1
|
Thompson MEH, Raizada MN. Protocols to enable fluorescence microscopy of microbial interactions on living maize silks (style tissue). J Microbiol Methods 2024; 225:107027. [PMID: 39214401 DOI: 10.1016/j.mimet.2024.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
There is interest in studying microbes that colonize maize silks (style tissue, critical for reproduction) including the fungal pathogen Fusarium graminearum (Fg) and its interactions with the microbiome and biocontrol agents. In planta imaging of these interactions on living silks using confocal fluorescence microscopy would provide key insights. However, newly discovered microbes have unknown effects on human health, and there are regulatory requirements to prevent the release of fluorescently tagged microbes into the environment. Therefore, the microbe infection, colonization, and interaction stages on silks prior to microscopy must be contained. At the same time, silk viability must be maintained and experiments conducted that are biologically relevant (e.g. silks should remain attached to the cob), yet the silk tissue must be accessible to the researcher (i.e. not within husk leaves) and allow for multiple replicates. Here we present methods that meet these five contrasting criteria. We tested these methods using Fg and four silk-derived bacterial endophytes. The endophytes were previously known to have anti-Fg activity in vitro, but in planta observations were lacking. In Method 1, a portion of the tip of a cob was dissected, and silks remained attached to the cob in a Petri dish. The cob was placed on a water agar disc to maintain hydration. DsRed-tagged bacteria and GFP-tagged Fg were inoculated onto the silks and incubated, allowing the two microbes to grow towards one another before staining with propidium iodide for confocal microscopy. A variation of the protocol was presented in Method 2, where detached silk segments were placed directly on water agar where they were inoculated with bacteria and Fg to promote dense colonization, and to allow for many replicates and interventions such as silk wounding. The bacterial endophytes were successfully observed colonizing Fg hyphae, silk trichomes, and entering silks via cut ends and wounds. These protocols can be used to study other silk-associated microbes including several globally important fungal pathogens that enter maize grain through silks.
Collapse
Affiliation(s)
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
2
|
Pereira D, Alline T, Cascaro L, Lin E, Asnacios A. Mechanical resistance of the environment affects root hair growth and nucleus dynamics. Sci Rep 2024; 14:13788. [PMID: 38877117 PMCID: PMC11178823 DOI: 10.1038/s41598-024-64423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
Root hair (RH) cells are important for the growth and survival of seedlings. They favor plant-microbe interactions and nutrients uptake. When invading the soil, RH cells have to penetrate a dense medium exhibiting a variety of physical properties, such as mechanical resistance, that impact the growth and survival of plants. Here we investigate the effect of the mechanical resistance of the culture medium on RH-physical and phenotypical parameters such as length, time, and speed of growth. We also analyze the impact of the environment on nuclear dynamics. We show that the RH growth rate and the nucleus speed decrease similarly as mechanical resistance increases while the time of growth of RH cells is invariable. Moreover, during RH growth, the nucleus-to-tip distance was found to decrease when the stiffness of the environment was increased. Along this line, using Latrunculin B treatment in liquid growth media, we could internally slow down RH growth to reach speeds similar to those observed in stiff solid media while the nucleus-to-tip distance was only slightly affected, supporting thus the idea of a specific effect of mechanical resistance of the environment on nucleus dynamics.
Collapse
Affiliation(s)
- David Pereira
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS, UMR7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.
| | - Thomas Alline
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS, UMR7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Léa Cascaro
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS, UMR7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Emilie Lin
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS, UMR7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS, UMR7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.
| |
Collapse
|
3
|
Gao JP, Liang W, Liu CW, Xie F, Murray JD. Unraveling the rhizobial infection thread. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2235-2245. [PMID: 38262702 DOI: 10.1093/jxb/erae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Most legumes can form an endosymbiotic association with soil bacteria called rhizobia, which colonize specialized root structures called nodules where they fix nitrogen. To colonize nodule cells, rhizobia must first traverse the epidermis and outer cortical cell layers of the root. In most legumes, this involves formation of the infection thread, an intracellular structure that becomes colonized by rhizobia, guiding their passage through the outer cell layers of the root and into the newly formed nodule cells. In this brief review, we recount the early research milestones relating to the rhizobial infection thread and highlight two relatively recent advances in the symbiotic infection mechanism, the eukaryotically conserved 'MYB-AUR1-MAP' mitotic module, which links cytokinesis mechanisms to intracellular infection, and the discovery of the 'infectosome' complex, which guides infection thread growth. We also discuss the potential intertwining of the two modules and the hypothesis that cytokinesis served as a foundation for intracellular infection of symbiotic microbes.
Collapse
Affiliation(s)
- Jin-Peng Gao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Liang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cheng-Wu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230026, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- John Innes Centre, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
4
|
Studying Nuclear Dynamics in Response to Actin Disruption in Planta. Methods Mol Biol 2023; 2604:203-214. [PMID: 36773235 DOI: 10.1007/978-1-0716-2867-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The plant nucleus and the actin cytoskeleton are intimately connected. The actin cytoskeleton is pivotal for nuclear positioning, shape, and dynamics. These properties of the nucleus are important for its functions during normal development and in response to external cues such as biotic and abiotic stresses. Moreover, we know that there is a direct physical connection between the actin cytoskeleton and the nucleus which spans the double-membraned nuclear envelope into the nuclear lamina, and this connection is called the linker of nucleoskeleton and cytoskeleton (LINC) complex. Recently a role for actin in regulating inter-nuclear organization via the control of nuclear invaginations has emerged. Therefore, a detailed understanding of nuclear shape, organization, and dynamics and the techniques used to measure and quantify these metrics will allow us to determine and further understand the contribution made by actin to these parameters. The protocols described here will allow researchers to determine the circularity index of a nucleus, quantify nuclear deformations, and determine dynamics of nuclei within plant cells.
Collapse
|
5
|
Sharma A, Chandran D. Host nuclear repositioning and actin polarization towards the site of penetration precedes fungal ingress during compatible pea-powdery mildew interactions. PLANTA 2022; 256:45. [PMID: 35864318 DOI: 10.1007/s00425-022-03959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION Actin polarization and actin-driven host nuclear movement towards the fungal penetration site facilitates successful host colonization during compatible pea-Erysiphe pisi interactions. Proper nuclear positioning in plant cells is crucial for developmental processes and response to (a)biotic stimuli. During plant-fungal interactions, the host nucleus moves toward the infection site, a process regulated by the plant cytoskeleton. Notably, rearrangement of the plant cytoskeleton is one of the earliest cellular responses to pathogen invasion and is known to impact penetration efficiency. Yet, the connection between host nuclear movement and fungal ingress is still elusive, particularly in legumes. Here, we investigated the host nuclear dynamics during compatible interactions between Pisum sativum (pea) and the adapted powdery mildew (PM) fungus Erysiphe pisi to gain insights into the functional relevance of PM-induced nuclear movement in legumes. We show that the host nucleus moves towards the fungal appressorium before penetration and becomes associated with the primary haustorium. However, the nucleus migrates away from the primary infection site as the infection progresses toward colony expansion and sporulation. Treatment of pea leaves with the actin-polymerization inhibitor, cytochalasin D, abolished host nuclear movement towards the fungal penetration site and restricted PM growth. In contrast, treatment with oryzalin, a microtubule-polymerization inhibitor, had no effect. In addition to nuclear movement, strong polarization of host actin filaments towards the site of appressorial contact was evident at early infection stages. Our results suggest that actin focusing mediates host nuclear movement to the fungal penetration site and facilitates successful colonization during compatible pea-PM interactions.
Collapse
Affiliation(s)
- Akriti Sharma
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
| |
Collapse
|
6
|
Yi P, Goshima G. Division site determination during asymmetric cell division in plants. THE PLANT CELL 2022; 34:2120-2139. [PMID: 35201345 PMCID: PMC9134084 DOI: 10.1093/plcell/koac069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/20/2022] [Indexed: 05/19/2023]
Abstract
During development, both animals and plants exploit asymmetric cell division (ACD) to increase tissue complexity, a process that usually generates cells dissimilar in size, morphology, and fate. Plants lack the key regulators that control ACD in animals. Instead, plants have evolved two unique cytoskeletal structures to tackle this problem: the preprophase band (PPB) and phragmoplast. The assembly of the PPB and phragmoplast and their contributions to division plane orientation have been extensively studied. However, how the division plane is positioned off the cell center during asymmetric division is poorly understood. Over the past 20 years, emerging evidence points to a critical role for polarly localized membrane proteins in this process. Although many of these proteins are species- or cell type specific, and the molecular mechanism underlying division asymmetry is not fully understood, common features such as morphological changes in cells, cytoskeletal dynamics, and nuclear positioning have been observed. In this review, we provide updates on polarity establishment and nuclear positioning during ACD in plants. Together with previous findings about symmetrically dividing cells and the emerging roles of developmental cues, we aim to offer evolutionary insight into a common framework for asymmetric division-site determination and highlight directions for future work.
Collapse
Affiliation(s)
- Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba 517-0004, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya Aichi 464-8602, Japan
| |
Collapse
|
7
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
8
|
Singh G, Pereira D, Baudrey S, Hoffmann E, Ryckelynck M, Asnacios A, Chabouté ME. Real-time tracking of root hair nucleus morphodynamics using a microfluidic approach. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:303-313. [PMID: 34562320 DOI: 10.1111/tpj.15511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Root hairs (RHs) are tubular extensions of root epidermal cells that favour nutrient uptake and microbe interactions. RHs show a fast apical growth, constituting a unique single cell model system for analysing cellular morphodynamics. In this context, live cell imaging using microfluidics recently developed to analyze root development is appealing, although high-resolution imaging is still lacking to enable an investigation of the accurate spatiotemporal morphodynamics of organelles. Here, we provide a powerful coverslip based microfluidic device (CMD) that enables us to capture high resolution confocal imaging of Arabidopsis RH development with real-time monitoring of nuclear movement and shape changes. To validate the setup, we confirmed the typical RH growth rates and the mean nuclear positioning previously reported with classical methods. Moreover, to illustrate the possibilities offered by the CMD, we have compared the real-time variations in the circularity, area and aspect ratio of nuclei moving in growing and mature RHs. Interestingly, we observed higher aspect ratios in the nuclei of mature RHs, correlating with higher speeds of nuclear migration. This observation opens the way for further investigations of the effect of mechanical constraints on nuclear shape changes during RH growth and nuclear migration and its role in RH and plant development.
Collapse
Affiliation(s)
- Gaurav Singh
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, 67084, France
| | - David Pereira
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS et Université de Paris, Paris, 75013, France
| | - Stéphanie Baudrey
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, 67000, France
| | - Elise Hoffmann
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, 67084, France
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, 67000, France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS et Université de Paris, Paris, 75013, France
| | - Marie-Edith Chabouté
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, 67084, France
| |
Collapse
|
9
|
Evans DE, Mermet S, Tatout C. Advancing knowledge of the plant nuclear periphery and its application for crop science. Nucleus 2021; 11:347-363. [PMID: 33295233 PMCID: PMC7746251 DOI: 10.1080/19491034.2020.1838697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, we explore recent advances in knowledge of the structure and dynamics of the plant nuclear envelope. As a paradigm, we focused our attention on the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, a structurally conserved bridging complex comprising SUN domain proteins in the inner nuclear membrane and KASH domain proteins in the outer nuclear membrane. Studies have revealed that this bridging complex has multiple functions with structural roles in positioning the nucleus within the cell, conveying signals across the membrane and organizing chromatin in the 3D nuclear space with impact on gene transcription. We also provide an up-to-date survey in nuclear dynamics research achieved so far in the model plant Arabidopsis thaliana that highlights its potential impact on several key plant functions such as growth, seed maturation and germination, reproduction and response to biotic and abiotic stress. Finally, we bring evidences that most of the constituents of the LINC Complex and associated components are, with some specificities, conserved in monocot and dicot crop species and are displaying very similar functions to those described for Arabidopsis. This leads us to suggest that a better knowledge of this system and a better account of its potential applications will in the future enhance the resilience and productivity of crop plants.
Collapse
Affiliation(s)
- David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University , Oxford, UK
| | - Sarah Mermet
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| | - Christophe Tatout
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| |
Collapse
|
10
|
Moser M, Kirkpatrick A, Groves NR, Meier I. LINC-complex mediated positioning of the vegetative nucleus is involved in calcium and ROS signaling in Arabidopsis pollen tubes. Nucleus 2020; 11:149-163. [PMID: 32631106 PMCID: PMC7529407 DOI: 10.1080/19491034.2020.1783783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nuclear movement and positioning play a role in developmental processes throughout life. Nuclear movement and positioning are mediated primarily by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes are comprised of the inner nuclear membrane SUN proteins and the outer nuclear membrane (ONM) KASH proteins. In Arabidopsis pollen tubes, the vegetative nucleus (VN) maintains a fixed distance from the pollen tube tip during growth, and the VN precedes the sperm cells (SCs). In pollen tubes of wit12 and wifi, mutants deficient in the ONM component of a plant LINC complex, the SCs precede the VN during pollen tube growth and the fixed VN distance from the tip is lost. Subsequently, pollen tubes frequently fail to burst upon reception. In this study, we sought to determine if the pollen tube reception defect observed in wit12 and wifi is due to decreased sensitivity to reactive oxygen species (ROS). Here, we show that wit12 and wifi are hyposensitive to exogenous H2O2, and that this hyposensitivity is correlated with decreased proximity of the VN to the pollen tube tip. Additionally, we report the first instance of nuclear Ca2+ peaks in growing pollen tubes, which are disrupted in the wit12 mutant. In the wit12 mutant, nuclear Ca2+ peaks are reduced in response to exogenous ROS, but these peaks are not correlated with pollen tube burst. This study finds that VN proximity to the pollen tube tip is required for both response to exogenous ROS, as well as internal nuclear Ca2+ fluctuations.
Collapse
Affiliation(s)
- Morgan Moser
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Andrew Kirkpatrick
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA.,Center for RNA Biology, The Ohio State University , Columbus, OH, USA
| |
Collapse
|
11
|
Groves NR, Biel A, Moser M, Mendes T, Amstutz K, Meier I. Recent advances in understanding the biological roles of the plant nuclear envelope. Nucleus 2020; 11:330-346. [PMID: 33161800 PMCID: PMC7746247 DOI: 10.1080/19491034.2020.1846836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
The functional organization of the plant nuclear envelope is gaining increasing attention through new connections made between nuclear envelope-associated proteins and important plant biological processes. Animal nuclear envelope proteins play roles in nuclear morphology, nuclear anchoring and movement, chromatin tethering and mechanical signaling. However, how these roles translate to functionality in a broader biological context is often not well understood. A surprising number of plant nuclear envelope-associated proteins are plant-unique, suggesting that separate functionalities evolved after the split of Opisthokonta and Streptophyta. Significant progress has now been made in discovering broader biological roles of plant nuclear envelope proteins, increasing the number of known plant nuclear envelope proteins, and connecting known proteins to chromatin organization, gene expression, and the regulation of nuclear calcium. The interaction of viruses with the plant nuclear envelope is another emerging theme. Here, we survey the recent developments in this still relatively new, yet rapidly advancing field.
Collapse
Affiliation(s)
- Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
| | - Alecia Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tyler Mendes
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Katelyn Amstutz
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Abstract
Arabidopsis stomatal development requires asymmetric cell division, where the nucleus moves to the division site based on cellular polarity cues. A new study reveals the role of distinct cytoskeletal networks, both guided by the polarity factor BASL, for nuclear movement before and after division.
Collapse
|
13
|
Guan P, Terigele, Schmidt F, Riemann M, Fischer J, Thines E, Nick P. Hunting modulators of plant defence: the grapevine trunk disease fungus Eutypa lata secretes an amplifier for plant basal immunity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3710-3724. [PMID: 32211774 PMCID: PMC7475250 DOI: 10.1093/jxb/eraa152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/20/2020] [Indexed: 04/08/2024]
Abstract
Grapevine trunk diseases (GTDs) are progressively affecting vineyard longevity and productivity worldwide. To be able to understand and combat these diseases, we need a different concept of the signals exchanged between the grapevine and fungi than the well-studied pathogen-associated molecular pattern and effector concepts. We screened extracts from fungi associated with GTDs for their association with basal defence responses in suspension cells of grapevine. By activity-guided fractionation of the two selected extracts, O-methylmellein was identified as a candidate modulator of grapevine immunity. O-Methylmellein could not induce immune responses by itself (i.e. does not act as an elicitor), but could amplify some of the defence responses triggered by the bacterial elicitor flg22, such as the induction level of defence genes and actin remodelling. These findings show that Eutypa lata, exemplarily selected as an endophytic fungus linked with GTDs, can secrete compounds that act as amplifiers of basal immunity. Thus, in addition to elicitors that can trigger basal immunity, and effectors that down-modulate antibacterial basal immunity, once it had been activated, E. lata seems to secrete a third type of chemical signal that amplifies basal immunity and may play a role in the context of consortia of mutually competing microorganisms.
Collapse
Affiliation(s)
- Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Terigele
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Florian Schmidt
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH,, Kaiserslautern, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Jochen Fischer
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH,, Kaiserslautern, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH,, Kaiserslautern, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| |
Collapse
|
14
|
Job Opening for Nucleosome Mechanic: Flexibility Required. Cells 2020; 9:cells9030580. [PMID: 32121488 PMCID: PMC7140402 DOI: 10.3390/cells9030580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
The nucleus has been studied for well over 100 years, and chromatin has been the intense focus of experiments for decades. In this review, we focus on an understudied aspect of chromatin biology, namely the chromatin fiber polymer’s mechanical properties. In recent years, innovative work deploying interdisciplinary approaches including computational modeling, in vitro manipulations of purified and native chromatin have resulted in deep mechanistic insights into how the mechanics of chromatin might contribute to its function. The picture that emerges is one of a nucleus that is shaped as much by external forces pressing down upon it, as internal forces pushing outwards from the chromatin. These properties may have evolved to afford the cell a dynamic and reversible force-induced communication highway which allows rapid coordination between external cues and internal genomic function.
Collapse
|
15
|
Gumber HK, McKenna JF, Tolmie AF, Jalovec AM, Kartick AC, Graumann K, Bass HW. MLKS2 is an ARM domain and F-actin-associated KASH protein that functions in stomatal complex development and meiotic chromosome segregation. Nucleus 2019; 10:144-166. [PMID: 31221013 PMCID: PMC6649574 DOI: 10.1080/19491034.2019.1629795] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 01/25/2023] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is an essential multi-protein structure spanning the eukaryotic nuclear envelope. The LINC complex functions to maintain nuclear architecture, positioning, and mobility, along with specialized functions in meiotic prophase and chromosome segregation. Members of the LINC complex were recently identified in maize, an important scientific and agricultural grass species. Here we characterized Maize LINC KASH AtSINE-like2, MLKS2, which encodes a highly conserved SINE-group plant KASH protein with characteristic N-terminal armadillo repeats (ARM). Using a heterologous expression system, we showed that actively expressed GFP-MLKS2 is targeted to the nuclear periphery and colocalizes with F-actin and the endoplasmic reticulum, but not microtubules in the cell cortex. Expression of GFP-MLKS2, but not GFP-MLKS2ΔARM, resulted in nuclear anchoring. Genetic analysis of transposon-insertion mutations, mlks2-1 and mlks2-2, showed that the mutant phenotypes were pleiotropic, affecting root hair nuclear morphology, stomatal complex development, multiple aspects of meiosis, and pollen viability. In male meiosis, the mutants showed defects for bouquet-stage telomere clustering, nuclear repositioning, perinuclear actin accumulation, dispersal of late prophase bivalents, and meiotic chromosome segregation. These findings support a model in which the nucleus is connected to cytoskeletal F-actin through the ARM-domain, predicted alpha solenoid structure of MLKS2. Functional conservation of MLKS2 was demonstrated through genetic rescue of the misshapen nuclear phenotype of an Arabidopsis (triple-WIP) KASH mutant. This study establishes a role for the SINE-type KASH proteins in affecting the dynamic nuclear phenomena required for normal plant growth and fertility. Abbreviations: FRAP: Fluorescence recovery after photobleaching; DPI: Days post infiltration; OD: Optical density; MLKS2: Maize LINC KASH AtSINE-like2; LINC: Linker of nucleoskeleton and cytoskeleton; NE: Nuclear envelope; INM: Inner nuclear membrane; ONM: Outer nuclear membrane.
Collapse
Affiliation(s)
- Hardeep K. Gumber
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Joseph F. McKenna
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Andrea F. Tolmie
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Alexis M. Jalovec
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Andre C. Kartick
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
16
|
Zhang S, Liu J, Xue X, Tan K, Wang C, Su H. The migration direction of hair cell nuclei is closely related to the perinuclear actin filaments in Arabidopsis. Biochem Biophys Res Commun 2019; 519:783-789. [PMID: 31551150 DOI: 10.1016/j.bbrc.2019.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 11/19/2022]
Abstract
Nuclear migration in Arabidopsis root hairs is bidirectional and relies on actin filaments. However, how actin filaments regulate the bidirectional movement of nuclei remains unclear. Here, we discovered that nuclei migrate forward and backward according to the developmental stage of the hair cells. In addition, the migration direction of nuclei was not constant but reversed occasionally, accompanied by nuclear shape changes. Confocal microscopic analysis revealed that perinuclear actin bundles were closely related to the migration and shape of hair cell nuclei. Pharmacological studies showed that SMIFH2, an inhibitor of the actin nucleator-formin, inhibited nuclear backward migration probably by impairing the perinuclear actin filaments. These data indicate that nuclear migration in hair cells is likely motivated by the competition of mechanical forces acting on the nucleus. Furthermore, the perinuclear actin filaments are closely related to the migration direction of hair cell nuclei.
Collapse
Affiliation(s)
- Shujuan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jinyu Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiuhua Xue
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Kang Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Chunbo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
17
|
Yasuhara H, Kurisu W. A Kinesin-Related Protein, TBK11, Associates with the Nuclear Envelope throughout the Cell Cycle in Tobacco BY-2 Cells. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hiroki Yasuhara
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Wataru Kurisu
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|
18
|
Newman-Griffis AH, Del Cerro P, Charpentier M, Meier I. Medicago LINC Complexes Function in Nuclear Morphology, Nuclear Movement, and Root Nodule Symbiosis. PLANT PHYSIOLOGY 2019; 179:491-506. [PMID: 30530738 PMCID: PMC6426413 DOI: 10.1104/pp.18.01111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/02/2018] [Indexed: 05/19/2023]
Abstract
Nuclear movement is involved in cellular and developmental processes across eukaryotic life, often driven by Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes, which bridge the nuclear envelope (NE) via the interaction of Klarsicht/ANC-1/Syne-1 Homology (KASH) and Sad1/UNC-84 (SUN) proteins. Arabidopsis (Arabidopsis thaliana) LINC complexes are involved in nuclear movement and positioning in several cell types. Observations since the 1950s have described targeted nuclear movement and positioning during symbiosis initiation between legumes and rhizobia, but it has not been established whether these movements are functional or incidental. Here, we identify and characterize LINC complexes in the model legume Medicago truncatula We show that LINC complex characteristics such as NE localization, dependence of KASH proteins on SUN protein binding for NE enrichment, and direct SUN-KASH binding are conserved between plant species. Using a SUN dominant-negative strategy, we demonstrate that LINC complexes are necessary for proper nuclear shaping and movement in Medicago root hairs, and are important for infection thread initiation and nodulation.
Collapse
Affiliation(s)
- Anna H Newman-Griffis
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
- Center for RNA Biology, The Ohio State University, Columbus, Ohio
| | - Pablo Del Cerro
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
- Center for RNA Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
19
|
Liang S, Yang X, Deng M, Zhao J, Shao J, Qi Y, Liu X, Yu F, An L. A New Allele of the SPIKE1 Locus Reveals Distinct Regulation of Trichome and Pavement Cell Development and Plant Growth. FRONTIERS IN PLANT SCIENCE 2019; 10:16. [PMID: 30733726 PMCID: PMC6353857 DOI: 10.3389/fpls.2019.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
The single-celled trichomes of Arabidopsis thaliana have long served as an elegant model for elucidating the mechanisms of cell differentiation and morphogenesis due to their unique growth patterns. To identify new components in the genetic network that governs trichome development, we carried out exhaustive screens for additional Arabidopsis mutants with altered trichome morphology. Here, we report one mutant, aberrantly branched trichome1-1 (abt1-1), with a reduced trichome branching phenotype. After positional cloning, a point mutation in the SPIKE1 (SPK1) gene was identified in abt1-1. Further genetic complementation experiments confirmed that abt1-1 is a new allele of SPK1, so abt1-1 was renamed as spk1-7 according to the literatures. spk1-7 and two other spk1 mutant alleles, covering a spectrum of phenotypic severity, highlighted the distinct responses of developmental programs to different SPK1 mutations. Although null spk1 mutants are lethal and show defects in plant stature, trichome and epidermal pavement cell development, only trichome branching is affected in spk1-7. Surprisingly, we found that SPK1 is involved in the positioning of nuclei in the trichome cells. Lastly, through double mutant analysis, we found the coordinated regulation of trichome branching between SPK1 and two other trichome branching regulators, ANGUSTIFOLIA (AN) and ZWICHEL (ZWI). SPK1 might serve for the precise positioning of trichome nuclei, while AN and ZWI contribute to the formation of branch points through governing the cMTs dynamics. In summary, this study presented a fully viable new mutant allele of SPK1 and shed new light on the regulation of trichome branching and other developmental processes by SPK1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fei Yu
- *Correspondence: Fei Yu, Lijun An,
| | - Lijun An
- *Correspondence: Fei Yu, Lijun An,
| |
Collapse
|
20
|
Iwabuchi K, Ohnishi H, Tamura K, Fukao Y, Furuya T, Hattori K, Tsukaya H, Hara-Nishimura I. ANGUSTIFOLIA Regulates Actin Filament Alignment for Nuclear Positioning in Leaves. PLANT PHYSIOLOGY 2019; 179:233-247. [PMID: 30404821 PMCID: PMC6324246 DOI: 10.1104/pp.18.01150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/24/2018] [Indexed: 05/03/2023]
Abstract
During dark adaptation, plant nuclei move centripetally toward the midplane of the leaf blade; thus, the nuclei on both the adaxial and abaxial sides become positioned at the inner periclinal walls of cells. This centripetal nuclear positioning implies that a characteristic cell polarity exists within a leaf, but little is known about the mechanism underlying this process. Here, we show that ANGUSTIFOLIA (AN) and ACTIN7 regulate centripetal nuclear positioning in Arabidopsis (Arabidopsis thaliana) leaves. Two mutants defective in the positioning of nuclei in the dark were isolated and designated as unusual nuclear positioning1 (unp1) and unp2 In the dark, nuclei of unp1 were positioned at the anticlinal walls of adaxial and abaxial mesophyll cells and abaxial pavement cells, whereas the nuclei of unp2 were positioned at the anticlinal walls of mesophyll and pavement cells on both the adaxial and abaxial sides. unp1 was caused by a dominant-negative mutation in ACTIN7, and unp2 resulted from a recessive mutation in AN Actin filaments in unp1 were fragmented and reduced in number, which led to pleiotropic defects in nuclear morphology, cytoplasmic streaming, and plant growth. The mutation in AN caused aberrant positioning of nuclei-associated actin filaments at the anticlinal walls. AN was detected in the cytosol, where it interacted physically with plant-specific dual-specificity tyrosine phosphorylation-regulated kinases (DYRKPs) and itself. The DYRK inhibitor (1Z)-1-(3-ethyl-5-hydroxy-2(3H)-benzothiazolylidene)-2-propanone significantly inhibited dark-induced nuclear positioning. Collectively, these results suggest that the AN-DYRKP complex regulates the alignment of actin filaments during centripetal nuclear positioning in leaf cells.
Collapse
Affiliation(s)
- Kosei Iwabuchi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Haruna Ohnishi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Tomoyuki Furuya
- Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Koro Hattori
- Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Okazaki Institute for Integrative Bioscience, Okazaki 444-8787, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
21
|
Shew CY, Oda S, Yoshikawa K. Localization switching of a large object in a crowded cavity: A rigid/soft object prefers surface/inner positioning. J Chem Phys 2018; 147:204901. [PMID: 29195278 DOI: 10.1063/1.5000762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
For living cells in the real world, a large organelle is commonly positioned in the inner region away from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria, chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders, which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo simulation indicate that the preferential location of the larger particle switches from the periphery into the inner region of the cavity by increasing its softness. An integral equation theory is further developed to account for the structural features of the model, and the theoretical predictions are found consistent with our simulation results.
Collapse
Affiliation(s)
- Chwen-Yang Shew
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA and Department of Chemistry, College of Staten Island, Staten Island, New York 10314, USA
| | - Soutaro Oda
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| |
Collapse
|
22
|
Nakamura M, Claes AR, Grebe T, Hermkes R, Viotti C, Ikeda Y, Grebe M. Auxin and ROP GTPase Signaling of Polar Nuclear Migration in Root Epidermal Hair Cells. PLANT PHYSIOLOGY 2018; 176:378-391. [PMID: 29084900 PMCID: PMC5761770 DOI: 10.1104/pp.17.00713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/26/2017] [Indexed: 05/25/2023]
Abstract
Polar nuclear migration is crucial during the development of diverse eukaryotes. In plants, root hair growth requires polar nuclear migration into the outgrowing hair. However, knowledge about the dynamics and the regulatory mechanisms underlying nuclear movements in root epidermal cells remains limited. Here, we show that both auxin and Rho-of-Plant (ROP) signaling modulate polar nuclear position at the inner epidermal plasma membrane domain oriented to the cortical cells during cell elongation as well as subsequent polar nuclear movement to the outer domain into the emerging hair bulge in Arabidopsis (Arabidopsis thaliana). Auxin signaling via the nuclear AUXIN RESPONSE FACTOR7 (ARF7)/ARF19 and INDOLE ACETIC ACID7 pathway ensures correct nuclear placement toward the inner membrane domain. Moreover, precise inner nuclear placement relies on SPIKE1 Rho-GEF, SUPERCENTIPEDE1 Rho-GDI, and ACTIN7 (ACT7) function and to a lesser extent on VTI11 vacuolar SNARE activity. Strikingly, the directionality and/or velocity of outer polar nuclear migration into the hair outgrowth along actin strands also are ACT7 dependent, auxin sensitive, and regulated by ROP signaling. Thus, our findings provide a founding framework revealing auxin and ROP signaling of inner polar nuclear position with some contribution by vacuolar morphology and of actin-dependent outer polar nuclear migration in root epidermal hair cells.
Collapse
Affiliation(s)
- Moritaka Nakamura
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Andrea R Claes
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Tobias Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Rebecca Hermkes
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | - Corrado Viotti
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Yoshihisa Ikeda
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | - Markus Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| |
Collapse
|
23
|
Groves NR, Biel AM, Newman-Griffis AH, Meier I. Dynamic Changes in Plant Nuclear Organization in Response to Environmental and Developmental Signals. PLANT PHYSIOLOGY 2018; 176:230-241. [PMID: 28739821 PMCID: PMC5761808 DOI: 10.1104/pp.17.00788] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/17/2017] [Indexed: 05/19/2023]
Abstract
The functional organization of the plant nuclear pore, nuclear envelope, and nucleoplasm marks dynamically changing environmental cues and developmental programs.
Collapse
Affiliation(s)
- Norman R Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Alecia M Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Anna H Newman-Griffis
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
24
|
Tsyganova AV, Kitaeva AB, Tsyganov VE. Cell differentiation in nitrogen-fixing nodules hosting symbiosomes. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:47-57. [PMID: 32291020 DOI: 10.1071/fp16377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/25/2017] [Indexed: 06/11/2023]
Abstract
The nitrogen-fixing nodule is a unique ecological niche for rhizobia, where microaerobic conditions support functioning of the main enzyme of nitrogen fixation, nitrogenase, which is highly sensitive to oxygen. To accommodate bacteria in a symbiotic nodule, the specialised infected cells increase in size owing to endoreduplication and are able to shelter thousands of bacteria. Bacteria are isolated from the cytoplasm of the plant cell by a membrane-bound organelle-like structure termed the symbiosome. It is enclosed by a symbiosome membrane, mainly of plant origin but with some inclusion of bacterial proteins. Within the symbiosome, bacterial cells differentiate into bacteroids a form that is specialised for nitrogen fixation. In this review, we briefly summarise recent advances in studies of differentiation both of symbiosomes and of the infected cells that accommodate them. We will consider the role of CCS52A, DNA topoisomerase VI, tubulin cytoskeleton rearrangements in differentiation of infected cells, the fate of the vacuole, and the distribution of symbiosomes in the infected cells. We will also consider differentiation of symbiosomes, paying attention to the role of NCR peptides, vesicular transport to symbiosomes, and mutant analysis of symbiosome development in model and crop legumes. Finally, we conclude that mechanisms involved in redistribution organelles, including the symbiosomes, clearly merit much more attention.
Collapse
Affiliation(s)
- Anna V Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Anna B Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| |
Collapse
|
25
|
Kravets EA, Yemets AI, Blume YB. Cytoskeleton and nucleoskeleton involvement in processes of cytomixis in plants. Cell Biol Int 2017; 43:999-1009. [DOI: 10.1002/cbin.10842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - Alla Ivanovna Yemets
- Institute of Food Biotechnology and GenomicsNatl. Academy of Sciences of UkraineKyiv Ukraine
| | | |
Collapse
|
26
|
Capability of tip-growing plant cells to penetrate into extremely narrow gaps. Sci Rep 2017; 7:1403. [PMID: 28469280 PMCID: PMC5431147 DOI: 10.1038/s41598-017-01610-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/31/2017] [Indexed: 11/08/2022] Open
Abstract
Plant cells are covered with rigid cell walls, yet tip-growing cells can elongate by providing new cell wall material to their apical regions. Studies of the mechanical properties of tip-growing plant cells typically involve measurement of the turgor pressure and stiffness of the cells’ apical regions. These experiments, however, do not address how living tip-growing cells react when they encounter physical obstacles that are not substantially altered by turgor pressure. To investigate this issue, we constructed microfabricated platforms with a series of artificial gaps as small as 1 μm, and examined the capability of tip-growing plant cells, including pollen tubes, root hairs, and moss protonemata, to penetrate into these gaps. The cells were grown inside microfluidic chambers and guided towards the gaps using microdevices customized for each cell type. All types of tip-growing cells could grow through the microgaps with their organelles intact, even though the gaps were much smaller than the cylindrical cell diameter. Our findings reveal the dramatic physiological and developmental flexibility of tip-growing plant cells. The microfluidic platforms designed in this study provide novel tools for the elucidation of the mechanical properties of tip-growing plant cells in extremely small spaces.
Collapse
|
27
|
Tan K, Wen C, Feng H, Chao X, Su H. Nuclear dynamics and programmed cell death in Arabidopsis root hairs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:77-85. [PMID: 27968999 DOI: 10.1016/j.plantsci.2016.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
In this paper we demonstrate the coupling of nuclear migration to the base of Arabidopsis root hairs with programmed cell death (PCD). Nuclear migration and positioning are fundamental processes of eukaryotic cells. To date, no evidence for a direct connection between nucleus migration and PCD has been described in the literature. Based on the findings of our previous study, we hereby further establish the regulatory role of caspase-3-like/DEVDase in root hair death and demonstrate nuclear migration to a position close to the root hair basement during PCD. In addition, continuous observation and statistical analysis have revealed that the nucleus disengages from the root hair tip and moves back to the root after the root hair grows to a certain length. Finally, pharmacological studies have shown that the meshwork of actin filaments surrounding the nucleus plays a pivotal role in nuclear movement during root hair PCD, and the basipetal movement of the nucleus is markedly inhibited by the caspase-3 inhibitor, Ac-DEVD-CHO.
Collapse
Affiliation(s)
- Kang Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Chenxi Wen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Hualing Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Xiaoting Chao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
28
|
Abstract
The last decade has seen rapid advances in our understanding of the proteins of the nuclear envelope, which have multiple roles including positioning the nucleus, maintaining its structural organization, and in events ranging from mitosis and meiosis to chromatin positioning and gene expression. Diverse new and stimulating results relating to nuclear organization and genome function from across kingdoms were presented in a session stream entitled “Dynamic Organization of the Nucleus” at this year's Society of Experimental Biology (SEB) meeting in Brighton, UK (July 2016). This was the first session stream run by the Nuclear Dynamics Special Interest Group, which was organized by David Evans, Katja Graumann (both Oxford Brookes University, UK) and Iris Meier (Ohio State University, USA). The session featured presentations on areas relating to nuclear organization across kingdoms including the nuclear envelope, chromatin organization, and genome function.
Collapse
Affiliation(s)
- Stephen D Thorpe
- a Institute of Bioengineering, School of Engineering and Materials Science , Queen Mary University of London , London , UK
| | | |
Collapse
|
29
|
Meier I. LINCing the eukaryotic tree of life - towards a broad evolutionary comparison of nucleocytoplasmic bridging complexes. J Cell Sci 2016; 129:3523-3531. [PMID: 27591260 DOI: 10.1242/jcs.186700] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nuclear envelope is much more than a simple barrier between nucleoplasm and cytoplasm. Nuclear envelope bridging complexes are protein complexes spanning both the inner and outer nuclear envelope membranes, thus directly connecting the cytoplasm with the nucleoplasm. In metazoans, they are involved in connecting the cytoskeleton with the nucleoskeleton, and act as anchoring platforms at the nuclear envelope for the positioning and moving of both nuclei and chromosomes. Recently, nucleocytoplasmic bridging complexes have also been identified in more evolutionarily diverse organisms, including land plants. Here, I discuss similarities and differences among and between eukaryotic supergroups, specifically of the proteins forming the cytoplasmic surface of these complexes. I am proposing a structure and function for a hypothetical ancestral nucleocytoplasmic bridging complex in the last eukaryotic common ancestor, with the goal to stimulate research in more diverse emerging model organisms.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Brochhausen L, Maisch J, Nick P. Break of symmetry in regenerating tobacco protoplasts is independent of nuclear positioning. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:799-812. [PMID: 26898230 DOI: 10.1111/jipb.12469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
Nuclear migration and positioning are crucial for the morphogenesis of plant cells. We addressed the potential role of nuclear positioning for polarity induction using an experimental system based on regenerating protoplasts, where the induction of a cell axis de novo can be followed by quantification of specific regeneration stages. Using overexpression of fluorescently tagged extranuclear (perinuclear actin basket, kinesins with a calponin homology domain (KCH)) as well as intranuclear (histone H2B) factors of nuclear positioning and time-lapse series of the early stages of regeneration, we found that nuclear position is no prerequisite for polarity formation. However, polarity formation and nuclear migration were both modulated in the transgenic lines, indicating that both phenomena depend on factors affecting cytoskeletal tensegrity and chromatin structure. We integrated these findings into a model where retrograde signals are required for polarity induction. These signals travel via the cytoskeleton from the nucleus toward targets at the plasma membrane.
Collapse
Affiliation(s)
- Linda Brochhausen
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, D-76133 Karlsruhe, Germany.
| | - Jan Maisch
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, D-76133 Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, D-76133 Karlsruhe, Germany
| |
Collapse
|
31
|
Scheler B, Schnepf V, Galgenmüller C, Ranf S, Hückelhoven R. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3263-75. [PMID: 27056842 PMCID: PMC4892720 DOI: 10.1093/jxb/erw141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh RACB is required for positioning of the nucleus near the site of attack from Bgh We therefore suggest that Bgh profits from RACB's function in cell polarity rather than from immunity-regulating functions of RACB.
Collapse
Affiliation(s)
- Björn Scheler
- Phytopathology, Technische Universität München, D-85354 Freising-Weihenstephan, Germany
| | - Vera Schnepf
- Phytopathology, Technische Universität München, D-85354 Freising-Weihenstephan, Germany
| | - Carolina Galgenmüller
- Phytopathology, Technische Universität München, D-85354 Freising-Weihenstephan, Germany
| | - Stefanie Ranf
- Phytopathology, Technische Universität München, D-85354 Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Phytopathology, Technische Universität München, D-85354 Freising-Weihenstephan, Germany
| |
Collapse
|
32
|
Regulation of nuclear shape and size in plants. Curr Opin Cell Biol 2016; 40:114-123. [PMID: 27030912 DOI: 10.1016/j.ceb.2016.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 11/22/2022]
Abstract
Nuclear shape and size changes have long been used by cytopathologists to diagnose, stage, and prognose cancer. However, the underlying causalities and molecular mechanisms are largely unknown. The current eukaryotic tree of life groups eukaryotes into five supergroups, with all organisms between humans and yeast falling into the supergroup Opisthokonta. The emergence of model organisms with strong molecular genetic methodology in the other supergroups has recently facilitated a broader evolutionary approach to pressing biological questions. Here, we review what is known about the control of nuclear shape and size in the Archaeplastidae, the supergroup containing the higher plants. We discuss common themes as well as differences toward a more generalized model of how eukaryotic organisms regulate nuclear morphology.
Collapse
|
33
|
Iwabuchi K, Hidema J, Tamura K, Takagi S, Hara-Nishimura I. Plant Nuclei Move to Escape Ultraviolet-Induced DNA Damage and Cell Death. PLANT PHYSIOLOGY 2016; 170:678-85. [PMID: 26681797 PMCID: PMC4734561 DOI: 10.1104/pp.15.01400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/12/2015] [Indexed: 05/19/2023]
Abstract
A striking feature of plant nuclei is their light-dependent movement. In Arabidopsis (Arabidopsis thaliana) leaf mesophyll cells, the nuclei move to the side walls of cells within 1 to 3 h after blue-light reception, although the reason is unknown. Here, we show that the nuclear movement is a rapid and effective strategy to avoid ultraviolet B (UVB)-induced damages. Mesophyll nuclei were positioned on the cell bottom in the dark, but sudden exposure of these cells to UVB caused severe DNA damage and cell death. The damage was remarkably reduced in both blue-light-treated leaves and mutant leaves defective in the actin cytoskeleton. Intriguingly, in plants grown under high-light conditions, the mesophyll nuclei remained on the side walls even in the dark. These results suggest that plants have two strategies for reducing UVB exposure: rapid nuclear movement against acute exposure and nuclear anchoring against chronic exposure.
Collapse
Affiliation(s)
- Kosei Iwabuchi
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.I., K.T., I.H.-N.);Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan (J.H.); andGraduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka 560-0043, Japan (S.T.)
| | - Jun Hidema
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.I., K.T., I.H.-N.);Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan (J.H.); andGraduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka 560-0043, Japan (S.T.)
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.I., K.T., I.H.-N.);Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan (J.H.); andGraduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka 560-0043, Japan (S.T.)
| | - Shingo Takagi
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.I., K.T., I.H.-N.);Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan (J.H.); andGraduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka 560-0043, Japan (S.T.)
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.I., K.T., I.H.-N.);Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan (J.H.); andGraduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka 560-0043, Japan (S.T.)
| |
Collapse
|
34
|
Ueda H, Tamura K, Hara-Nishimura I. Functions of plant-specific myosin XI: from intracellular motility to plant postures. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:30-8. [PMID: 26432645 DOI: 10.1016/j.pbi.2015.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 05/02/2023]
Abstract
The plant-specific protein motor class myosin XI is known to function in rapid bulk flow of the cytoplasm (cytoplasmic streaming) and in organellar movements. Recent studies unveiled a wide range of physiological functions of myosin XI motors, from intracellular motility to organ movements. Arabidopsis thaliana has 13 members of myosin XI class. In vegetative organs, myosins XIk, XI1, and XI2 primarily contribute to dynamics and spatial configurations of endoplasmic reticulum that develops a tubular network in the cell periphery and thick strand-like structures in the inner cell regions. Myosin XI-i forms a nucleocytoplasmic linker and is responsible for nuclear movement and shape. In addition to these intracellular functions, myosin XIf together with myosin XIk is involved in the fundamental nature of plants; the actin-myosin XI cytoskeleton regulates organ straightening to adjust plant posture.
Collapse
Affiliation(s)
- Haruko Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
35
|
Le Fevre R, Evangelisti E, Rey T, Schornack S. Modulation of host cell biology by plant pathogenic microbes. Annu Rev Cell Dev Biol 2015; 31:201-29. [PMID: 26436707 DOI: 10.1146/annurev-cellbio-102314-112502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.
Collapse
Affiliation(s)
- Ruth Le Fevre
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| |
Collapse
|
36
|
Gill US, Lee S, Mysore KS. Host versus nonhost resistance: distinct wars with similar arsenals. PHYTOPATHOLOGY 2015; 105:580-7. [PMID: 25626072 DOI: 10.1094/phyto-11-14-0298-rvw] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants face several challenges by bacterial, fungal, oomycete, and viral pathogens during their life cycle. In order to defend against these biotic stresses, plants possess a dynamic, innate, natural immune system that efficiently detects potential pathogens and initiates a resistance response in the form of basal resistance and/or resistance (R)-gene-mediated defense, which is often associated with a hypersensitive response. Depending upon the nature of plant-pathogen interactions, plants generally have two main defense mechanisms, host resistance and nonhost resistance. Host resistance is generally controlled by single R genes and less durable compared with nonhost resistance. In contrast, nonhost resistance is believed to be a multi-gene trait and more durable. In this review, we describe the mechanisms of host and nonhost resistance against fungal and bacterial plant pathogens. In addition, we also attempt to compare host and nonhost resistance responses to identify similarities and differences, and their practical applications in crop improvement.
Collapse
Affiliation(s)
- Upinder S Gill
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Seonghee Lee
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401
| |
Collapse
|
37
|
Kulich I, Vojtíková Z, Glanc M, Ortmannová J, Rasmann S, Žárský V. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. PLANT PHYSIOLOGY 2015; 168:120-31. [PMID: 25767057 PMCID: PMC4424025 DOI: 10.1104/pp.15.00112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/10/2015] [Indexed: 05/22/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) leaf trichomes are single-cell structures with a well-studied development, but little is understood about their function. Developmental studies focused mainly on the early shaping stages, and little attention has been paid to the maturation stage. We focused on the EXO70H4 exocyst subunit, one of the most up-regulated genes in the mature trichome. We uncovered EXO70H4-dependent development of the secondary cell wall layer, highly autofluorescent and callose rich, deposited only in the upper part of the trichome. The boundary is formed between the apical and the basal parts of mature trichome by a callose ring that is also deposited in an EXO70H4-dependent manner. We call this structure the Ortmannian ring (OR). Both the secondary cell wall layer and the OR are absent in the exo70H4 mutants. Ecophysiological aspects of the trichome cell wall thickening include interference with antiherbivore defense and heavy metal accumulation. Ultraviolet B light induces EXO70H4 transcription in a CONSTITUTIVE PHOTOMORPHOGENIC1-dependent way, resulting in stimulation of trichome cell wall thickening and the OR biogenesis. EXO70H4-dependent trichome cell wall hardening is a unique phenomenon, which may be conserved among a variety of the land plants. Our analyses support a concept that Arabidopsis trichome is an excellent model to study molecular mechanisms of secondary cell wall deposition.
Collapse
Affiliation(s)
- Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| | - Zdeňka Vojtíková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| | - Matouš Glanc
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| | - Jitka Ortmannová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| | - Sergio Rasmann
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| |
Collapse
|
38
|
Zhou X, Groves NR, Meier I. Plant nuclear shape is independently determined by the SUN-WIP-WIT2-myosin XI-i complex and CRWN1. Nucleus 2015; 6:144-53. [PMID: 25759303 PMCID: PMC4615252 DOI: 10.1080/19491034.2014.1003512] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/06/2014] [Accepted: 12/22/2014] [Indexed: 10/23/2022] Open
Abstract
Nuclei undergo dynamic shape changes during plant development, but the mechanism is unclear. In Arabidopsis, Sad1/UNC-84 (SUN) proteins, WPP domain-interacting proteins (WIPs), WPP domain-interacting tail-anchored proteins (WITs), myosin XI-i, and CROWDED NUCLEI 1 (CRWN1) have been shown to be essential for nuclear elongation in various epidermal cell types. It has been proposed that WITs serve as adaptors linking myosin XI-i to the SUN-WIP complex at the nuclear envelope (NE). Recently, an interaction between Arabidopsis SUN1 and SUN2 proteins and CRWN1, a plant analog of lamins, has been reported. Therefore, the CRWN1-SUN-WIP-WIT-myosin XI-i interaction may form a linker of the nucleoskeleton to the cytoskeleton complex. In this study, we investigate this proposed mechanism in detail for nuclei of Arabidopsis root hairs and trichomes. We show that WIT2, but not WIT1, plays an essential role in nuclear shape determination by recruiting myosin XI-i to the SUN-WIP NE bridges. Compared with SUN2, SUN1 plays a predominant role in nuclear shape. The NE localization of SUN1, SUN2, WIP1, and a truncated WIT2 does not depend on CRWN1. While crwn1 mutant nuclei are smooth, the nuclei of sun or wit mutants are invaginated, similar to the reported myosin XI-i mutant phenotype. Together, this indicates that the roles of the respective WIT and SUN paralogs have diverged in trichomes and root hairs, and that the SUN-WIP-WIT2-myosin XI-i complex and CRWN1 independently determine elongated nuclear shape. This supports a model of nuclei being shaped both by cytoplasmic forces transferred to the NE and by nucleoplasmic filaments formed under the NE.
Collapse
Key Words
- Arabidopsis
- CDS, coding sequence
- CRWN
- CRWN1, CROWDED NUCLEI 1
- KASH
- KASH, Klarsicht/ANC-1/Syne-1 Homology
- LINC
- LINC, linker of the nucleoskeleton to the cytoskeleton
- NE, nuclear envelope
- NLI, nuclear envelope localization index
- SUN
- SUN, Sad1/UNC-84
- WIP, WPP domain-interacting protein
- WIT, WPP domain-interacting tail-anchored protein
- XI-iC642, myosin XI-i C-terminal 642 amino acids.
- nuclear envelope
- nuclear shape
- sun1-KO sun2-KD, sun1-knockout sun2-knockdown
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics; The Ohio State University; Columbus, OH USA
| | - Norman Reid Groves
- Department of Molecular Genetics; The Ohio State University; Columbus, OH USA
| | - Iris Meier
- Department of Molecular Genetics; The Ohio State University; Columbus, OH USA
| |
Collapse
|