome Provides Candidate Proteins Associated with Symbiosis. J Proteome Res 2018; 17:3061-3074. [PMID: 30091610 DOI: 10.1021/acs.jproteome.8b00209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the legume-rhizobium symbiosis is a most-important biological process, there is a limited knowledge about the protein interaction network between host and symbiont. Using interolog- and domain-based approaches, we constructed an interspecies protein interactome containing 5115 protein-protein interactions between 2291 Glycine max and 290 Bradyrhizobium diazoefficiens USDA 110 proteins. The interactome was further validated by the expression pattern analysis in nodules, gene ontology term semantic similarity, co-expression analysis, and luciferase complementation image assay. In the G. max-B. diazoefficiens interactome, bacterial proteins are mainly ion channel and transporters of carbohydrates and cations, while G. max proteins are mainly involved in the processes of metabolism, signal transduction, and transport. We also identified the top 10 highly interacting proteins (hubs) for each species. Kyoto Encyclopedia of Genes and Genomes pathway analysis for each hub showed that a pair of 14-3-3 proteins (SGF14g and SGF14k) and 5 heat shock proteins in G. max are possibly involved in symbiosis, and 10 hubs in B. diazoefficiens may be important symbiotic effectors. Subnetwork analysis showed that 18 symbiosis-related soluble N-ethylmaleimide sensitive factor attachment protein receptor proteins may play roles in regulating bacterial ion channels, and SGF14g and SGF14k possibly regulate the rhizobium dicarboxylate transport protein DctA. The predicted interactome provide a valuable basis for understanding the molecular mechanism of nodulation in soybean.
Collapse
Affiliation(s)
- Li Zhang
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
- School of Public Health , Xinxiang Medical University , Xinxiang 453003 , China
| | - Jin-Yang Liu
- College of Agriculture, Nanjing Agricultural University , Nanjing 210095 , China
| | - Huan Gu
- College of Agriculture, Nanjing Agricultural University , Nanjing 210095 , China
| | - Yanfang Du
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| | - Jian-Fang Zuo
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| | - Zhibin Zhang
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| | - Menglin Zhang
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| | - Pan Li
- School of Public Health , Xinxiang Medical University , Xinxiang 453003 , China
| | - Jim M Dunwell
- School of Agriculture, Policy and Development , University of Reading , Reading RG6 6AR , United Kingdom
| | - Yangrong Cao
- College of Life Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Zuxin Zhang
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| | - Yuan-Ming Zhang
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| |
Collapse
|
12
|
Amiri-Dashatan N, Koushki M, Abbaszadeh HA, Rostami-Nejad M, Rezaei-Tavirani M. Proteomics Applications in Health: Biomarker and Drug Discovery and Food Industry. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:1523-1536. [PMID: 30568709 PMCID: PMC6269565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Advancing in genome sequencing has greatly propelled the understanding of the living world; however, it is insufficient for full description of a biological system. Focusing on proteomics has emerged as another large-scale platform for improving the understanding of biology. Proteomic experiments can be used for different aspects of clinical and health sciences such as food technology, biomarker discovery and drug target identification. Since proteins are main constituents of foods, proteomic technology can monitor and characterize protein content of foods and their change during production process. The proteomic biomarker discovery is advanced in various diseases such as cancer, cardiovascular diseases, AIDS, and renal diseases which provide non-invasive methods by the use of body fluids such as urine and serum. Proteomics is also used in drug target identification using different approaches such as chemical proteomics and protein interaction networks. The development and application of proteomics has increased tremendously over the last decade. Advances in proteomics methods offer many promising new directions of studying in clinical fields. In this regard, we want to discuss proteomics technology application in food investigations, drug, and biomarker discovery.
Collapse
Affiliation(s)
- Nasrin Amiri-Dashatan
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Koushki
- Department of Biochemistry, Medicine Faculty, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center.Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Rostami-Nejad
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
13
|
Ibort P, Imai H, Uemura M, Aroca R. Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:43-59. [PMID: 29145071 DOI: 10.1016/j.jplph.2017.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Feeding an increasing global population as well as reducing environmental impact of crops is the challenge for the sustainable intensification of agriculture. Plant-growth-promoting bacteria (PGPB) management could represent a suitable method but elucidation of their action mechanisms is essential for a proper and effective utilization. Furthermore, ethylene is involved in growth and response to environmental stimuli but little is known about the implication of ethylene perception in PGPB activity. The ethylene-insensitive tomato never ripe and its isogenic wild-type cv. Pearson lines inoculated with Bacillus megaterium or Enterobacter sp. C7 strains were grown until mature stage to analyze growth promotion, and bacterial inoculation effects on root proteomic profiles. Enterobacter C7 promoted growth in both plant genotypes, meanwhile Bacillus megaterium PGPB activity was only noticed in wt plants. Moreover, PGPB inoculation affected proteomic profile in a strain- and genotype-dependent manner modifying levels of stress-related and interaction proteins, and showing bacterial inoculation effects on antioxidant content and phosphorus acquisition capacity. Ethylene perception is essential for properly recognition of Bacillus megaterium and growth promotion mediated in part by increased levels of reduced glutathione. In contrast, Enterobacter C7 inoculation improves phosphorus nutrition keeping plants on growth independently of ethylene sensitivity.
Collapse
Affiliation(s)
- Pablo Ibort
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - Hiroyuki Imai
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
14
|
Colignon B, Dieu M, Demazy C, Delaive E, Muhovski Y, Raes M, Mauro S. Proteomic Study of SUMOylation During Solanum tuberosum-Phytophthora infestans Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:855-865. [PMID: 28726589 DOI: 10.1094/mpmi-05-17-0104-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Invasive plant pathogens have developed the ability to modify the metabolism of their host, promoting metabolic processes that facilitate the growth of the pathogen at the general expense of the host. The particular enzymatic process SUMOylation, which performs posttranslational modification of target proteins, leading to changes in many aspects of protein activity and, hence, metabolism, has been demonstrated to be active in many eukaryotic organisms, both animals and plants. Here, we provide experimental evidence that indicates that, in leaves of Solanum tuberosum that have been infected by Phytophthora infestans, the SUMO (small ubiquitin-like modifier) pathway enzymes of the host are partially under transcriptional control exerted by the oomycete. Using a recently developed approach that employs three-dimensional gels, we show that, during the infection process, the abundances of most of the known SUMO conjugates of S. tuberosum change significantly, some decreasing, but many increasing in abundance. The new proteomic approach has the potential to greatly facilitate investigation of the molecular events that take place during the invasion by a pathogen of its host plant.
Collapse
Affiliation(s)
- Bertrand Colignon
- 1 Département Sciences du Vivant, Centre wallon de Recherches agronomiques, Gembloux, Belgium
- 2 URBC-NARILIS, University of Namur, Belgium; and
| | - Marc Dieu
- 2 URBC-NARILIS, University of Namur, Belgium; and
- 3 MaSUN, Mass spectrometry facility, University of Namur
| | - Catherine Demazy
- 2 URBC-NARILIS, University of Namur, Belgium; and
- 3 MaSUN, Mass spectrometry facility, University of Namur
| | | | - Yordan Muhovski
- 1 Département Sciences du Vivant, Centre wallon de Recherches agronomiques, Gembloux, Belgium
| | - Martine Raes
- 2 URBC-NARILIS, University of Namur, Belgium; and
| | - Sergio Mauro
- 1 Département Sciences du Vivant, Centre wallon de Recherches agronomiques, Gembloux, Belgium
| |
Collapse
|
15
|
Doulgeraki AI, Efthimiou G, Paramithiotis S, Pappas KM, Typas MA, Nychas GJ. Effect of Rocket ( Eruca sativa) Extract on MRSA Growth and Proteome: Metabolic Adjustments in Plant-Based Media. Front Microbiol 2017; 8:782. [PMID: 28529502 PMCID: PMC5418331 DOI: 10.3389/fmicb.2017.00782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/18/2017] [Indexed: 12/22/2022] Open
Abstract
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) in food has provoked a great concern about the presence of MRSA in associated foodstuff. Although MRSA is often detected in various retailed meat products, it seems that food handlers are more strongly associated with this type of food contamination. Thus, it can be easily postulated that any food could be contaminated with this pathogen in an industrial environment or in household and cause food poisoning. To this direction, the effect of rocket (Eruca sativa) extract on MRSA growth and proteome was examined in the present study. This goal was achieved with the comparative study of the MRSA strain COL proteome, cultivated in rocket extract versus the standard Luria-Bertani growth medium. The obtained results showed that MRSA was able to grow in rocket extract. In addition, proteome analysis using 2-DE method showed that MRSA strain COL is taking advantage of the sugar-, lipid-, and vitamin-rich substrate in the liquid rocket extract, although its growth was delayed in rocket extract compared to Luria–Bertani medium. This work could initiate further research about bacterial metabolism in plant-based media and defense mechanisms against plant-derived antibacterials.
Collapse
Affiliation(s)
- Agapi I Doulgeraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of AthensAthens, Greece
| | - Georgios Efthimiou
- Department of Genetics and Biotechnology, Faculty of Biology, School of Science, National and Kapodistrian University of AthensAthens, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of AthensAthens, Greece
| | - Katherine M Pappas
- Department of Genetics and Biotechnology, Faculty of Biology, School of Science, National and Kapodistrian University of AthensAthens, Greece
| | - Milton A Typas
- Department of Genetics and Biotechnology, Faculty of Biology, School of Science, National and Kapodistrian University of AthensAthens, Greece
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of AthensAthens, Greece
| |
Collapse
|
16
|
The naringenin-induced exoproteome of Rhizobium etli CE3. Arch Microbiol 2017; 199:737-755. [PMID: 28255691 DOI: 10.1007/s00203-017-1351-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 01/29/2023]
Abstract
Flavonoids excreted by legume roots induce the expression of symbiotically essential nodulation (nod) genes in rhizobia, as well as that of specific protein export systems. In the bean microsymbiont Rhizobium etli CE3, nod genes are induced by the flavonoid naringenin. In this study, we identified 693 proteins in the exoproteome of strain CE3 grown in minimal medium with or without naringenin, with 101 and 100 exoproteins being exclusive to these conditions, respectively. Four hundred ninety-two (71%) of the extracellular proteins were found in both cultures. Of the total exoproteins identified, nearly 35% were also present in the intracellular proteome of R. etli bacteroids, 27% had N-terminal signal sequences and a significant number had previously demonstrated or possible novel roles in symbiosis, including bacterial cell surface modification, adhesins, proteins classified as MAMPs (microbe-associated molecular patterns), such as flagellin and EF-Tu, and several normally cytoplasmic proteins as Ndk and glycolytic enzymes, which are known to have extracellular "moonlighting" roles in bacteria that interact with eukaryotic cells. It is noteworthy that the transmembrane ß (1,2) glucan biosynthesis protein NdvB, an essential symbiotic protein in rhizobia, was found in the R. etli naringenin-induced exoproteome. In addition, potential binding sites for two nod-gene transcriptional regulators (NodD) occurred somewhat more frequently in the promoters of genes encoding naringenin-induced exoproteins in comparison to those ofexoproteins found in the control condition.
Collapse
|
17
|
Müller DB, Schubert OT, Röst H, Aebersold R, Vorholt JA. Systems-level Proteomics of Two Ubiquitous Leaf Commensals Reveals Complementary Adaptive Traits for Phyllosphere Colonization. Mol Cell Proteomics 2016; 15:3256-3269. [PMID: 27457762 DOI: 10.1074/mcp.m116.058164] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 12/24/2022] Open
Abstract
Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota.
Collapse
Affiliation(s)
- Daniel B Müller
- From the ‡Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Olga T Schubert
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland
| | - Hannes Röst
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland; ¶Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Julia A Vorholt
- From the ‡Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland;
| |
Collapse
|
18
|
Global proteome analysis in plants by means of peptide libraries and applications. J Proteomics 2016; 143:3-14. [DOI: 10.1016/j.jprot.2016.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
|
19
|
De-la-Peña C, Loyola-Vargas VM. Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. PLANT PHYSIOLOGY 2014; 166:701-19. [PMID: 25118253 PMCID: PMC4213099 DOI: 10.1104/pp.114.241810] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/10/2014] [Indexed: 05/08/2023]
Abstract
Microbes and plants have evolved biochemical mechanisms to communicate with each other. The molecules responsible for such communication are secreted during beneficial or harmful interactions. Hundreds of these molecules secreted into the rhizosphere have been identified, and their functions are being studied in order to understand the mechanisms of interaction and communication among the different members of the rhizosphere community. The importance of root and microbe secretion to the underground habitat in improving crop productivity is increasingly recognized, with the discovery and characterization of new secreting compounds found in the rhizosphere. Different omic approaches, such as genomics, transcriptomics, proteomics, and metabolomics, have expanded our understanding of the first signals between microbes and plants. In this review, we highlight the more recent discoveries related to molecules secreted into the rhizosphere and how they affect plant productivity, either negatively or positively. In addition, we include a survey of novel approaches to studying the rhizosphere and emerging opportunities to direct future studies.
Collapse
Affiliation(s)
- Clelia De-la-Peña
- Unidad de Biotecnología (C.D.) and Unidad de Bioquímica y Biología Molecular de Plantas (V.M.L.-V.), Centro de Investigación Científica de Yucatán, 97200 Merida, Yucatan, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Biotecnología (C.D.) and Unidad de Bioquímica y Biología Molecular de Plantas (V.M.L.-V.), Centro de Investigación Científica de Yucatán, 97200 Merida, Yucatan, Mexico
| |
Collapse
|
20
|
Delaunois B, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. FRONTIERS IN PLANT SCIENCE 2014; 5:249. [PMID: 24917874 PMCID: PMC4042593 DOI: 10.3389/fpls.2014.00249] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 05/14/2023]
Abstract
Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Sylvain Cordelier
- *Correspondence: Sylvain Cordelier, Laboratoire Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne-EA 4707, Université de Reims Champagne-Ardenne, Moulin de la Housse – BP 1039, 51687 Reims cedex 2, France e-mail:
| |
Collapse
|
21
|
Komatsu S, Mock HP, Yang P, Svensson B. Application of proteomics for improving crop protection/artificial regulation. FRONTIERS IN PLANT SCIENCE 2013; 4:522. [PMID: 24391656 PMCID: PMC3867738 DOI: 10.3389/fpls.2013.00522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 12/03/2013] [Indexed: 05/02/2023]
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop ScienceTsukuba, Japan
- *Correspondence:
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of DenmarkLyngby, Denmark
| |
Collapse
|