1
|
Wang Y, Peng Y, Guo H. To curve for survival: Apical hook development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:324-342. [PMID: 36562414 DOI: 10.1111/jipb.13441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Apical hook is a simple curved structure formed at the upper part of hypocotyls when dicot seeds germinate in darkness. The hook structure is transient but essential for seedlings' survival during soil emergence due to its efficient protection of the delicate shoot apex from mechanical injury. As a superb model system for studying plant differential growth, apical hook has fascinated botanists as early as the Darwin age, and significant advances have been achieved at both the morphological and molecular levels to understand how apical hook development is regulated. Here, we will mainly summarize the research progress at these two levels. We will also briefly compare the growth dynamics between apical hook and hypocotyl gravitropic bending at early seed germination phase, with the aim to deduce a certain consensus on their connections. Finally, we will outline the remaining questions and future research perspectives for apical hook development.
Collapse
Affiliation(s)
- Yichuan Wang
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
2
|
Du M, Bou Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong JH, Ren H, Cohen JD, Li C, Gray WM. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. SCIENCE ADVANCES 2022; 8:eabj1570. [PMID: 35020423 PMCID: PMC8754305 DOI: 10.1126/sciadv.abj1570] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Seedling emergence is critical for food security. It requires rapid hypocotyl elongation and apical hook formation, both of which are mediated by regulated cell expansion. How these events are coordinated in etiolated seedlings is unclear. Here, we show that biphasic control of cell expansion by the phytohormone auxin underlies this process. Shortly after germination, high auxin levels restrain elongation. This provides a temporal window for apical hook formation, involving a gravity-induced auxin maximum on the eventual concave side of the hook. This auxin maximum induces PP2C.D1 expression, leading to asymmetrical H+-ATPase activity across the hypocotyl that contributes to the differential cell elongation underlying hook development. Subsequently, auxin concentrations decline acropetally and switch from restraining to promoting elongation, thereby driving hypocotyl elongation. Our findings demonstrate how differential auxin concentrations throughout the hypocotyl coordinate etiolated development, leading to successful soil emergence.
Collapse
Affiliation(s)
- Minmin Du
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Firas Bou Daher
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Yuanyuan Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrew Steward
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Xiaoyue Zhang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Hong Ren
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Jerry D. Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author. (C.L.); (W.M.G.)
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Corresponding author. (C.L.); (W.M.G.)
| |
Collapse
|
3
|
Peng Y, Zhang D, Qiu Y, Xiao Z, Ji Y, Li W, Xia Y, Wang Y, Guo H. Growth asymmetry precedes differential auxin response during apical hook initiation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:5-22. [PMID: 34786851 DOI: 10.1111/jipb.13190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
The development of a hook-like structure at the apical part of the soil-emerging organs has fascinated botanists for centuries, but how it is initiated remains unclear. Here, we demonstrate with high-throughput infrared imaging and 2-D clinostat treatment that, when gravity-induced root bending is absent, apical hook formation still takes place. In such scenarios, hook formation begins with a de novo growth asymmetry at the apical part of a straightly elongating hypocotyl. Remarkably, such de novo asymmetric growth, but not the following hook enlargement, precedes the establishment of a detectable auxin response asymmetry, and is largely independent of auxin biosynthesis, transport and signaling. Moreover, we found that functional cortical microtubule array is essential for the following enlargement of hook curvature. When microtubule array was disrupted by oryzalin, the polar localization of PIN proteins and the formation of an auxin maximum became impaired at the to-be-hook region. Taken together, we propose a more comprehensive model for apical hook initiation, in which the microtubule-dependent polar localization of PINs may mediate the instruction of growth asymmetry that is either stochastically taking place, induced by gravitropic response, or both, to generate a significant auxin gradient that drives the full development of the apical hook.
Collapse
Affiliation(s)
- Yang Peng
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077, China
| | - Dan Zhang
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuping Qiu
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhina Xiao
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yusi Ji
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Microlens Technologies, Beijing, 100086, China
| | - Wenyang Li
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiji Xia
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077, China
| | - Yichuan Wang
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Abstract
The desire to understand gravitational effects on living things requires the removal of the very factor that determines life on Earth. Unfortunately, the required free-fall conditions that provide such conditions are limited to a few seconds unless earth-orbiting platforms are available. Therefore, attempts have been made to create conditions that simulate reduced gravity or gravity-free conditions ever since the gravity effects have been studied. Such conditions depend mostly on rotating devices (aka clinostats) that alter the gravity vector faster than the biological response time or create conditions that compensate sedimentation by fluid dynamics. Although several sophisticated, commercial instruments are available, they are unaffordable to most individual investigators. This article describes important considerations for the design and construction of low cost but versatile instruments that are sturdy, fully programmable, and affordable. The chapter focuses on detailed construction, programming of microcontrollers, versatility, and reliability of the instrument.
Collapse
|
5
|
Rivière M, Corre Y, Peaucelle A, Derr J, Douady S. The hook shape of growing leaves results from an active regulatory process. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6408-6417. [PMID: 32816036 DOI: 10.1093/jxb/eraa378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The rachis of most growing compound leaves observed in nature exhibits a stereotypical hook shape. In this study, we focus on the canonical case of Averrhoa carambola. Combining kinematics and mechanical investigation, we characterize this hook shape and shed light on its establishment and maintenance. We show quantitatively that the hook shape is a conserved bent zone propagating at constant velocity and constant distance from the apex throughout development. A simple mechanical test reveals non-zero intrinsic curvature profiles for the rachis during its growth, indicating that the hook shape is actively regulated. We show a robust spatial organization of growth, curvature, rigidity, and lignification, and their interplay. Regulatory processes appear to be specifically localized: in particular, differential growth occurs where the elongation rate drops. Finally, impairing the graviception of the leaf on a clinostat led to reduced hook curvature but not to its loss. Altogether, our results suggest a role for proprioception in the regulation of the leaf hook shape, likely mediated via mechanical strain.
Collapse
Affiliation(s)
- Mathieu Rivière
- Laboratoire Matière & Systèmes Complexes UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Paris Cedex, France
| | - Yoann Corre
- Laboratoire Matière & Systèmes Complexes UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Paris Cedex, France
| | - Alexis Peaucelle
- Laboratoire Matière & Systèmes Complexes UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Paris Cedex, France
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Versailles Cedex, France
| | - Julien Derr
- Laboratoire Matière & Systèmes Complexes UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Paris Cedex, France
| | - Stéphane Douady
- Laboratoire Matière & Systèmes Complexes UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Paris Cedex, France
| |
Collapse
|
6
|
Zhu Q, Gallemí M, Pospíšil J, Žádníková P, Strnad M, Benková E. Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis. Development 2019; 146:dev.175919. [PMID: 31391194 DOI: 10.1242/dev.175919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
The apical hook is a transiently formed structure that plays a protective role when the germinating seedling penetrates through the soil towards the surface. Crucial for proper bending is the local auxin maxima, which defines the concave (inner) side of the hook curvature. As no sign of asymmetric auxin distribution has been reported in embryonic hypocotyls prior to hook formation, the question of how auxin asymmetry is established in the early phases of seedling germination remains largely unanswered. Here, we analyzed the auxin distribution and expression of PIN auxin efflux carriers from early phases of germination, and show that bending of the root in response to gravity is the crucial initial cue that governs the hypocotyl bending required for apical hook formation. Importantly, polar auxin transport machinery is established gradually after germination starts as a result of tight root-hypocotyl interaction and a proper balance between abscisic acid and gibberellins.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Qiang Zhu
- Basic Forestry & Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China.,Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Marçal Gallemí
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Jiří Pospíšil
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University Olomouc, CZ-771 47, Czech Republic
| | - Petra Žádníková
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University Olomouc, CZ-771 47, Czech Republic
| | - Eva Benková
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| |
Collapse
|
7
|
Kamada M, Miyamoto K, Oka M, Ueda J, Higashibata A. Regulation of asymmetric polar auxin transport by PsPIN1 in endodermal tissues of etiolated Pisum sativum epicotyls: focus on immunohistochemical analyses. JOURNAL OF PLANT RESEARCH 2018; 131:681-692. [PMID: 29589195 DOI: 10.1007/s10265-018-1031-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/27/2018] [Indexed: 05/18/2023]
Abstract
This manuscript reports the production of specific polyclonal antibodies for PsPIN1, a putative auxin efflux carrier in Alaska pea (Pisum sativum L.) plants, and the cellular immunolocalization of PsPIN1. When pea seeds were set with the seed axis horizontal to the upper surface of a rockwool block, and allowed to germinate and grow for 3 days in the dark, the epicotyl grew upward. On the other hand, the application of 2,3,5-triiodobenzoic acid (TIBA) inhibited graviresponse. In the subapical epicotyl regions, PsPIN1 has been found to localize in the basal side of the plasma membrane of cells in endodermal tissues. Asymmetric PsPIN1 localization between the proximal and distal sides of the epicotyl was observed, the total amounts of PsPIN1 being more abundant in the proximal side. The asymmetric PsPIN1 distribution between the proximal and distal sides of the epicotyl was well correlated with unequal polar auxin transport as well as asymmetric accumulation of mRNA of PsPIN1 (Ueda et al. in Biol Sci Space 26:32-41, 2012; Ueda et al. in Plant Biol 16(suppl 1):43-49, 2014). In the proximal side of an apical hook, PsPIN1 localized in the basal side of the plasma membrane of cells in endodermal tissues, whereas in the distal side, the abundant distribution of PsPIN1 localized in the basal-lower (endodermal) side of the basal plasma membrane, suggesting possible lateral auxin movement from the distal side to the proximal side in this region. The application of TIBA significantly reduced the amount of PsPIN1 in the proximal side of epicotyls, but little in the distal side. These results suggest that unequal auxin transport in epicotyls during the early growth stage of etiolated pea seedlings is derived from asymmetric PsPIN1 localization in the apical hook and subapical region of epicotyls, and that asymmetric transport between the proximal and distal sides of epicotyls is required for the graviresponse of epicotyls.
Collapse
Affiliation(s)
- Motoshi Kamada
- Future Development Division, Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki, 305-0032, Japan.
| | - Kensuke Miyamoto
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Mariko Oka
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori, 680-8553, Japan
| | - Junichi Ueda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Akira Higashibata
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan.
| |
Collapse
|
8
|
Žádníková P, Smet D, Zhu Q, Straeten DVD, Benková E. Strategies of seedlings to overcome their sessile nature: auxin in mobility control. FRONTIERS IN PLANT SCIENCE 2015; 6:218. [PMID: 25926839 PMCID: PMC4396199 DOI: 10.3389/fpls.2015.00218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/19/2015] [Indexed: 05/21/2023]
Abstract
Plants are sessile organisms that are permanently restricted to their site of germination. To compensate for their lack of mobility, plants evolved unique mechanisms enabling them to rapidly react to ever changing environmental conditions and flexibly adapt their postembryonic developmental program. A prominent demonstration of this developmental plasticity is their ability to bend organs in order to reach the position most optimal for growth and utilization of light, nutrients, and other resources. Shortly after germination, dicotyledonous seedlings form a bended structure, the so-called apical hook, to protect the delicate shoot meristem and cotyledons from damage when penetrating through the soil. Upon perception of a light stimulus, the apical hook rapidly opens and the photomorphogenic developmental program is activated. After germination, plant organs are able to align their growth with the light source and adopt the most favorable orientation through bending, in a process named phototropism. On the other hand, when roots and shoots are diverted from their upright orientation, they immediately detect a change in the gravity vector and bend to maintain a vertical growth direction. Noteworthy, despite the diversity of external stimuli perceived by different plant organs, all plant tropic movements share a common mechanistic basis: differential cell growth. In our review, we will discuss the molecular principles underlying various tropic responses with the focus on mechanisms mediating the perception of external signals, transduction cascades and downstream responses that regulate differential cell growth and consequently, organ bending. In particular, we highlight common and specific features of regulatory pathways in control of the bending of organs and a role for the plant hormone auxin as a key regulatory component.
Collapse
Affiliation(s)
- Petra Žádníková
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, GhentBelgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, GhentBelgium
| | - Dajo Smet
- Department of Physiology, Laboratory of Functional Plant Biology, Ghent University, GhentBelgium
| | - Qiang Zhu
- Institute of Science and Technology Austria, KlosterneuburgAustria
| | | | - Eva Benková
- Institute of Science and Technology Austria, KlosterneuburgAustria
| |
Collapse
|